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addLabelDefinitions
Add label definitions to labeled signal set

Syntax
addLabelDefinitions(lss,lbldefs)
addLabelDefinitions(lss,lbldefs,lblname)

Description
addLabelDefinitions(lss,lbldefs) adds the labels defined in the vector of signal label
definitions lbldefs to the labeled signal set lss.

addLabelDefinitions(lss,lbldefs,lblname) adds the labels defined in lbldefs as sublabels
of the label lblname.

Examples

Add Label Definition

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Create a label definition that specifies whether a signal corresponds to a calf or to an adult whale.

calf = signalLabelDefinition('Calf','LabeldataType','logical','DefaultValue',false, ...
    'Description','Is the specimen a calf, or an adult?')

calf = 
  signalLabelDefinition with properties:

                  Name: "Calf"
             LabelType: "attribute"
         LabelDataType: "logical"
    ValidationFunction: []

1 Functions

1-2



          DefaultValue: 0
             Sublabels: [0x0 signalLabelDefinition]
                   Tag: ""
           Description: "Is the specimen a calf, or an adult?"

 Use labeledSignalSet to create a labeled signal set.

Add the definition to the labeled signal set. Retrieve the names of the labels.

addLabelDefinitions(lss,calf)

getLabelNames(lss)

ans = 4x1 string
    "WhaleType"
    "MoanRegions"
    "TrillRegions"
    "Calf"

Create a label definition that specifies the sex of the whale. Add the label to the set as a sublabel of
'WhaleType'.

sx = signalLabelDefinition('Sex','LabelDataType','categorical', ...
    'Categories',["male" "female"]);
addLabelDefinitions(lss,sx,'WhaleType')

labelDefinitionsHierarchy(lss)

ans = 
    'WhaleType
       Sublabels: Sex
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: TrillPeaks
     Calf
       Sublabels: []
     '

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lbldefs — Signal label definitions
signalLabelDefinition object | vector of signalLabelDefinition objects

 addLabelDefinitions

1-3



Signal label definitions, specified as a signalLabelDefinition object or a vector of
signalLabelDefinition objects.
Example:
signalLabelDefinition("Asleep",'LabelType','roi','LabelDataType','logical')
can label a region of a signal in which a patient is asleep.

lblname — Label name
character vector | string scalar

Label name, specified as a character vector or a string scalar.
Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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addlift
(To be removed) Add lifting steps to lifting scheme

Note This version of addlift will be removed in a future release. Use the new versions of addlift,
liftingStep, and liftingScheme. For more information, see “Compatibility Considerations”.

Syntax
LSN = addlift(LS,ELS)
LSN = addlift(LS,ELS,'begin')
LSN = addlift(LS,ELS,'end')

Description
LSN = addlift(LS,ELS) returns the new lifting scheme obtained by appending the elementary
lifting step ELS to the lifting scheme LS.

LSN = addlift(LS,ELS,'begin') prepends the specified elementary lifting step.

LSN = addlift(LS,ELS,'end') appends the specified elementary lifting step. LSN =
addlift(LS,ELS,'end') is equivalent to LSN = addfilt(LS,ELS).

Examples

Add Primal Lifting Step

This example shows how to start with the Haar lifting scheme and add a primal lifting step.

LSbegin = liftwave('haar');

Display the lifting scheme.

displs(LSbegin);

LSbegin = {...                       
'd'             [ -1.00000000]  [0]  
'p'             [  0.50000000]  [0]  
[  1.41421356]  [  0.70710678]  []   
};                                   

Create a primal lifting step.

pstep = { 'p', [-1 2 -1]/4 , 1 };

Add the primal lifting step.

LSend = addlift(LSbegin,pstep);

Display the final lifting scheme.

 addlift
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displs(LSend);

LSend = {...                                                 
'd'             [ -1.00000000]                          [0]  
'p'             [  0.50000000]                          [0]  
'p'             [ -0.25000000  0.50000000 -0.25000000]  [1]  
[  1.41421356]  [  0.70710678]                          []   
};                                                           

Input Arguments
LS — Lifting scheme
cell array

Lifting scheme, specified as a cell array. The format of LS is identical to the format of the output of
liftwave.

Note liftwave is no longer recommended and will be removed in a future release. Use
liftingScheme.

Data Types: cell

ELS — Elementary lifting step
cell array | structure

Elementary lifting step, specified as either a cell array or a structure whose formats are listed here.

• cell array — {TYPEVAL, COEFS, MAX_DEG}
• structure — struct('type',TYPEVAL,'value',LPVAL), where LPVAL = laurpoly(COEFS,

MAX_DEG)

If ELS is a sequence of elementary lifting steps, stored in a cell array or an array of structures, then
each of the elementary lifting steps is added to LS.

For more information, see lsinfo.

Version History
Introduced before R2006a

R2021a: addlift will be removed
Not recommended starting in R2021a

This version of addlift, that adds steps to a lifting scheme created using liftwave, will be
removed in a future release.

For lifting, use the new version of addlift, liftingStep, and liftingScheme. To update your
code, follow these steps:

1 Create a lifting scheme using liftingScheme.
2 Create a lifting step or an array of lifting steps using liftingStep.
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3 Add the lifting step or lifting steps using addlift.

See Also
liftfilt | addlift | liftingScheme | liftingStep

 addlift
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addlift
Add elementary lifting steps

Syntax
lsn = addlift(lscheme,els)
lsn = addlift(lscheme,els,loc)

Description
lsn = addlift(lscheme,els) appends the array of elementary lifting steps els to the lifting
scheme object lscheme.

lsn = addlift(lscheme,els,loc) inserts the array of elementary lifting steps els in the lifting
scheme lscheme at the specified location loc.

Examples

Insert Elementary Lifting Steps

Create a lifting scheme associated with the db2 wavelet.

lscheme = liftingScheme('Wavelet','db2')

lscheme = 
      Wavelet               : 'db2' 
     LiftingSteps          : [3 × 1] liftingStep 
     NormalizationFactors  : [1.9319 0.5176] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -1.7321
        MaxOrder: 0

            Type: 'update'
    Coefficients: [-0.0670 0.4330]
        MaxOrder: 1

            Type: 'predict'
    Coefficients: 1
        MaxOrder: -1

Create an array that consists of two elementary lifting steps.

elsA = liftingStep('Type','predict',...
    'Coefficients',[-sqrt(3) 1],'MaxOrder',0);

elsB = liftingStep('Type','update',...
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    'Coefficients',[2 sqrt(2)],'MaxOrder',0);

els = [elsA;elsB];

Insert the array at the second position.

loc = 2;
lsn = addlift(lscheme,els,loc)

lsn = 
      Wavelet               : 'custom' 
     LiftingSteps          : [5 × 1] liftingStep 
     NormalizationFactors  : [1.9319 0.5176] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -1.7321
        MaxOrder: 0

            Type: 'predict'
    Coefficients: [-1.7321 1]
        MaxOrder: 0

            Type: 'update'
    Coefficients: [2 1.4142]
        MaxOrder: 0

            Type: 'update'
    Coefficients: [-0.0670 0.4330]
        MaxOrder: 1

            Type: 'predict'
    Coefficients: 1
        MaxOrder: -1

Input Arguments
lscheme — Lifting scheme
liftingScheme object

Lifting scheme, specified as a liftingScheme object.

els — Lifting steps
structure array

Lifting steps, specified as a structure.

loc — Location
length(lscheme.LiftingSteps) (default) | positive integer

Location to add the lifting steps in lscheme, specified as a positive integer between 1 and
length(lscheme.LiftingSteps) inclusive.

 addlift
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• If loc is 1, the lifting steps are inserted at the beginning of the lifting scheme.
• If loc is length(lscheme.LiftingSteps), the lifting steps are added at the end of the lifting

scheme.
• If loc is greater than 1 and less than length(lscheme.LiftingSteps), the lifting steps are

inserted after the (loc-1)th step of lsc.

Data Types: double

Output Arguments
lsn — Lifting scheme
liftingScheme object

Lifting scheme, returned as a liftingScheme object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
liftingStep | liftingScheme | deletelift
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addMembers
Add members to labeled signal set

Syntax
addMembers(lss,src)
addMembers(lss,src,tinfo)
addMembers(lss,src,tinfo,mnames)

Description
addMembers(lss,src) adds members to the labeled signal set lss from the input data source src.

addMembers(lss,src,tinfo) sets the time information for the new members to tinfo.

addMembers(lss,src,tinfo,mnames) sets the names of the new members to mnames. The length
of mnames must be equal to the number of new members.

Examples

Add Member to Labeled Signal Set

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve the second member of the set and plot it.

[song,tinfo] = getSignal(lss,2);

t = (0:length(song)-1)/tinfo.SampleRate;

plot(t,song)

 addMembers
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Remove the first and last seconds of the retrieved signal.

song2 = song(t>1 & t<t(end)-1);
t2 = (0:length(song2)-1)/tinfo.SampleRate;

plot(t2,song2)
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Add the shorter signal as a new member of the labeled set.

addMembers(lss,song2)
lss

lss = 
  labeledSignalSet with properties:

             Source: {3x1 cell}
         NumMembers: 3
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [3x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Flip the shorter signal upside-down and add it as a new member of the labeled set. Specify that the
new member is sampled at 1 kHz.

addMembers(lss,flipud(song2),1000)
lss.SampleRate

ans = 4×1

        4000

 addMembers
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        4000
        4000
        1000

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

src — Input data source
matrix | cell array | timetable | signalDatastore object | audioDatastore object

Input data source, specified as a matrix, a cell array, a timetable, a signalDatastore object, or an
audioDatastore object. The particular form of src depends on the “Source” on page 1-0
property of lss.

• If “Source” on page 1-0  is a cell array of matrices:

• Specify src as a matrix to add one member to the set.
• Specify src as a cell array of matrices to add multiple members to the set.

• If “Source” on page 1-0  is a cell array containing cell arrays of vectors:

• Specify src as a cell array of vectors to add one member to the set.
• Specify src as a cell array containing cell arrays of vectors to add multiple members to the set.

• If “Source” on page 1-0  is a cell array of timetables:

• Specify src as a timetable to add one member to the set.
• Specify src as a cell array of timetables to add multiple members to the set.

• If “Source” on page 1-0  is a datastore, then add members by setting src as another datastore
that points to new files.

Example: {randn(10,3),randn(17,9)} specifies two members. The first member contains three
10-sample signals. The second member contains nine 17-sample signals.
Example: {{randn(10,1)},{randn(17,1),randn(27,1)}} specifies two members. The first
member contains one 10-sample signal. The second member contains a 17-sample signal and a 27-
sample signal.
Example:
{{timetable(seconds(1:10)',randn(10,3)),timetable(seconds(1:7)',randn(7,2))},
{timetable(seconds(1:3)',randn(3,1))}} specifies two members. The first member contains
three signals sampled at 1 Hz for 10 seconds and two signals sampled at 1 Hz for 7 seconds. The
second member contains one signal sampled at 1 Hz for 3 seconds.
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Example: signalDatastore Object Pointing to Files

Specify the path to a set of sample sound signals included as MAT-files with MATLAB®. Each file
contains a signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
    {'laughter.mat'}
    {'mtlb.mat'    }
    {'splat.mat'   }
    {'train.mat'   }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat,
which differs from the other files in that the signal variable is not called y.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sdss = subset(sds,~strcmp(nms,"mtlb.mat"));

Use the subset datastore as the source for a labeledSignalSet object.

lss = labeledSignalSet(sdss)

lss = 
  labeledSignalSet with properties:

             Source: [1x1 signalDatastore]
         NumMembers: 6
    TimeInformation: "inherent"
             Labels: [6x0 table]
        Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

tinfo — Time information for new members
scalar | vector | matrix | duration scalar | duration vector

Time information for new members, specified as a scalar, a vector, a matrix, a duration scalar, or a
duration vector. This argument is valid only if the “TimeInformation” on page 1-0  property of lss is
'sampleRate', 'sampleTime', or 'timeValues'.

• If “TimeInformation” on page 1-0  is 'sampleRate', then tinfo specifies sample rate values.
• If “TimeInformation” on page 1-0  is 'sampleTime', then tinfo specifies sample time values.
• If “TimeInformation” on page 1-0  is 'timeValues', then tinfo specifies time values.

If you add multiple members to a set, then specifying only one value of tinfo sets the same value for
all members. If you want to specify a different value for each new member, then set tinfo to have
multiple values.

 addMembers
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When no source has been specified, or when the labeled signal set source is empty, you can change
the “TimeInformation” on page 1-0  property to 'sampleRate', 'sampleTime', or
'timeValues' to make lss interpret tinfo correctly.
Example: addMembers(ks,{randn(10,5),randn(10,3)},seconds([1 2])) adds two new
members with different time information to ks =
labeledSignalSet(randn(10,3),'SampleTime',seconds(1)).
Example: addMembers(ks,{randn(10,5),randn(10,3)},[1:10;2:2:20]') adds two new
members with different time information to ks =
labeledSignalSet(randn(10,3),'TimeValues',1:10).

mnames — Member names
character vector | string scalar | cell array of character vectors | string array

Member names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Example: labeledSignalSet({randn(100,1) randn(10,1)},'MemberNames',{'llama'
'alpaca'}) specifies a set of random signals with two members, 'llama' and 'alpaca'.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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allnodes
Tree nodes

Syntax
N = allnodes(T)
N = allnodes(T,'deppos')

Description
allnodes is a tree management utility that returns one of two node descriptions: either indices, or
depths and positions.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

N = allnodes(T) returns the indices of all the nodes of the tree T in column vector N.

N = allnodes(T,'deppos') returns the depths and positions of all the nodes in matrix N.

N(i,1) is the depth and N(i,2) the position of the node i.

Examples

Return Nodes of Wavelet Packet Tree

This example shows how to obtain the depth-position and linear indices of a wavelet packet tree.

Load the noisy Doppler signal and obtain the wavelet packet decomposition down to the level 4 using
the 'db2' wavelet.

load noisdopp;
T = wpdec(noisdopp,4,'db2');

Obtain the depth-position indices.

DepthPosition = allnodes(T,'deppos');

Obtain the corresponding linear indices.

LinearIndices = allnodes(T);

Display the correspondence in a table.

table(DepthPosition,LinearIndices)

ans=31×2 table
    DepthPosition    LinearIndices
    _____________    _____________

       0    0              0      
       1    0              1      

 allnodes
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       1    1              2      
       2    0              3      
       2    1              4      
       2    2              5      
       2    3              6      
       3    0              7      
       3    1              8      
       3    2              9      
       3    3             10      
       3    4             11      
       3    5             12      
       3    6             13      
       3    7             14      
       4    0             15      
      ⋮

Version History
Introduced before R2006a
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appcoef
1-D approximation coefficients

Syntax
A = appcoef(C,L,wname)
A = appcoef(C,L,LoR,HiR)
A = appcoef( ___ ,N)

Description
A = appcoef(C,L,wname) returns the approximation coefficients at the coarsest scale using the
wavelet decomposition structure [C,L] of a 1-D signal and the wavelet specified by wname. (See
wavedec for more information.)

A = appcoef(C,L,LoR,HiR) uses the lowpass reconstruction filter LoR and highpass
reconstruction filter HiR. (See wfilters for more information.)

A = appcoef( ___ ,N) returns the approximation coefficients at level N. If [C,L] is the M-level
wavelet decomposition structure of a 1-D signal, then 0 ≤ N ≤ M.

Examples

Level 3 Approximation Coefficients

This example shows how to extract the level 3 approximation coefficients.

Load the signal consisting of electricity usage data.

load leleccum; 
sig = leleccum(1:3920);

Obtain the DWT down to level 5 with the 'sym4' wavelet.

[C,L] = wavedec(sig,5,'sym4');

Extract the level-3 approximation coefficients. Plot the original signal and the approximation
coefficients.

Lev = 3;
a3 = appcoef(C,L,'sym4',Lev);
subplot(2,1,1)
plot(sig); title('Original Signal');
subplot(2,1,2)
plot(a3); title('Level-3 Approximation Coefficients');

 appcoef
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You can substitute any value from 1 to 5 for Lev to obtain the approximation coefficients for the
corresponding level.

Input Arguments
C — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector of a 1-D signal, specified as a real-valued vector. C is the output of
wavedec. The bookkeeping vector L is used to parse the coefficients in the wavelet decomposition
vector by level.
Example: [C,L] = wavedec(randn(1,256),4,'coif1') returns the 4-level wavelet
decomposition of a vector.
Data Types: single | double

L — Bookkeeping vector
vector of positive integers

Bookkeeping vector of the wavelet decomposition of a 1-D signal, specified as a vector of positive
integers. The bookkeeping vector is used to parse the coefficients in the wavelet decomposition
vector C by level.
Example: [C,L] = wavedec(randn(1,256),4,'coif1') returns the 4-level wavelet
decomposition of a vector.
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Data Types: single | double

wname — Wavelet
character vector | string scalar

Wavelet used to generate the wavelet decomposition of a 1-D signal, specified as a character vector
or string scalar. The wavelet is from one of the following wavelet families: Best-localized Daubechies,
Beylkin, Coiflets, Daubechies, Fejér-Korovkin, Haar, Han linear-phase moments, Morris minimum-
bandwidth, Symlets, Vaidyanathan, Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See
wavemngr for the wavelets available in each family.
Example: 'db4'

LoR — Wavelet lowpass reconstruction filter
even-length real-valued vector

Wavelet lowpass reconstruction filter, specified as an even-length real-valued vector. LoR must be the
same length as HiR. LoR must be the lowpass reconstruction filter associated with the wavelet used
to create the wavelet decomposition structure [C,L]. (See wfilters for more information.)

HiR — Wavelet highpass reconstruction filter
even-length real-valued vector

Wavelet highpass reconstruction filter, specified as an even-length real-valued vector. HiR must be
the same length as LoR. HiR must be the highpass reconstruction filter associated with the wavelet
used to create the wavelet decomposition structure [C,L]. (See wfilters for more information.)

N — Approximation coefficients level
positive integer

Approximation coefficients level, specified as a positive integer. If [C,L] is the M-level wavelet
decomposition structure of a 1-D signal, then 0 ≤ N ≤ M.

Output Arguments
A — Approximation coefficients
real-valued vector

Approximation coefficients at level N, returned as a real-valued vector.

Algorithms
The input vectors C and L contain all the information about the signal decomposition.

Let NMAX = length(L)-2; then C = [A(NMAX) D(NMAX) ... D(1)] where A and the D are
vectors. If N = NMAX, then a simple extraction is done; otherwise, appcoef computes iteratively the
approximation coefficients using the inverse wavelet transform.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size data support must be enabled.
• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
detcoef | wavedec
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appcoef2
2-D approximation coefficients

Syntax
A = appcoef2(C,S,wname)
A = appcoef2(C,S,LoR,HiR)
A = appcoef2( ___ ,N)

Description
A = appcoef2(C,S,wname) returns the approximation coefficients at the coarsest scale using the
wavelet decomposition structure [C,S] of a 2-D signal and the wavelet specified by wname. (See
wavedec2 for more information.)

A = appcoef2(C,S,LoR,HiR) uses the lowpass reconstruction filter LoR and highpass
reconstruction filter HiR. (See wfilters for more information.)

A = appcoef2( ___ ,N) returns the approximation coefficients at level N. If [C,S] is the M-level
wavelet decomposition structure of a 2-D signal, then 0 ≤ N ≤ M.

Examples

Reconstruct Approximation Coefficients of an Image

This example shows how to reconstruct approximation coefficients from a multilevel wavelet
decomposition of an image.

Set the DWT extension mode to zero-padding. Load and display an image.

origmode = dwtmode('status','nodisplay');
dwtmode('zpd','nodisp')
load woman
image(X)
colormap(map)
title('Original')
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size(X)

ans = 1×2

   256   256

Perform a three-level wavelet decomposition of the image using the db1 wavelet. Display the number
of elements in the coefficients array cfs, and the contents of the bookkeeping matrix inds. Note that
cfs has the same number of elements as X.

wv = 'db1';
[cfs,inds] = wavedec2(X,3,wv);
numel(X)

ans = 65536

numel(cfs)

ans = 65536

inds

inds = 5×2

    32    32
    32    32
    64    64
   128   128
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   256   256

Extract and display the approximation coefficients at level 2.

cfs2 = appcoef2(cfs,inds,wv,2);
figure
imagesc(cfs2)
colormap('gray')
title('Level 2 Approximation Coefficients')

size(cfs2)

ans = 1×2

    64    64

Extract and display the approximation coefficients at level 3.

cfs3 = appcoef2(cfs,inds,wv,3);
figure
imagesc(cfs3)
colormap('gray')
title('Level 3 Approximation Coefficients')
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size(cfs3)

ans = 1×2

    32    32

Restore the original extension mode.

dwtmode(origmode,'nodisplay')

Input Arguments
C — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector of a 2-D signal, specified as a real-valued vector. C is the output of
wavedec2. The bookkeeping matrix S contains the dimensions of the coefficients by level.
Example: [C,S] = wavedec2(randn(256,256),4,'db4') returns the 4-level wavelet
decomposition of a matrix.
Data Types: double

S — Bookkeeping matrix
matrix of positive integers
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Bookkeeping matrix of the wavelet decomposition of a 2-D signal, specified as a matrix of positive
integers. The bookkeeping matrix is used to parse the coefficients in the wavelet decomposition
vector C by level.
Example: [C,S] = wavedec2(randn(256,256),4,'db4') returns the 4-level wavelet
decomposition of a matrix.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet used to generate the wavelet decomposition of a 2-D signal, specified as a character vector
or string scalar. The wavelet is from one of the following wavelet families: Best-localized Daubechies,
Beylkin, Coiflets, Daubechies, Fejér-Korovkin, Haar, Han linear-phase moments, Morris minimum-
bandwidth, Symlets, Vaidyanathan, Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See
wavemngr for the wavelets available in each family.
Example: 'db4'

LoR — Wavelet lowpass reconstruction filter
even-length real-valued vector

Wavelet lowpass reconstruction filter, specified as an even-length real-valued vector. LoR must be the
same length as HiR. LoR must be the lowpass reconstruction filter associated with the wavelet used
to create the wavelet decomposition structure [C,S]. (See wfilters for more information.)
Data Types: double

HiR — Wavelet highpass reconstruction filter
even-length real-valued vector

Wavelet highpass reconstruction filter, specified as an even-length real-valued vector. HiR must be
the same length as LoR. HiR must be the highpass reconstruction filter associated with the wavelet
used to create the wavelet decomposition structure [C,S]. (See wfilters for more information.)
Data Types: double

N — Approximation coefficients level
positive integer

Approximation coefficients level, specified as a positive integer. If [C,S] is the M-level wavelet
decomposition structure of a 2-D signal, then 0 ≤ N ≤ M.
Data Types: double

Output Arguments
A — Approximation coefficients
real-valued matrix | real-valued 3-D array

Approximation coefficients at level N, returned as a real-valued matrix or 3-D real-valued array. If C
and S are obtained from an indexed image analysis or a truecolor image analysis, A is an m-by-n
matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see image and imfinfo.
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Data Types: double

Algorithms
The input vector C and bookkeeping matrix S contain all the information about the 2-D signal
decomposition.

Let NMAX = size(S,1)-2; then C = [A(NMAX) H(NMAX) V(NMAX) D(NMAX) … H(1) V(1)
D(1)] where A, H, V, and D are vectors. If N = NMAX, then a simple extraction is done; otherwise,
appcoef2 computes iteratively the approximation coefficients using the inverse wavelet transform.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size data support must be enabled.
• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
detcoef2 | wavedec2
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array2cwtfilters
Convert deep-learning CWT filter tensor to filter bank matrix

Syntax
psif = array2cwtfilters(psifvec,filteridx)

Description
psif = array2cwtfilters(psifvec,filteridx) reconstructs an approximation to the
continuous wavelet filter bank matrix psif from the reduced-weight CWT filter tensor psifvec and
the bookkeeping matrix filteridx.

Examples

Obtain Filter Bank Matrix From Deep-Learning CWT Filter Tensor

Create a CWT filter tensor compatible with dlcwt. Specify a threshold of –Inf which trivially
reshapes the filter bank.

fb = cwtfilterbank(SignalLength=2048,Boundary="periodic");
[psifvec,filteridx] = cwtfilters2array(fb,-Inf);

Confirm you can recover the filter bank exactly with array2cwtfilters.

psifR = array2cwtfilters(psifvec,filteridx);
psif = freqz(fb,FrequencyRange="twosided");
max(abs(psifR(:)-psif(:)))

ans = 1.9687e-308

Input Arguments
psifvec — Reduced-weight CWT filter tensor
array

Reduced-weight CWT filter tensor, specified as a 1-by-1-by-Nr tensor, where Nr is the number of
weights in the reduced-weight CWT filter bank. psifvec is the output of cwtfilters2array.
Data Types: double

filteridx — Bookkeeping matrix
matrix

Bookkeeping matrix that describes psifvec, specified as a matrix. filteridx is the output of
cwtfilters2array.
Data Types: uint32
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Output Arguments
psif — CWT filter bank matrix
matrix

CWT filter bank matrix, returned as a matrix. If you set IncludeLowpass to true when creating
psifvec, the final row of psif is the lowpass (scaling) filter.
Data Types: double

Version History
Introduced in R2022b

See Also
Functions
dlcwt | cwtfilters2array | cwt

Objects
cwtLayer | cwtfilterbank | stftLayer
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basisPursuit
Recover sparse signal using the basis pursuit algorithm

Syntax
[Xr,MSE,lambda] = basisPursuit(A,Y)
[Xr,MSE,lambda] = basisPursuit( ___ ,Name=Value)

Description
[Xr,MSE,lambda] = basisPursuit(A,Y) recovers the sparse signal approximation Xr of Y by
solving the “Basis Pursuit Denoising Problem” on page 1-34 using the sensingDictionary A. The
basisPursuit function also returns the minimum mean squared error MSE and the corresponding
Lagrangian parameter lambda.

[Xr,MSE,lambda] = basisPursuit( ___ ,Name=Value) specifies options using one or more
name-value arguments in addition to the input argument in the previous syntax. For example,
[Xr,MSE,lambda] = basisPursuit(A,Y,RelTol=5e-2) sets a relative tolerance of 5e-2.

Examples

Basis Pursuit Approximation of Signal

Load the ECG signal.

load wecg

Create a sensing dictionary that can be applied to the signal. Use the dct basis type.

D = sensingDictionary(Size=length(wecg),Type={'dct'});

Obtain the best fit for the signal using the dictionary and basis pursuit. Obtain the minimum mean
squared error.

[XBP,MSE,lambda] = basisPursuit(D,wecg);
MSE

MSE = 1.2349e-04

Extract the sensing dictionary matrix. Use the matrix to construct the approximation.

A = subdict(D,1:D.Size(1),1:D.Size(2));
wecgR = A*XBP;

Obtain the norm of the difference between the original signal and its approximation.

norm(wecg-wecgR)

ans = 0.5029

Plot the signal and the approximation. Plot the difference at the same scale.
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subplot(2,1,1)
plot(wecg)
hold on
plot(wecgR)
hold off
legend("Original","Approximation")
title("Original Signal and Approximation")
ylimits = get(gca,"YLim");
subplot(2,1,2)
plot(wecg-wecgR)
ylim(ylimits)
title("Difference Between Original Signal and Approximation")

Input Arguments
A — Sensing dictionary
sensingDictionary object

Sensing dictionary, specified as a sensingDictionary object.

Y — Sensor measurements
vector

Sensor measurements, specified as a vector Y such that Y = AX, where X is a sparse signal.
Data Types: single | double
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Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Xr = basisPursuit(A,Y,RelTol=1e-3) recovers Xr using stopping criteria based on a
relative tolerance of 1e-3.

maxIterations — Maximum number of iterations
200 (default) | positive integer

Maximum number of iterations executed to recover the sparse signal, specified as a positive integer.
Example: Xr = basisPursuit(A,Y,maxIterations=35) recovers Xr using at most 35 iterations.
Data Types: single | double

RelTol — Relative tolerance
1e-4 (default) | positive scalar

Relative tolerance used to recover the signal, specified as a positive scalar. The stopping criteria is
based on the relative tolerance.
Example: Xr = basisPursuit(A,Y,RelTol=1e-3) recovers Xr using stopping criteria based on a
relative tolerance of 1e-3.
Data Types: single | double

AbsTol — Absolute tolerance
1e-5 (default) | positive scalar

Absolute tolerance used to recover the signal, specified as a positive scalar. The stopping criteria is
based on the absolute tolerance.
Example: Xr = basisPursuit(A,Y,AbsTol=1e-4) recovers Xr using stopping criteria based on a
absolute tolerance of 1e-4.
Data Types: single | double

MaxErr — Maximum error
positive scalar

Maximum error used to recover the signal, specified as a positive scalar. The basisPursuit function
recovers the Xr that satisfies

Y − AXr 2
2 ≤ MaxErr.

If unspecified, Xr is the solution of the “Basis Pursuit Denoising Problem” on page 1-34.
Example: Xr = basisPursuit(A,Y,MaxErr=1e-1) recovers Xr using stopping criteria based on a
maximum error of 1e-1.
Data Types: single | double
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Output Arguments
Xr — Sparse signal
vector

Sparse signal recovered, returned as a vector.
Data Types: single | double
Complex Number Support: Yes

MSE — Minimum mean squared error
scalar

Minimum mean squared error, returned as a scalar.
Data Types: single | double

lambda — Lagrangian parameter
scalar

Lagrangian parameter, returned as a scalar.
Data Types: single | double

More About
Basis Pursuit Denoising Problem

Basis pursuit denoising recovers the sparse signal Xr by solving

min
X

1
2 Y − AX

2

2
+ λ X

1
,

where

• A — Sensing dictionary
• Y — Measurement vector
• λ — Lagrangian parameter. Adjusting λ controls the balance between sparsity and accuracy of

reconstruction.

Version History
Introduced in R2022a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function supports tall arrays with the limitations:

• If the value of the CustomDictionary property of the sensingDictionary A is a tall array, then
the sensor measurements Y must also be a tall array.
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For more information, see “Tall Arrays”.

See Also
matchingPursuit | sensingDictionary

Topics
“Signal Deconvolution and Impulse Denoising Using Pursuit Methods”
“Matching Pursuit Algorithms”
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bestlevt
Best level tree wavelet packet analysis

Syntax
T = bestlevt(T)
[T,E] = bestlevt(T)

Description
bestlevt is a one- or two-dimensional wavelet packet analysis function.

bestlevt computes the optimal complete subtree of an initial tree with respect to an entropy type
criterion. The resulting complete tree may be of smaller depth than the initial one.

T = bestlevt(T) computes the modified wavelet packet tree T corresponding to the best level tree
decomposition.

[T,E] = bestlevt(T) computes the best level tree T, and in addition, the best entropy value E.

The optimal entropy of the node, whose index is j-1, is E(j).

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; 
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet, using default
% entropy (shannon). 
wpt = wpdec(x,3,'db1'); 

% Decompose the packet [3 0].
wpt = wpsplt(wpt,[3 0]);

% Plot wavelet packet tree wpt. 
plot(wpt)
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% Compute best level tree. 
blt = bestlevt(wpt);

% Plot best level tree blt. 
plot(blt)

Algorithms
See besttree algorithm section. The only difference is that the optimal tree is searched among the
complete subtrees of the initial tree, instead of among all the binary subtrees.

Version History
Introduced before R2006a

See Also
besttree | wenergy | wpdec | wpdec2
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besttree
Best tree wavelet packet analysis

Syntax
B = besttree(T)
[B,E] = besttree(T)
[B,E,N] = besttree(T)

Description
besttree is a one- or two-dimensional wavelet packet analysis function that computes the optimal
subtree of an initial tree with respect to an entropy type criterion. The resulting tree may be much
smaller than the initial one.

B = besttree(T) returns the best tree B of the wavelet packet tree T corresponding to the best
entropy value.

[B,E] = besttree(T) also returns the best entropy value E.

[B,E,N] = besttree(T) also returns the indices N of the merged nodes.

Examples

Best Wavelet Packet Tree

This example shows to obtain the optimal wavelet packet tree based on an entropy criterion.

Load the noisy Doppler signal. Save the current extension mode, and then change to the periodic
extension mode. Obtain the wavelet packet tree down to level 4 with the 'sym4' wavelet.

load noisdopp
origMode = dwtmode('status','nodisp');
dwtmode('per','nodisp')
T = wpdec(noisdopp,4,'sym4');

Obtain the best wavelet packet tree and plot the result.

BstTree = besttree(T);
plot(BstTree)
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Restore the DWT extension mode to the original setting.

dwtmode(origMode,'nodisp')

Input Arguments
T — Wavelet packet tree
wptree object

Wavelet packet tree, specified as a wptree object.

Output Arguments
B — Best tree
wptree object

Best tree, returned as a wptree object. B may be much smaller than T.

Following the organization of the wavelet packets library, it is natural to count the decompositions
issued from a given orthogonal wavelet.
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A signal of length N = 2L can be expanded in α different ways, where α is the number of binary
subtrees of a complete binary tree of depth L. As a result, we can conclude that α ≥ 2N/2 (for more
information, see [2]). This number may be very large, and since explicit enumeration is generally
intractable, it is interesting to find an optimal decomposition with respect to a convenient criterion,
computable by an efficient algorithm. We are looking for a minimum of the criterion. For more
information, see “Algorithms” on page 1-40.

E — Optimal entropy
vector

Optimal entropy of the node, returned as a vector. The optimal entropy of the node, whose index is
j-1, is E(j).

N — Merged node indices
vector

Merged nodes indices, returned as a vector. N contains the indices of the merged nodes.

Algorithms
Consider the one-dimensional case. Starting with the root node, the best tree is calculated using the
following scheme. A node N is split into two nodes N1 and N2 if and only if the sum of the entropy of
N1 and N2 is lower than the entropy of N. This is a local criterion based only on the information
available at the node N.

Several entropy type criteria can be used (see wenergy for more information). If the entropy function
is an additive function along the wavelet packet coefficients, this algorithm leads to the best tree.

Starting from an initial tree T and using the merging side of this algorithm, we obtain the best tree
among all the binary subtrees of T.

Version History
Introduced before R2006a

References
[1] Coifman, R.R., and M.V. Wickerhauser. “Entropy-Based Algorithms for Best Basis Selection.” IEEE

Transactions on Information Theory 38, no. 2 (March 1992): 713–18. https://doi.org/
10.1109/18.119732.

[2] Mallat, Stéphane. “A Wavelet Tour of Signal Processing The Sparse Way.” Elsevier Science &
Technology Books, 2009.

See Also
bestlevt | wenergy | wpcoef | wpdec | wpdec2 | wprcoef

Topics
“Reconstructing a Signal Approximation from a Node”
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biorfilt
Biorthogonal wavelet filter set

Syntax
[LoD,HiD,LoR,HiR] = biorfilt(DF,RF)
[LoD1,HiD1,LoR1,HiR1,LoD2,HiD2,LoR2,HiR2] = biorfilt(DF,RF,'8')

Description
[LoD,HiD,LoR,HiR] = biorfilt(DF,RF) returns four filters associated with the biorthogonal
wavelet specified by decomposition filter DF and reconstruction filter RF. These filters are

• LoD — Decomposition lowpass filter
• HiD — Decomposition highpass filter
• LoR — Reconstruction lowpass filter
• HiR — Reconstruction highpass filter

[LoD1,HiD1,LoR1,HiR1,LoD2,HiD2,LoR2,HiR2] = biorfilt(DF,RF,'8') returns eight
filters, the first four associated with the decomposition wavelet, and the last four associated with the
reconstruction wavelet.

Examples

Biorthogonal Filters and Transfer Functions

This example shows how to obtain the decomposition (analysis) and reconstruction (synthesis) filters
for the 'bior3.5' wavelet.

Obtain the two scaling and wavelet filters associated with the 'bior3.5' wavelet.

wv = 'bior3.5';
[Rf,Df] = biorwavf(wv);
[LoD,HiD,LoR,HiR] = biorfilt(Df,Rf);

Plot the filter impulse responses.

subplot(2,2,1)
stem(LoD)
title(['Dec. Lowpass Filter ',wv]) 
subplot(2,2,2)
stem(HiD)
title(['Dec. Highpass Filter ',wv])
subplot(2,2,3)
stem(LoR)
title(['Rec. Lowpass Filter ',wv]) 
subplot(2,2,4)
stem(HiR)
title(['Rec. Highpass Filter ',wv])
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Demonstrate that autocorrelations at even lags are only zero for dual pairs of filters. Examine the
autocorrelation sequence for the lowpass decomposition filter.

npad = 2*length(LoD)-1;
LoDxcr = fftshift(ifft(abs(fft(LoD,npad)).^2));
lags = -floor(npad/2):floor(npad/2);
figure
stem(lags,LoDxcr,'markerfacecolor',[0 0 1])
set(gca,'xtick',-10:2:10)
title('Autocorrelation')
xlabel('Lag')
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Examine the cross-correlation sequence for the lowpass decomposition and synthesis filters. Compare
the result with the preceding figure. At even lags, the cross-correlation is zero.

npad = 2*length(LoD)-1;
xcr = fftshift(ifft(fft(LoD,npad).*conj(fft(LoR,npad))));
lags = -floor(npad/2):floor(npad/2);
stem(lags,xcr,'markerfacecolor',[0 0 1])
set(gca,'xtick',-10:2:10)
title('Cross-correlation')
xlabel('Lag')
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Compare the transfer functions of the analysis and synthesis scaling and wavelet filters.

dftLoD = fft(LoD,64); 
dftLoD = dftLoD(1:length(dftLoD)/2+1);
dftHiD= fft(HiD,64); 
dftHiD = dftHiD(1:length(dftHiD)/2+1);
dftLoR = fft(LoR,64);
dftLoR = dftLoR(1:length(dftLoR)/2+1);
dftHiR = fft(HiR,64);
dftHiR = dftHiR(1:length(dftHiR)/2+1);
df = (2*pi)/64;
freqvec = 0:df:pi;

subplot(2,1,1)
plot(freqvec,abs(dftLoD),freqvec,abs(dftHiD),'r')
axis tight
title('Transfer Modulus - Dec. Filters') 
subplot(2,1,2)
plot(freqvec,abs(dftLoR),freqvec,abs(dftHiR),'r') 
axis tight
title('Transfer Modulus - Rec. Filters')
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Input Arguments
DF — Decomposition scaling filter
vector

Decomposition scaling filter associated with a biorthogonal wavelet, specified as a vector.
Data Types: double

RF — Reconstruction scaling filter
vector

Reconstruction scaling filter associated with a biorthogonal wavelet, specified as a vector.
Data Types: double

Output Arguments
LoD,HiD — Decomposition filters
even-length real-valued vectors

Wavelet decomposition filters, returned as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter.
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LoR,HiR — Reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, returned as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter.

LoD1,HiD1,LoR1,HiR1 — Filters
even-length real-valued vectors

Filters associated with the decomposition (analysis) wavelet, returned as even-length real-valued
vectors.

• LoD1 — Decomposition lowpass filter
• HiD1 — Decomposition highpass filter
• LoR1 — Reconstruction lowpass filter
• HiR1 — Reconstruction highpass filter

LoD2,HiD2,LoR2,HiR2 — Filters
even-length real-valued vectors

Filters associated with the reconstruction (synthesis) wavelet, returned as even-length real-valued
vectors.

• LoD2 — Decomposition lowpass filter
• HiD2 — Decomposition highpass filter
• LoR2 — Reconstruction lowpass filter
• HiR2 — Reconstruction highpass filter

More About
Biorthogonal Filters

It is well known in the subband filtering community that if the same FIR filters are used for
reconstruction and decomposition, then symmetry and exact reconstruction are incompatible (except
with the Haar wavelet). Therefore, with biorthogonal filters, two wavelets are introduced instead of
just one.

One wavelet, ψ, is used in the analysis, and the coefficients of a signal s are

c j, k =∫s(x)ψ j, k(x)dx

The other wavelet, ψ, is used in the synthesis:

s = ∑
j, k

c j, kψ j, k

Furthermore, the two wavelets are related by duality in the following sense:

∫ψ j, k(x)ψ j′, k′(x)dx = 0 as soon as j ≠ j′ or k ≠ k′ and

∫ϕ0, k(x)ϕ0, k′(x)dx = 0 as soon as k ≠ k′.
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It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that “the useful properties for
analysis (e.g., oscillations, null moments) can be concentrated in the ψ function; whereas, the
interesting properties for synthesis (regularity) are assigned to the ψ function. The separation of
these two tasks proves very useful.”

ψ and ψ can have very different regularity properties, ψ being more regular than ψ.

The ψ, ψ, ϕ and ϕ functions are zero outside a segment.

Version History
Introduced before R2006a

References
[1] Cohen, Albert. "Ondelettes, analyses multirésolution et traitement numérique du signal," Ph. D.

Thesis, University of Paris IX, DAUPHINE. 1992.

[2] Daubechies, Ingrid. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
Mathematics 61. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
biorwavf | orthfilt
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biorwavf
Biorthogonal spline wavelet filter

Syntax
[RF,DF] = biorwavf(wname)

Description
[RF,DF] = biorwavf(wname) returns the reconstruction (synthesis) and decomposition (analysis)
scaling filters, RF and DF, respectively, associated with the biorthogonal wavelet specified by wname.

Examples

Biorthogonal Spline Wavelet Filter

Return the biorthogonal spline wavelet scaling filters with two vanishing moments.

wname = 'bior2.2';
[RF,DF] = biorwavf(wname)

RF = 1×3

    0.2500    0.5000    0.2500

DF = 1×5

   -0.1250    0.2500    0.7500    0.2500   -0.1250

Add Biorthogonal Wavelet Filters

This example shows how to take analysis and synthesis filters associated with a biorthogonal wavelet
and make them compatible with Wavelet Toolbox™. Wavelet Toolbox requires that analysis and
synthesis lowpass and highpass filters have equal even length. This example uses the nearly
orthogonal biorthogonal wavelets based on the Laplacian pyramid scheme of Burt and Adelson (Table
8.4 on page 283 in [1]). The example also demonstrates how to examine properties of the
biorthogonal wavelets.

Define the analysis and synthesis filter coefficients of the biorthogonal wavelet.

Hd = [-1 5 12 5 -1]/20*sqrt(2);
Gd = [3 -15 -73 170 -73 -15 3]/280*sqrt(2);
Hr = [-3 -15 73 170 73 -15 -3]/280*sqrt(2);
Gr = [-1 -5 12 -5 -1]/20*sqrt(2);
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Hd and Gd are the lowpass and highpass analysis filters, respectively. Hr and Gr are the lowpass and
highpass synthesis filters. They are all finite impulse response (FIR) filters. Confirm the lowpass filter
coefficients sum to sqrt(2) and the highpass filter coefficients sum to 0.

sum(Hd)/sqrt(2)

ans = 1.0000

sum(Hr)/sqrt(2)

ans = 1.0000

sum(Gd)

ans = -1.0061e-16

sum(Gr)

ans = -9.7145e-17

The z-transform of an FIR filter h is a Laurent polynomial h(z) given by h(z) = ∑
k = kb

ke
hkz−k. The degree

|h| of a Laurent polynomial is defined as |h | = ke− kb. Therefore, the length of the filter h is 1 + |h|.
Examine the Laurent expansion of the scaling and wavelet filters.

PHd = laurentPolynomial(Coefficients=Hd,MaxOrder=2)

PHd = 
  laurentPolynomial with properties:

    Coefficients: [-0.0707 0.3536 0.8485 0.3536 -0.0707]
        MaxOrder: 2

PHr = laurentPolynomial(Coefficients=Hr,MaxOrder=3)

PHr = 
  laurentPolynomial with properties:

    Coefficients: [-0.0152 -0.0758 0.3687 0.8586 0.3687 -0.0758 -0.0152]
        MaxOrder: 3

PGd = laurentPolynomial(Coefficients=Gd,MaxOrder=3)

PGd = 
  laurentPolynomial with properties:

    Coefficients: [0.0152 -0.0758 -0.3687 0.8586 -0.3687 -0.0758 0.0152]
        MaxOrder: 3

PGr = laurentPolynomial(Coefficients=Gr,MaxOrder=2)

PGr = 
  laurentPolynomial with properties:

    Coefficients: [-0.0707 -0.3536 0.8485 -0.3536 -0.0707]
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        MaxOrder: 2

Since the filters are associated with biorthogonal wavelet, confirm PHd(z) PHr(z) + PG(z) PGr(z) = 2.

PHd*PHr + PGd*PGr

ans = 
  laurentPolynomial with properties:

    Coefficients: 2
        MaxOrder: 0

Wavelet Toolbox™ requires that filters associated with the wavelet have even equal length. To use the
Laplacian wavelet filters in the toolbox, you must include the missing powers of the Laurent series as
zeros.

The degrees of PHd and PHr are 4 and 6, respectively. The minimum even-length filter that can
accommodate the four filters has length 8, which corresponds to a Laurent polynomial of degree 7.
The strategy is to prepend and append 0s as evenly as possible so that all filters are of length 8.
Prepend 0 to all the filters, and then append two 0s to Hd and Gr.

Hd = [0 Hd 0 0];
Gd = [0 Gd];
Hr = [0 Hr];
Gr = [0 Gr 0 0];

You can examine properties of the biorthogonal wavelets by creating DWT filter banks. Create two
custom DWT filter banks using the filters, one for analysis and the other for synthesis. Confirm the
filter banks are biorthogonal.

fb = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',[Hd' Hr'],...
    'CustomWaveletFilter',[Gd' Gr']);

fb2 = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',[Hd' Hr'],...
    'CustomWaveletFilter',[Gd' Gr'],...
    'FilterType','Synthesis');

fprintf('fb: isOrthogonal = %d\tisBiorthogonal = %d\n',...
    isOrthogonal(fb),isBiorthogonal(fb));

fb: isOrthogonal = 0    isBiorthogonal = 1

fprintf('fb2: isOrthogonal = %d\tisBiorthogonal = %d\n',...
    isOrthogonal(fb2),isBiorthogonal(fb2));

fb2: isOrthogonal = 0    isBiorthogonal = 1

Plot the scaling and wavelet functions associated with the filter banks at the coarsest scale.

[phi,t] = scalingfunctions(fb);
[psi,~] = wavelets(fb);
[phi2,~] = scalingfunctions(fb2);
[psi2,~] = wavelets(fb2);
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subplot(2,2,1)
plot(t,phi(end,:))
grid on
title('Scaling Function - Analysis')
subplot(2,2,2)
plot(t,psi(end,:))
grid on
title('Wavelet - Analysis')
subplot(2,2,3)
plot(t,phi2(end,:))
grid on
title('Scaling Function - Synthesis')
subplot(2,2,4)
plot(t,psi2(end,:))
grid on
title('Wavelet - Synthesis')

Compute the filter bank framebounds.

[analysisLowerBound,analysisUpperBound] = framebounds(fb)

analysisLowerBound = 0.9505

analysisUpperBound = 1.0211

[synthesisLowerBound,synthesisUpperBound] = framebounds(fb2)

synthesisLowerBound = 0.9800
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synthesisUpperBound = 1.0528

Input Arguments
wname — Name of biorthogonal wavelet
character vector | string scalar

Name of biorthogonal wavelet, specified as 'biorNr.Nd' where possible values for Nr and Nd are as
follows:

Nr = 1 Nd = 1 , 3 or 5
Nr = 2 Nd = 2 , 4 , 6 or 8
Nr = 3 Nd = 1 , 3 , 5 , 7 or 9
Nr = 4 Nd = 4
Nr = 5 Nd = 5
Nr = 6 Nd = 8

Nr and Nd are the numbers of vanishing moments for the reconstruction and decomposition filters,
respectively.
Example: 'biorwavf3.7'

Output Arguments
RF — Reconstruction filter
real-valued vector

Reconstruction filter associated with the biorthogonal wavelet wname, returned as a real-valued
vector.

DF — Decomposition filter
real-valued vector

Decomposition filter associated with the biorthogonal wavelet wname, returned as a real-valued
vector.

Version History
Introduced before R2006a

See Also
biorfilt | waveinfo
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blscalf
Best-localized Daubechies scaling filter

Syntax
scalf = blscalf(wname)

Description
scalf = blscalf(wname) returns the best-localized Daubechies scaling filter corresponding to
wname.

Examples

Best-Localized Daubechies Wavelet

Obtain the scaling filter corresponding to the best-localized Daubechies wavelet with 10 vanishing
moments. Confirm the sum of the filter coefficients nearly equals 2 and the L2 norm of the filter
nearly equals 1.

scalf = blscalf("bl10");
sum(scalf)-sqrt(2)

ans = -2.2204e-16

norm(scalf,2)

ans = 1.0000

Use orthfilt to obtain the scaling and wavelet filters corresponding to the wavelet.

[LoD,HiD,LoR,HiR] = orthfilt(scalf);

Confirm the filters form an orthonormal perfect reconstruction wavelet filter bank.

[tf,checks] = isorthwfb(LoD)

tf = logical
   1

checks=7×3 table
                                          Pass-Fail    Maximum Error    Test Tolerance
                                          _________    _____________    ______________

    Equal-length filters                    pass                 0                 0  
    Even-length filters                     pass                 0                 0  
    Unit-norm filters                       pass        1.7665e-10        1.4901e-08  
    Filter sums                             pass        7.2923e-15        1.4901e-08  
    Even and odd downsampled sums           pass        3.7748e-15        1.4901e-08  
    Zero autocorrelation at even lags       pass        7.3088e-11        1.4901e-08  
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    Zero crosscorrelation at even lags      pass        4.9626e-17        1.4901e-08  

Create a discrete wavelet transform filter bank using the wavelet. Plot the frequency responses of the
wavelet filters and the final resolution scaling filter for the default signal length.

fb = dwtfilterbank(Wavelet="bl10");
freqz(fb)

Plot the wavelet at the coarsest scale.

[psi,t] = wavelets(fb);
plot(t,psi(end,:))
grid on
title("Wavelet")
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Plot the scaling function at the coarsest scale.

[phi,t] = scalingfunctions(fb);
plot(t,phi(end,:))
grid on
title("Scaling Function")
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Input Arguments
wname — Best-localized Daubechies wavelet
"bl7" | "bl9" | "bl10"

Best-localized Daubechies wavelet, specified as one of these:

• "bl7" — Best-localized Daubechies wavelet with seven vanishing moments
• "bl9" — Best-localized Daubechies wavelet with nine vanishing moments
• "bl10" — Best-localized Daubechies wavelet with 10 vanishing moments

Output Arguments
scalf — Scaling filter
vector

Scaling filter corresponding to wname, returned as a vector. scalf should be used in conjunction with
orthfilt to obtain scaling and wavelet filters with the proper normalization. The scaling filters
agree exactly with Doroslovački [1]. The sum of filter coefficients is nearly √2 and the L2 norm is
nearly 1.0.
Data Types: double
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Version History
Introduced in R2022b

References
[1] Doroslovački, M.L. “On the Least Asymmetric Wavelets.” IEEE Transactions on Signal Processing

46, no. 4 (April 1998): 1125–30. https://doi.org/10.1109/78.668562.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
symwavf | dbwavf | modwt | modwpt | wavedec | dwpt | orthfilt | isorthwfb
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BPfrequencies
CWT filter bank bandpass center frequencies

Note BPfrequencies is not recommended and may be removed in a future release. Use
centerFrequencies instead.

Syntax
bpcf = BPfrequencies(fb)

Description
bpcf = BPfrequencies(fb) returns the wavelet bandpass center frequencies bpcf for the CWT
filter bank fb. Frequencies are ordered from high to low. Frequencies are in cycles/sample if a
sampling frequency or sampling period is not specified. If a sampling frequency is specified, bpcf has
units of hertz. If a sampling period is specified, bpcf has units cycles/unit time where the time unit is
the same as the duration SamplingPeriod.

Examples

Wavelet Bandpass Center Frequencies

Create a CWT filter bank.

fb = cwtfilterbank;

Calculate the bandpass center frequencies.

bpcf = centerFrequencies(fb);

Plot the frequency responses of the filter bank and the bandpass center frequencies. The bandpass
center frequencies correspond to the peaks of the frequency response of each wavelet in the filter
bank.

freqz(fb)
hold on
plot(bpcf,2*ones(size(bpcf)),'rx')
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Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
bpcf — Wavelet bandpass center frequencies
real-valued vector

Wavelet bandpass center frequencies, returned as a real-valued vector of length Ns where Ns is the
number of scales in the filter bank. Frequencies are ordered from high to low. Frequencies are in
cycles/sample if a sampling frequency or sampling period is not specified. If a sampling frequency is
specified, bpcf has units of hertz. If a sampling period is specified, bpcf has units cycles/unit time
where the time unit is the same as the duration SamplingPeriod.

Version History
Introduced in R2018a

R2018b: BPfrequencies will be removed
Not recommended starting in R2018b
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The BPfrequencies object function of cwtfilterbank has been renamed centerFrequencies.
The functionality remains unchanged. BPfrequencies will be removed in a future release.

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

BPfrequencies Still runs Use
centerFrequencies

Replace all instances of
BPfrequencies with
centerFrequencies.

See Also
cwtfilterbank | powerbw | freqz | centerPeriods
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BPperiods
CWT filter bank bandpass periods

Note BPperiods is not recommended and may be removed in a future release. Use
centerPeriods instead.

Syntax
p = BPperiods(fb)

Description
p = BPperiods(fb) returns the wavelet bandpass periods, p, for the continuous wavelet transform
(CWT) filter bank, fb.

Examples

Wavelet Filter Bank Bandpass Periods

Create two CWT filter banks. Set the sampling period of the first filter bank to 0.5 seconds, and the
sampling frequency of the second filter bank to 2 Hz.

fb = cwtfilterbank('SamplingPeriod',seconds(0.5));
fb2 = cwtfilterbank('SamplingFrequency',2);

Obtain the bandpass center periods of both filter banks. Confirm the center periods of both filter
banks are equal.

bp = centerPeriods(fb);
bp2 = centerPeriods(fb2);
bp(1:5)

ans = 5x1 duration
   1.1517 sec
   1.2344 sec
    1.323 sec
    1.418 sec
   1.5197 sec

bp2(1:5)

ans = 5×1

    1.1517
    1.2344
    1.3230
    1.4180
    1.5197
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Obtain the bandpass center frequencies of the second filter bank. Confirm the reciprocals of the
center frequencies are equal to the center periods.

f2 = centerFrequencies(fb2);
1./f2(1:5)

ans = 5×1

    1.1517
    1.2344
    1.3230
    1.4180
    1.5197

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
p — Wavelet bandpass filter periods
real-valued vector | duration array

Wavelet bandpass filter periods, returned as a real-valued vector of length Ns where Ns is the number
of scales in the filter bank.

If SamplingPeriod is specified, p is a duration array with the same units and format as
SamplingPeriod. If SamplingFrequency is specified, p is in seconds.

Version History
Introduced in R2018a

R2018b: BPperiods will be removed
Not recommended starting in R2018b

The BPperiods object function of cwtfilterbank has been renamed centerPeriods. The
functionality remains unchanged. BPperiods will be removed in a future release.

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

BPperiods Still runs Use centerPeriods Replace all instances of
BPperiods with
centerPeriods.
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See Also
cwtfilterbank | powerbw | freqz | centerFrequencies
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bswfun
Biorthogonal scaling and wavelet functions

Syntax
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR)
bswfun(LoD,HiD,LoR,HiR,ITER)
bswfun(LoD,HiD,LoR,HiR,'plot')
bswfun(LoD,HiD,LoR,HiR,ITER,'plot')
bswfun(LoD,HiD,LoR,HiR,'plot',ITER)

Description
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR) returns approximations on the
grid XVAL of the two pairs of biorthogonal scaling and wavelet functions. PHIS and PSIS are the
scaling and wavelet functions constructed from the decomposition filters, LoD and HiD. PHIA and
PSIA are the scaling and wavelet functions constructed from the reconstruction filters, LoR and HiR.

bswfun(LoD,HiD,LoR,HiR,ITER) computes the two pairs of scaling and wavelet functions using
ITER iterations.

bswfun(LoD,HiD,LoR,HiR,'plot') or bswfun(LoD,HiD,LoR,HiR,ITER,'plot') or
bswfun(LoD,HiD,LoR,HiR,'plot',ITER) computes and plots the functions.

Examples

Biorthogonal Scaling and Wavelet from Lifting Scheme

This example shows how to obtain the biorthogonal scaling and wavelet functions corresponding to a
lifting scheme. Obtain the lifting scheme for the CDF 3/1 wavelet.

lscdf = liftingScheme(Wavelet="cdf3.1");

Display the lifting scheme.

disp(lscdf)

      Wavelet               : 'cdf3.1' 
     LiftingSteps          : [3 × 1] liftingStep 
     NormalizationFactors  : [2.1213 0.4714] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'update'
    Coefficients: -0.3333
        MaxOrder: -1

            Type: 'predict'
    Coefficients: [-0.3750 -1.1250]
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        MaxOrder: 1

            Type: 'update'
    Coefficients: 0.4444
        MaxOrder: 0

Obtain the decomposition and reconstruction filters from the lifting scheme.

[LoD,HiD,LoR,HiR] = ls2filt(lscdf);

Visualize the scaling and wavelet function and their duals.

bswfun(LoD,HiD,LoR,HiR,'plot');

Algorithms
This function uses the cascade algorithm.

Version History
Introduced before R2006a

See Also
wavefun
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centerFrequencies
CWT filter bank bandpass center frequencies

Syntax
bpcf = centerFrequencies(fb)

Description
bpcf = centerFrequencies(fb) returns the wavelet bandpass center frequencies bpcf for the
CWT filter bank fb. Frequencies are ordered from high to low. Frequencies are in cycles/sample if a
sampling frequency or sampling period is not specified. If a sampling frequency is specified, bpcf has
units of hertz. If a sampling period is specified, bpcf has units of cycles/unit time, where the time
unit is the same as the duration SamplingPeriod.

Examples

Wavelet Bandpass Center Frequencies

Create a CWT filter bank.

fb = cwtfilterbank;

Calculate the bandpass center frequencies.

bpcf = centerFrequencies(fb);

Plot the frequency responses of the filter bank and the bandpass center frequencies. The bandpass
center frequencies correspond to the peaks of the frequency response of each wavelet in the filter
bank.

freqz(fb)
hold on
plot(bpcf,2*ones(size(bpcf)),'rx')
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Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
bpcf — Wavelet bandpass center frequencies
real-valued vector

Wavelet bandpass center frequencies, returned as a real-valued vector of length Ns, where Ns is the
number of scales in the filter bank. Frequencies are ordered from high to low. Frequencies are in
cycles/sample if a sampling frequency or sampling period is not specified. If a sampling frequency is
specified, bpcf has units of hertz. If a sampling period is specified, bpcf has units of cycles/unit time,
where the time unit is the same as the duration SamplingPeriod.

Version History
Introduced in R2018b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cwtfilterbank | powerbw | freqz | centerPeriods
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centerFrequencies
Wavelet scattering bandpass center frequencies

Syntax
F = centerFrequencies(sf)
F = centerFrequencies(sf,filterbanks)

Description
F = centerFrequencies(sf) returns the wavelet bandpass center frequencies for all filter banks
of the wavelet time scattering network, sf. The output F is a cell array with Nfb elements, where Nfb
is the number of scattering filter banks. Each element of F is a real-valued vector. If you specify a
sampling frequency in sf, F is in hertz. If you do not specify a sampling frequency, F is in cycles/
sample.

If there is only one filter bank in the scattering network, F is a real-valued vector containing the
wavelet bandpass center frequencies.

F = centerFrequencies(sf,filterbanks) returns the wavelet bandpass center frequencies for
the specified filterbanks. The argument filterbanks is a scalar or vector with all the elements
between 1 and Nfb inclusive, where Nfb is the number of scattering filter banks.

Examples

Wavelet Bandpass Center Frequencies

Create a wavelet time scattering network with a sampling frequency of 50 Hz.

sf = waveletScattering('SamplingFrequency',50)

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 10.2400
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 50
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0

Plot the wavelet bandpass center frequencies for all the filter banks.

bpcf = centerFrequencies(sf);
plot(bpcf{1},'rx-')
hold on
plot(bpcf{2},'bo-')
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grid on
title('Wavelet Bandpass Center Frequencies')
legend('Filter Bank 1','Filter Bank 2')
ylabel('Hz')

Plot the wavelets filters used in computing the second-order scattering coefficients.

orderCoef = 2;
[filters,f] = filterbank(sf);
figure
plot(f,filters{orderCoef+1}.psift)
grid on
title('Wavelet Filters with Q = 1')
xlabel('Hz')
ylabel('Magnitude')
hold on
pl = plot(bpcf{orderCoef},max(filters{orderCoef+1}.psift),'bo');
legend(pl,'Center Frequencies')
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.

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

filterbanks — Filter bank indices
positive integer | vector of integers

Filter bank indices, specified as a positive integer or vector of integers. Elements of filterbanks
are integers between 1 and Nfb inclusive, where Nfb is the number of scattering filter banks.
Example: F = centerFrequencies(sf,[1 2]) returns the wavelet bandpass center frequencies
for the first two filter banks in sf.
Data Types: double

Output Arguments
F — Wavelet bandpass center frequencies
vector | cell array
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Wavelet bandpass center frequencies for filter banks of the scattering network sf, returned as a
vector or cell array of vectors. If there is only one filter bank in sf, or if filterbanks is a scalar,
then F is a real-valued vector. Otherwise, F is a cell array, where each element is a real-valued vector.
Data Types: double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Generated code always returns a cell array, whereas MATLAB® returns a vector if filterbanks
is a scalar, or sf has only one filter bank.

See Also
waveletScattering
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centerPeriods
CWT filter bank bandpass center periods

Syntax
p = centerPeriods(fb)

Description
p = centerPeriods(fb) returns the wavelet bandpass center periods p for the continuous wavelet
transform (CWT) filter bank fb.

Examples

Wavelet Filter Bank Bandpass Periods

Create two CWT filter banks. Set the sampling period of the first filter bank to 0.5 seconds, and the
sampling frequency of the second filter bank to 2 Hz.

fb = cwtfilterbank('SamplingPeriod',seconds(0.5));
fb2 = cwtfilterbank('SamplingFrequency',2);

Obtain the bandpass center periods of both filter banks. Confirm the center periods of both filter
banks are equal.

bp = centerPeriods(fb);
bp2 = centerPeriods(fb2);
bp(1:5)

ans = 5x1 duration
   1.1517 sec
   1.2344 sec
    1.323 sec
    1.418 sec
   1.5197 sec

bp2(1:5)

ans = 5×1

    1.1517
    1.2344
    1.3230
    1.4180
    1.5197

Obtain the bandpass center frequencies of the second filter bank. Confirm the reciprocals of the
center frequencies are equal to the center periods.
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f2 = centerFrequencies(fb2);
1./f2(1:5)

ans = 5×1

    1.1517
    1.2344
    1.3230
    1.4180
    1.5197

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
p — Wavelet bandpass center periods
real-valued vector | duration array

Wavelet bandpass center periods, returned as a real-valued vector of length Ns, where Ns is the
number of scales in the filter bank.

If SamplingPeriod is specified, p is a duration array with the same units and format as
SamplingPeriod. If SamplingFrequency is specified, p is in seconds.

Version History
Introduced in R2018b

See Also
cwtfilterbank | powerbw | freqz | centerFrequencies
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centfrq
Wavelet center frequency

Syntax
FREQ = centfrq(wname)
FREQ = centfrq(wname,ITER)
[FREQ,XVAL,RECFREQ] = centfrq(wname,ITER,'plot')

Description
FREQ = centfrq(wname) returns the center frequency in hertz of the wavelet specified by wname
(see wavefun for more information).

FREQ = centfrq(wname,ITER) uses ITER many iterations to generate the wavelet.

[FREQ,XVAL,RECFREQ] = centfrq(wname,ITER,'plot') returns the associated center
frequency-based approximation RECFREQ evaluated on the grid XVAL and plots the wavelet function
and RECFREQ.

Examples

Determine Center Frequency

This example shows how to determine the center frequency in hertz for Daubechies' least-asymmetric
wavelet with 4 vanishing moments.

cfreq = centfrq('sym4');

Obtain the wavelet and create a sine wave with a frequency equal to the center frequency, cfreq, of
the wavelet. Use a starting phase of −π for the sine wave to visualize how the oscillation in the sine
wave matches the oscillation in the wavelet.

[~,psi,xval] = wavefun('sym4');
y = cos(2*pi*cfreq*xval-pi);
plot(xval,psi,'linewidth',2); 
hold on;
plot(xval,y,'r');
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Convert Scales to Frequencies

This example shows to convert scales to frequencies for the Morlet wavelet. There is an approximate
inverse relationship between scale and frequency. Specifically, scale is inversely proportional to
frequency with the constant of proportionality being the center frequency of the wavelet.

Construct a vector of scales with 32 voices per octave over 5 octaves for data sampled at 1 kHz.

Fs = 1000;
numvoices = 32;
a0 = 2^(1/numvoices);
numoctaves = 5; 
scales = a0.^(0:numvoices*numoctaves-1).*1/Fs;

Convert the scales to approximate frequencies in hertz for the Morlet wavelet.

Frq = centfrq('morl')./scales;

You can also use scal2frq to convert scales to approximate frequencies in hertz.
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Input Arguments
wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. See wavefun for more information.

ITER — Number of iterations
8 (default) | positive integer

Number of iterations, specified by a positive integer, used to generate the wavelet wname. Internally,
centfrq uses wavefun to generate the wavelet.

Output Arguments
FREQ — Wavelet center frequency
scalar

Wavelet center frequency in hertz, returned as a scalar.

XVAL — Grid
real-valued vector

Grid where the center frequency-based approximation to the wavelet is evaluated, returned as a real-
valued vector.

RECFREQ — Center frequency-based approximation
vector

Center frequency-based approximation to the wavelet, returned as a vector. Depending on the
wavelet, RECFREQ is either a real- or complex-valued vector.

Version History
Introduced before R2006a

See Also
scal2frq
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cfs2wpt
Wavelet packet tree construction from coefficients

Syntax

Description
cfs2wpt builds a wavelet packet tree (T) and the related analyzed signal or image (X) using the
following input information:

WNAME: name of the wavelet used for the analysis

SIZE_OF_DATA: size of the analyzed signal or image

TN_OF_TREE: vector containing the terminal node indices of the tree

ORDER: 2 for a signal or 4 for an image

CFS: coefficients used to reconstruct the original signal or image. CFS is optional. When cfs2wpt is
used without the CFS input parameter, the wavelet packet tree structure (T) is generated, but all the
tree coefficients are null (including X).

Examples

Build Wavelet Packet Tree

This example shows how to build a wavelet packet tree in two ways: 1.) By filling the wavelet packet
tree with coefficients, and 2.) By creating the wavelet packet tree and using write

Load an image and obtain the wavelet packet decomposition down to level 2 with the 'sym4'
wavelet.

load detail;
imagesc(X); colormap gray; title('Original Image');
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Tr = wpdec2(X,2,'sym4');

Read the coefficients from the wavelet packet tree. Add N(0, 402) noise to the coefficients and plot
the new wavelet packet tree.

cfs = read(Tr,'allcfs');
noisyCfs = cfs + 40*rand(size(cfs));
noisyT = cfs2wpt('sym4',size(X),tnodes(Tr),4,noisyCfs);
plot(noisyT)
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To illustrate building a wavelet packet tree using write, construct an admissible binary wavelet
packet tree with terminal nodes [2 3 9 10]. The analyzing wavelet is 'sym4' and the signal length
is 1024.

tr = cfs2wpt('sym4',[1 1024],[2 3 9 10]',2);

Fill terminal nodes [3 9] with N(0, 1) coefficients.

sN = read(tr,'sizes',[3,9]);
sN3 = sN(1,:); sN9 = sN(2,:);
cfsN3 = randn(sN3);
cfsN9 = randn(sN9);
tr = write(tr,'cfs',3,cfsN3,'cfs',9,cfsN9);

Plot the resulting wavelet packet tree and synthesized signal.

plot(tr)
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Version History
Introduced before R2006a
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cgauwavf
Complex Gaussian wavelet

Syntax
[psi,x] = cgauwavf(lb,ub,n)
[psi,x] = cgauwavf(lb,ub,n,p)
[psi,x] = cgauwavf(lb,ub,n,wname)

Description
[psi,x] = cgauwavf(lb,ub,n) returns the 1st order derivative of the complex-valued Gaussian
wavelet, psi, on an n-point regular grid, x, for the interval [lb,ub]. The effective support of the
complex-valued Gaussian wavelets is [-5, 5].

[psi,x] = cgauwavf(lb,ub,n,p) returns the pth derivative. p is an integer from 1 through 8.

The complex Gaussian function is defined as Cpe−ixe−x2. Cp is such that the 2-norm of the pth

derivative of psi is equal to 1.

[psi,x] = cgauwavf(lb,ub,n,wname) used the valid wavelet family short name wname plus the
order of the derivative in a character vector or string scalar, such as 'cgau4'. To see valid character
vectors for complex-valued Gaussian wavelets, use waveinfo('cgau') or use
wavemngr('read',1) and refer to the Complex Gaussian section.

Examples

Create Complex Gaussian Wavelet

This example shows how to create a complex-valued Gaussian wavelet of order 4. The wavelet has an
effective support of [-5,5] and is constructed using 1,000 samples.

lb = -5; 
ub = 5; 
n = 1000;
order = 4;
[psi,x] = cgauwavf(lb,ub,n,order);
subplot(2,1,1)
plot(x,real(psi))
title('Real Part')
grid on
subplot(2,1,2)
plot(x,imag(psi))
title('Imaginary Part')
grid on
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Input Arguments
lb — Left endpoint
real number

Left endpoint of the closed interval, specified as a real number. lb is strictly less than ub.
Data Types: double

ub — Right endpoint
real number

Right endpoint of the closed interval, specified as a real number. ub is strictly greater than lb.
Data Types: double

n — Number of regularly spaced points
positive integer

Number of regularly spaced points in the interval [lb,ub], specified as a positive integer. The
derivative of the complex-valued Gaussian wavelet is evaluated at these points.
Data Types: double

p — Derivative
positive integer
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Positive integer defining the order of the derivative of the complex-valued Gaussian, specified as a
positive integer. p is an integer from 1 through 8.

wname — Gaussian wavelet
character vector | string scalar

Gaussian wavelet to evaluate, specified as a character vector or string scalar. wname is of the form
'cgauN' where N is an integer that denotes the order of the derivative of the complex-valued
Gaussian. N is an integer from 1 through 8.
Example: 'cgau4' denotes the fourth derivative of the complex-valued Gaussian wavelet.

Output Arguments
psi — Derivative of complex-valued Gaussian wavelet
complex-valued vector

Derivative of the complex-valued Gaussian wavelet, returned as a complex-valued 1-by-N vector.

x — Sample points
real-valued vector

Sample points where the derivative of the complex-valued Gaussian wavelet is evaluated, returned as
a real-valued 1-by-N vector. The sample points are evenly distributed between lb and ub.

Version History
Introduced before R2006a

See Also
waveinfo | wavemngr
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chgwdeccfs
Change multisignal 1-D decomposition coefficients

Syntax
DEC = chgwdeccfs(DEC,'ca',COEFS)
DEC = chgwdeccfs(DEC,'cd',COEFS,LEV)
DEC = chgwdeccfs(DEC,'all',CA,CD)
DEC = chgwdeccfs(DEC,'all',V)
DEC = chgwdeccfs(...,IDXSIG)

Description
DEC = chgwdeccfs(DEC,'ca',COEFS) replaces the approximation coefficients at level
DEC.level with those contained in the matrix COEFS. If COEFS is a single value V, all coefficients are
replaced by V.

DEC = chgwdeccfs(DEC,'cd',COEFS,LEV) replaces the detail coefficients at level LEV with those
contained in the matrix COEFS. If COEFS is a single value V, then LEV can be a vector of levels and all
the coefficients that belong to these levels are replaced by V. LEV must be such that
1 ≤ LEV ≤ DEC.level

DEC = chgwdeccfs(DEC,'all',CA,CD) replaces all the approximation and detail coefficients. CA
must be a matrix and CD must be a cell array of length DEC.level.

If COEFS (or CA or CD) is a single number, then it replaces all the related coefficients. Otherwise,
COEFS (or CA, or CD) must be a matrix of appropriate size.

For a real value V, DEC = chgwdeccfs(DEC,'all',V) replaces all the coefficients by V.

DEC = chgwdeccfs(...,IDXSIG) replaces the coefficients for the signals whose indices are given
by the vector IDXSIG. If the initial data are stored row-wise or column-wise in a matrix X, then
IDXSIG contains the row or column indices, respectively, of the data.

Examples

Change Decomposition Coefficients

Load the 23 channel EEG data Espiga3 [1]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2')

dec = struct with fields:
        dirDec: 'c'
         level: 2
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         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Change the coefficients of details at level 1. Replace all the values by 0.

decBis = chgwdeccfs(dec,'cd',0,1);

Change the coefficients of details at level 1 and level 2 for signals 11 to 15. Replace all values by 0.

decTer = chgwdeccfs(dec,'cd',0,1:2,11:15);

Compare the original and new coefficients for details at level 1 for signals 11 to 15.

plot(dec.cd{1}(:,11:15),'b')
hold on
plot(decTer.cd{1}(:,11:15),'r')
legend('Original','Changed')

Version History
Introduced in R2007a
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References
[1] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,

Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

See Also
mdwtdec | mdwtrec
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cmddenoise
Interval-dependent denoising

Syntax
sigden = cmddenoise(sig,wname,level)
sigden = cmddenoise(sig,wname,level,sorh)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter)
sigden = cmddenoise(sig,wname,level,sorh,nb_inter,thrParamsIn)

[sigden,coefs] = cmddenoise( ___ )
[sigden,coefs,thrParamsOut] = cmddenoise( ___ )

[sigden,coefs,thrParamsOut,int_DepThr_Cell] = cmddenoise(sig,wname,level,
sorh,nb_inter)
[sigden,coefs,thrParamsOut,int_DepThr_Cell,BestNbofInt] = cmddenoise(sig,
wname,level,sorh,nb_inter)

Description
sigden = cmddenoise(sig,wname,level) returns the denoised signal, sigden, obtained from
an interval-dependent denoising of the signal, sig, using the orthogonal or biorthogonal wavelet and
scaling filters, wname. cmddenoise thresholds the wavelet (detail) coefficients down to level, level,
and reconstructs a signal approximation using the modified detail coefficients. cmddenoise
partitions the signal into intervals based on variance change points in the first level detail coefficients
and thresholds each interval separately. The location and number of variance change points are
automatically selected using a penalized contrast function [2]. The minimum delay between change
points is 10 samples. Thresholds are obtained using a minimax threshold rule and soft thresholding is
used to modify the wavelet coefficients [1] .

sigden = cmddenoise(sig,wname,level,sorh) returns the denoised signal, sigden, using the
thresholding method, sorh, to modify the wavelet coefficients. Valid choices for sorh are 's' for soft
thresholding or 'h' for hard thresholding.

sigden = cmddenoise(sig,wname,level,sorh,nb_inter) returns the denoised signal,
sigden, with the number of denoising intervals as a positive integer between 1 and 6: 1≤ nb_inter
≤6. For nb_inter ≥ 2, cmddenoise estimates the location of the change points with a contrast
function [2].

sigden = cmddenoise(sig,wname,level,sorh,nb_inter,thrParamsIn) returns the
denoised signal, sigden, with the denoising intervals and corresponding thresholds specified as a
cell array of matrices with length equal to level. Each element of the cell array contains the interval
and threshold information for the corresponding level of the wavelet transform. The elements of
thrParamsIn are N-by-3 matrices with N equal to the number of intervals. The 1st and 2nd columns
contain the beginning and ending indices of the intervals and the 3rd column contains the
corresponding threshold value. If you specify thrParamsIn, cmddenoise ignores the value of
nb_inter.
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[sigden,coefs] = cmddenoise( ___ ) returns the approximation (scaling) and detail (wavelet)
coefficients, coefs. The organization of coefs is identical to the structure returned by wavedec.
This syntax can include any of the input arguments used in previous syntaxes.

[sigden,coefs,thrParamsOut] = cmddenoise( ___ ) returns a cell array, thrParamsOut,
with length equal to level. Each element of thrParamsOut is an N-by-3 matrix. The row dimension
of the matrix elements is the number of intervals and is determined by the value of the input
arguments. Each row of the matrix contains the beginning and end points (indices) of the thresholded
interval and the corresponding threshold value.

[sigden,coefs,thrParamsOut,int_DepThr_Cell] = cmddenoise(sig,wname,level,
sorh,nb_inter) returns a cell array, int_DepThr_Cell, with length equal to 6.
int_DepThr_Cell contains interval and threshold information assuming the number of change
points ranges from 0 to 5. The N-th element of int_DepThr_Cell is a N-by-3 matrix containing the
interval information assuming N-1 change points. Each row of the matrix contains the beginning and
end points (indices) of the thresholded interval and the corresponding threshold value. Attempting to
output int_DepThr_Cell if you use the input argument, thrParamsIn, results in an error.

[sigden,coefs,thrParamsOut,int_DepThr_Cell,BestNbofInt] = cmddenoise(sig,
wname,level,sorh,nb_inter) returns the optimal number of signal intervals based on the
estimated variance change points in the level-1 detail coefficients. To estimate the number of change
points, cmddenoise assumes the total number is less than or equal to 6 and uses a penalized
contrast [2]. Attempting to output BestNbofInt if you use the input argument, thrParamsIn,
results in an error.

Examples

Denoising Blocks Signal with Haar Wavelet

Load the noisy blocks signal, nblocr1.mat. The signal consists of a piecewise constant signal in
additive white Gaussian noise. The variance of the additive noise differs in three disjoint intervals.

load nblocr1;

Apply interval-dependent denoising down to level 4 using the Haar wavelet. |cmddenoise
automatically determines the optimal number and locations of the variance change points. Plot the
denoised and original signal for comparison.

sigden = cmddenoise(nblocr1,'db1',4);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
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Denoising Blocks Signal with Hard Thresholding

Load the noisy blocks signal, nblocr1.mat. The signal consists of a piecewise constant signal in
additive white Gaussian noise. The variance of the additive noise differs in three disjoint intervals.

load nblocr1;

Apply interval-dependent denoising down to level 4 using the Haar wavelet and a hard thresholding
rule. cmddenoise automatically determines the optimal number and locations of the intervals. Plot
the original and denoised signals.

sorh = 'h';
sigden = cmddenoise(nblocr1,'db1',4,sorh);
plot(nblocr1);
hold on;
plot(sigden,'r','linewidth',2);
axis tight;
legend('Original Signal','Denoised Signal','Location','NorthWest');
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Specify the Number of Intervals

Create a signal sampled at 1 kHz. The signal consists of a series of bumps of various widths.

t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
h = [4  -5 3 -4 5  -4.2   2.1   4.3  -3.1   5.1  -4.2];
h  = abs(h);
len = 1000;
w  = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len);
x = zeros(1,len);
for j=1:11
  x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end

Add white Gaussian noise with different variances to two disjoint segments of the signal. Add zero-
mean white Gaussian noise with variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add
zero-mean white Gaussian noise with unit variance to the signal segment from 0.3 seconds to 1
second. Set the random number generator to the default settings for reproducible results.

rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;
sigden = cmddenoise(xx,'sym5',5,'s',2);
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Apply interval-dependent denoising using the Daubechies' least-asymmetric wavelet with 5 vanishing
moments down to level 3. Set the number of intervals to 2. Plot the noisy signal, original signal, and
denoised signal for comparison.

sigden = cmddenoise(xx,'sym5',3,'s',2);
subplot(211)
plot(tt,xx); title('Noisy Signal');
subplot(212)
plot(tt,x,'k-.','linewidth',2);
hold on;
plot(tt,sigden,'r','linewidth',2);
legend('Original Signal','Denoised Signal','Location','SouthEast');

Specify Intervals and Thresholds

Load the example signal nbumpr1.mat. The variance of the additive noise differs in three disjoint
intervals.

load nbumpr1.mat;

Use a level-5 multiresolution analysis. Create a cell array of length 5 consisting of 3-by-3 matrices.
The first two elements of each row contain the beginning and ending indices of the interval and the
last element of each row is the corresponding threshold.
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wname = 'sym4';
level = 5;
sorh = 's';
thrParamsIn =  {...
    [...
    1     207      1.0482; ...
    207   613      2.5110; ...
    613   1024     1.0031; ...
    ]; ...
    [...
    1    207      1.04824; ...
    207  613      3.8718; ...
    613  1024     1.04824; ...
    ]; ...
    [...
    1    207      1.04824; ...
    207  613      1.99710; ...
    613  1024     1.65613; ...
    ]; ...
    [...
    1    207      1.04824; ...
    207  613      2.09117; ...
    613  1024     1.04824; ...
    ]; ...
    [...
    1    207      1.04824; ...
    207  613      1.78620; ...
    613  102      1.04824; ...
    ]; ...
    };

Denoise the signal using the threshold settings and the Daubechies' least-asymmetric wavelet with 4
vanishing moments. Use a soft thresholding rule. Plot the noisy and denoised signals for comparison.

wname = 'sym4';
level = 5;
sorh = 's';   sigden = cmddenoise(nbumpr1,wname,level,sorh,...
   NaN,thrParamsIn);
plot(nbumpr1); hold on;
plot(sigden,'r','linewidth',2); axis tight;
legend('Noisy Signal','Denoised Signal','Location','NorthEast');
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Return Denoised Wavelet Coefficients

Load the example signal nblocr1.mat. Use the Haar wavelet and decompose the signal down to
level 2. Obtain the discrete wavelet transform and denoise the signal. Return the wavelet coefficients
of the noisy and denoised signals.

load nblocr1.mat;
[sigden,coefs] = cmddenoise(nblocr1,'db1',2);
[C,L] = wavedec(nblocr1,2,'db1');

Plot reconstructions based on the level-2 approximation and level-2 and level-1 detail coefficients for
the noisy signal.

app = wrcoef('a',C,L,'db1',2);
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2
    det = wrcoef('d',C,L,'db1',nn);
    subplot(3,1,nn+1)
    plot(det); title(['Noisy Wavelet Coefficients - Level '...
          num2str(nn)]);
end
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Plot reconstructions based on the approximation and detail coefficients for the denoised signal at the
same levels.

figure;
app = wrcoef('a',coefs,L,'db1',2);
subplot(3,1,1);
plot(app); title('Approximation Coefficients');
for nn = 1:2
    det = wrcoef('d',coefs,L,'db1',nn);
    subplot(3,1,nn+1)
    plot(det); 
    title(['Thresholded Wavelet Coefficients-Level '...
         num2str(nn)]);
end
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The approximation coefficients are identical in the noisy and denoised signal, but most of the detail
coefficients in the denoised signal are close to zero.

Output Intervals and Thresholds

Create a signal sampled at 1 kHz. The signal consists of a series of bumps of various widths.

t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
h = [4  -5  3  -4 5  -4.2  2.1  4.3  -3.1  5.1  -4.2];
h  = abs(h);
len = 1000;
w  = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len);  x = zeros(1,len);
for j=1:11
  x = x + ( h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end
plot(tt,x);
title('Original Signal');
hold on;
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Add white Gaussian noise with different variances to two disjoint segments of the signal. Add zero-
mean white Gaussian noise with variance equal to 2 to the signal segment from 0 to 0.3 seconds. Add
zero-mean white Gaussian noise with unit variance to the signal segment from 0.3 seconds to 1
second. Set the random number generator to the default settings for reproducible results.

rng default;
nv1 = sqrt(2).*randn(size(tt)).*(tt<=0.3);
nv2 = randn(size(tt)).*(tt>0.3);
xx = x+nv1+nv2;
plot(tt,xx);
title('Noisy Signal');
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Apply interval-dependent denoising using the Daubechies' least- asymmetric wavelet with 4 vanishing
moments down to level 5. Automatically choose the number of intervals and output the result.

[sigden,coefs,thrParamsOut] = cmddenoise(xx,'sym4',5);
thrParamsOut{1}

ans = 2×3
103 ×

    0.0010    0.2930    0.0036
    0.2930    1.0000    0.0028

cmdnoise identifies one variance change point in the 1st level detail coefficients defining two
intervals. The first interval contains samples 1 to 293. The second interval contains samples 293 to
1000. This is close to the true variance change point, which occurs at sample 299.

Partition Signal into Increasing Numbers of Intervals with Thresholds

Load the example signal, nbumpr1.mat. Partition the signal into 1 to 6 intervals assuming 0 to 5
change points. Compute the thresholds for each interval. Using the Daubechies' least-asymmetric
wavelet with 4 vanishing moments return the intervals and corresponding thresholds. Display the
results.
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load nbumpr1.mat;
[sigden,~,~,int_DepThr_Cell] = cmddenoise(nbumpr1,'sym4',1);
format bank;
disp('          Begin        End          Threshold ');

          Begin        End          Threshold 

cellfun(@disp,int_DepThr_Cell,'UniformOutput',false);

          1.00       1024.00          1.36

          1.00        613.00          1.73
        613.00       1024.00          1.00

          1.00        207.00          1.05
        207.00        613.00          2.51
        613.00       1024.00          1.00

          1.00        207.00          1.05
        207.00        597.00          2.52
        597.00        627.00          1.69
        627.00       1024.00          0.97

          1.00        207.00          1.05
        207.00        613.00          2.51
        613.00        695.00          1.20
        695.00        725.00          0.59
        725.00       1024.00          1.05

          1.00        207.00          1.05
        207.00        597.00          2.52
        597.00        627.00          1.69
        627.00        695.00          1.19
        695.00        725.00          0.59
        725.00       1024.00          1.05

Detect Number of Change Points

Load the example signal, nbumpr1.mat. The signal has two variance change points, which results in
three intervals. Use cmddenoise to detect the number of change points.

load nbumpr1.mat;
[sigden,~,thrParamsOut,~,bestNbofInt] = ...
       cmddenoise(nbumpr1,'sym4',1);
fprintf('Found %d change points.\n',bestNbofInt-1);

Found 2 change points.

Input Arguments
sig — Signal for interval-dependent denoising
1-D row or column vector

Input signal, specified as a 1-D row or column vector. sig is the real-valued input signal for interval-
dependent denoising. The elements of sig are assumed to be equally spaced in time or space. If sig
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contains unequally-sampled data, cmddenoise is not appropriate. Use a lifting transform instead.
See mlptdenoise for details.
Data Types: double

wname — Wavelet name
character vector | string scalar

Wavelet name, specified as a character vector or string scalar. wname is any valid orthogonal or
biorthogonal wavelet. You can use the command: wtype =
wavemngr('fields',wname,'type','file'); to determine if the wavelet name is valid to use
with cmddenoise. Valid wavelet names return a 1 or 2 for wtype.
Example: 'bior2.2', 'db4', 'sym4'
Data Types: char

level — Level of the decimated wavelet transform (multiresolution analysis)
positive integer

Wavelet transform (multiresolution analysis) level, specified as a positive integer. level gives the
level of the multiresolution decomposition of the input signal using the decimated 1-D discrete
wavelet transform, wavedec.
Data Types: double

sorh — Threshold rule
's' (default) | 'h'

Thresholding rule, specified as a character array. sorh is the threshold rule used in the modification
of the detail coefficients. Valid choices for sorh are 's' (default) and 'h' for soft and hard
thresholding.

nb_inter — Number of intervals
positive integer in the set {1,2,3,4,5,6} | NaN

Number of intervals, specified as a positive integer less than 7. cmddenoise divides the input signal
into nb_inter intervals. cmddenoise determines the location of the nb_inter change points using
a contrast function [2]. If you enter NaN for nb_inter, cmddenoise ignores the input. If you use the
input argument thrParamsIn, cmddenoise disregards any value you enter for nb_inter.
Data Types: double

thrParamsIn — Intervals and thresholds by level
cell array of matrices

Intervals and thresholds by level, specified as a cell array of matrices equal in length to level. Each
element of thrParamsIn contains the interval and threshold information for the corresponding level
of the multiresolution analysis. The elements of thrParamsIn are N-by-3 matrices with N equal to
the number of intervals. The 1st and 2nd columns contain the beginning and ending indices of the
intervals and the 3rd column contains the corresponding threshold value. If you specify
thrParamsIn, you cannot specify the output arguments int_DepThr_Cell or BestNbofInt.
Data Types: cell
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Output Arguments
sigden — Denoised signal
1-D row or column vector

sigden is the denoised version of the input sig. sigden is a 1-D row vector equal in length to sig.

coefs — Approximation coefficients and thresholded wavelet coefficients
1-D row vector of approximation coefficients and thresholded wavelet coefficients

coefs is a row vector of approximation (scaling) and thresholded detail (wavelet) coefficients. The
ordering of the approximation and detail coefficients by level in coefs is the same as the output of
wavedec. cmddenoise does not apply thresholding to the approximation coefficients.
Data Types: double

thrParamsOut — Intervals and thresholds by level
cell array of matrices

thrParamsOut is a cell array of matrices equal in length to level. Each element of the cell array
contains the interval and threshold information for the corresponding level of the multiresolution
analysis. The elements of thrParamsOut are N-by-3 matrices with N equal to the number of
intervals. N is determined by the value of the input arguments. The 1st and 2nd columns contain the
beginning and ending indices of the intervals and the 3rd column contains the corresponding
threshold value.
Data Types: cell

int_DepThr_Cell — Intervals and thresholds assuming 0 to 5 change points
cell array of matrices

int_DepThr_Cell contains interval and threshold information assuming the number of change
points ranges from 0 to 5. The N-th element of int_DepThr_Cell is a N-by-3 matrix containing the
interval information assuming N-1 change points. Each row of the matrix contains the beginning and
ending indices of the thresholded interval and the corresponding threshold value. Attempting to
output int_DepThr_Cell if you input the number of intervals and thresholds, thrParamsIn, results
in an error. int_DepThr_Cell{BestNbofInt} or int_DepThr_Cell{nb_inter} is equal to the
matrix elements of thrParamsOut.
Data Types: cell

BestNbofInt — Optimal number of intervals
positive integer ≤ 6

BestNbofInt is the optimal number of intervals based on estimated change points in the variance of
the level-1 detail coefficients. The number and location of the change points are estimated using a
penalized contrast method [2]. Attempting to output BestNbofInt if you input the number of
intervals and thresholds, thrParamsIn, results in an error.

Version History
Introduced in R2010a
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See Also
Functions
thselect | wavedec | wthresh | wvarchg | wdenoise

Apps
Wavelet Signal Denoiser
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cmorwavf
Complex Morlet wavelet

Syntax
[psi,x] = cmorwavf(lb,ub,n)
[psi,x] = cmorwavf(lb,ub,n,fb,fc)

Description
[psi,x] = cmorwavf(lb,ub,n) returns the complex Morlet wavelet, psi, with time-decay
parameter, fb, and center frequency, fc, both equal to 1. The wavelet is evaluated on an n-point
regular grid, x, for the interval [lb,ub]. The general expression for the complex Morlet wavelet is

ψ(x) = 1
π ⋅ fbexp(2πi ⋅ fc ⋅ x)exp(− x2/fb) .

[psi,x] = cmorwavf(lb,ub,n,fb,fc) returns the complex Morlet wavelet with time-decay
parameter, fb, and center frequency, fc.

Examples

Complex Morlet Wavelet

Construct a complex-valued Morlet wavelet with a bandwidth parameter of 1.5 and a center
frequency of 1. Set the effective support to [− 8, 8] and the length of the wavelet to 1000.

N = 1000;
Lb = -8;
Ub = 8;
fb = 1.5;
fc = 1;
[psi,x] = cmorwavf(Lb,Ub,N,fb,fc);

Plot the real and imaginary parts of the wavelet.

subplot(2,1,1)
plot(x,real(psi)); title('Real Part');
subplot(2,1,2)
plot(x,imag(psi)); title('Imaginary Part');
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Effect of Bandwidth Parameter on Morlet Wavelet Shape

This example shows how the complex Morlet wavelet shape in the frequency domain is affected by
the value of the bandwidth parameter (Fb). Both wavelets have a center frequency of 1. One wavelet
has an Fb value of 0.5 and the other wavelet has a value of 8.

f = -5:.01:5;  
Fc = 1;  
Fb1 = 0.5;  
Fb2 = 8;  
psihat1 = exp(-pi^2*Fb1*(f-Fc).^2);  
psihat2 = exp(-pi^2*Fb2*(f-Fc).^2);  
plot(f,psihat1)  
hold on;  
plot(f,psihat2,'r')  
legend('Fb = 0.5','Fb = 8')
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The Fb bandwidth parameter for the complex Morlet wavelet is the inverse of the variance in
frequency. Therefore, increasing Fb results in a narrower concentration of energy around the center
frequency.

Input Arguments
lb — Left endpoint
scalar

Left endpoint of the closed interval, specified as a scalar. lb is strictly less than ub.

ub — Right endpoint
scalar

Right endpoint of the closed interval, specified as a scalar. ub is strictly greater than ub.

n — Number of regularly spaced points
positive integer

Number of regularly spaced points in the interval [lb,ub], specified as a positive integer.

fb — Time-decay parameter
positive scalar
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Time-decay parameter, specified as a positive scalar. fb controls the decay in the time domain and
the corresponding energy spread (bandwidth) in the frequency domain. fb is the inverse of the
variance in the frequency domain.

• Increasing fb makes the wavelet energy more concentrated around the center frequency and
results in slower decay of the wavelet in the time domain.

• Decreasing fb results in faster decay of the wavelet in the time domain and less energy spread in
the frequency domain.

The value of fb does not affect the center frequency. When converting from scale to frequency, only
the center frequency affects the frequency values. The energy spread or bandwidth parameter affects
how localized the wavelet is in the frequency domain.

fc — Center frequency
positive scalar

Center frequency, specified as a positive scalar.

Output Arguments
psi — Complex Morlet wavelet
vector

Complex Morlet wavelet, returned as a complex-valued 1-by-n vector.

x — Sample points
vector

Sample points where the complex Morlet vector is evaluated, returned as a 1-by-n vector. The sample
points are evenly distributed between lb and ub.

Version History
Introduced before R2006a

References
[1] Teolis, Anthony. Computational Signal Processing with Wavelets. Boston, MA: Birkhäuser Boston,

1998. https://doi.org/10.1007/978-1-4612-4142-3.

See Also
waveinfo
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coefficientSize
Size of image scattering coefficients

Syntax
sz = coefficientSize(sf)

Description
sz = coefficientSize(sf) returns the scattering coefficient sizes for the wavelet image
scattering network, sf. The output sz is a two-element row vector that gives the scattering
coefficient output size in the row and column dimensions. For an RGB image, the actual output size is
[sz(1) sz(2) 3].

Examples

Scattering Coefficient Sizes for Image Scattering Network

This example shows how to determine the scattering coefficient sizes of an image scattering network.

Create a wavelet image scattering network with an image size of 128-by-64. Obtain the coefficient
sizes of the network.

sf = waveletScattering2('ImageSize',[128 64]);
sz = coefficientSize(sf)

sz = 1×2

    16     8

Create a second wavelet image scattering network with an image size of 128-by-64 and an
oversampling factor equal to 1. Obtain the coefficient sizes of the network. Since the oversampling
factor is equal to 1, the scattering transform of the second network returns 2-by-2-by-P as many
coefficients for each scattering path with respect to the critically sampled number.

sf2 = waveletScattering2('ImageSize',[128 64],'OversamplingFactor',1);
sz = coefficientSize(sf2)

sz = 1×2

    32    16

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object
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Wavelet image scattering network, specified as a waveletScattering2 object.

Version History
Introduced in R2019a

See Also
waveletScattering2 | paths
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coifwavf
Coiflet wavelet filter

Syntax
f = coifwavf(wname)

Description
f = coifwavf(wname) returns the scaling filter f associated with the Coiflet wavelet specified by
wname. f is a real-valued vector.

Examples

Coiflet Wavelet Filter

Set the Coiflet wavelet name.

wname = 'coif2';

Compute and plot the scaling filter coefficients associated with the Coiflet.

f = coifwavf(wname);
stem(f)
grid on
title('Coiflet Scaling Coefficients')
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Input Arguments
wname — Name of Coiflet
character vector | string scalar

Name of Coiflet, specified as 'coifN' where N is an integer between 1 and 5.
Example: 'coif3'

Version History
Introduced before R2006a

See Also
waveinfo
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concatenate
Concatenate two or more labeled signal sets

Syntax
lssnew = concatenate(lss1,...,lssN)

Description
lssnew = concatenate(lss1,...,lssN) concatenates N labeled signal set objects,
lss1,...,lssN, and returns a labeled signal set lssnew containing all the members and label
values of the input sets.

Examples

Concatenate Labeled Signal Sets

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Create a new signal set with the same data source, time information, and labels as lss.

newlss = copy(lss)

newlss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
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 Use setLabelValue to add data to the set.

Concatenate the two signal sets.

lssconcat = concatenate(lss,newlss)

lssconcat = 
  labeledSignalSet with properties:

             Source: {4x1 cell}
         NumMembers: 4
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [4x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Input Arguments
lss1,...,lssN — Input labeled signal sets
labeledSignalSet objects

Input labeled signal sets, specified as labeledSignalSet objects. All input sets must have the same
time information settings, label definitions, and data source type.

Output Arguments
lssnew — Concatenated labeled signal set
labeledSignalSet object

Concatenated labeled signal set, returned as a labeledSignalSet object. The set lssnew contains
a signal source, label definitions, and label values that are independent of those in the input labeled
signal sets. Changing any of the input labeled signal sets does not affect the concatenated labeled
signal set. Changing the concatenated labeled signal set does not affect the input label signal sets.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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countLabelValues
Count label values

Syntax
cnt = countLabelValues(lss,lblname)

Description
cnt = countLabelValues(lss,lblname) counts the values of the label named lblname and
returns results in table cnt. cnt contains label value counts and percentages. When lblname is an
ROI or point label, cnt also contains the number of members with at least one value of a particular
category. countLabelValues does not support:

• Sublabels
• Label definitions with the LabelDataType property set to 'table' or 'timetable'
• Labels with instance values that cannot be converted to a vector with a discrete set of categories.

It must be possible to group label values using a set of unique discrete categories. Examples of
labels that are not supported include:

• Cell arrays of timetables
• Cell arrays containing matrices of different sizes

Examples

Count Label Values

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the names of the labels in the set.

getLabelNames(lss)
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ans = 3x1 string
    "WhaleType"
    "MoanRegions"
    "TrillRegions"

Verify that the two members of the set are blue whales.

countLabelValues(lss,"WhaleType")

ans=3×3 table
    WhaleType    Count    Percent
    _________    _____    _______

    blue           2        100  
    humpback       0          0  
    white          0          0  

Verify that each member has three moan regions.

countLabelValues(lss,"MoanRegions")

ans=2×4 table
    MoanRegions    Count    Percent    MemberCount
    ___________    _____    _______    ___________

       false         0          0           0     
       true          6        100           2     

Verify that each member has one trill region.

countLabelValues(lss,"TrillRegions")

ans=2×4 table
    TrillRegions    Count    Percent    MemberCount
    ____________    _____    _______    ___________

       false          0          0           0     
       true           2        100           2     

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
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    {'laughter.mat'}
    {'mtlb.mat'    }
    {'splat.mat'   }
    {'train.mat'   }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
    'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
    'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
    'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-118 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)
    
    [sig,info] = read(sds);
    fs = info.SampleRate;

    [~,fn] = fileparts(info.FileName);
    if fn=="handel" || fn=="laughter"
        setLabelValue(lss,kj,"Voice",true)
    end
    
    xm = find(islocalmax(sig,'MaxNumExtrema',1));
    setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))
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    N = length(sig);
    rois = randROI(N,round(N/10),round(N/6));
    setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

    kj = kj+1;
    
end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
    Voice    Count    Percent
    _____    _____    _______

    false      4      66.667 
    true       2      33.333 

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
           Maximum            Count    Percent    MemberCount
    ______________________    _____    _______    ___________

    0.80000000000000004441      1      16.667          1     
    0.89113331915798421612      1      16.667          1     
    0.94730769230769229505      1      16.667          1     
    1                           2      33.333          2     
    1.0575668990330560071       1      16.667          1     

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
    RanROI    Count    Percent    MemberCount
    ______    _____    _______    ___________

    ROI        24        100           6     
    other       0          0           0     

Create two datastores with the data in the labeled signal set:

• The signalDatastore (Signal Processing Toolbox) object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.
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• Use a signalMask (Signal Processing Toolbox) object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.
• Add a red axis label to the signals that contain human voices.

tiledlayout flow

while hasdata(sd)

    [sg,nf] = read(sd);
    
    lbls = read(ld);
    
    nexttile
    
    msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);    
    plotsigroi(msk,sg)
    colorbar off
    xlabel('')
    
    xline(lbls{:}.Maximum{:}.Location, ...
        'LineWidth',2,'Color','#EDB120')
    
    if lbls{:}.Voice{:}
        ylabel('VOICED','Color','#D95319')
    end

end
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function roilims = randROI(N,wid,sep)

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar.
Data Types: char | string

Output Arguments
cnt — Results table
table

Results table, returned as a table with the following variables:

• Count — Number of label values for a particular category.
• Percent — Number of label values for a particular category as a percentage of all label values.
• MemberCount — Number of members with at least one value of a particular category. This

variable is returned only for an ROI or a point label.

Version History
Introduced in R2021a

See Also
labeledSignalSet | signalLabelDefinition
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cqt
Constant-Q nonstationary Gabor transform

Syntax
cfs = cqt(x)
[cfs,f] = cqt(x)
[cfs,f,g,fshifts] = cqt(x)
[cfs,f,g,fshifts,fintervals] = cqt(x)
[cfs,f,g,fshifts,fintervals,bw] = cqt(x)
[ ___ ] = cqt( ___ ,Name,Value)
cqt( ___ )

Description
cfs = cqt(x) returns the constant-Q transform (CQT), cfs, of the input signal x. The input signal
must have at least four samples.

• If x is a vector, then cqt returns a matrix corresponding to the CQT.
• If x is a matrix, then cqt obtains the CQT for each column (independent channel) of x. The

function returns a multidimensional array corresponding to the maximally redundant version of
the CQT.

[cfs,f] = cqt(x) returns the approximate bandpass center frequencies, f, corresponding to the
rows of cfs. The frequencies are ordered from 0 to 1 and are in cycles/sample.

[cfs,f,g,fshifts] = cqt(x) returns the Gabor frames, g, used in the analysis of x and the
frequency shifts, fshifts, in discrete Fourier transform (DFT) bins between the passbands in the
rows of cfs.

cfs, g, and fshifts are required inputs for the inversion of the CQT with icqt.

[cfs,f,g,fshifts,fintervals] = cqt(x) returns the frequency intervals, fintervals,
corresponding the rows of cfs. The kth element of fshifts is the frequency shift in DFT bins
between the ((k-1) mod N) and (k mod N) element of fintervals with k = 0,1,2,...,N-1
where N is the number of frequency shifts. Because MATLAB indexes from 1, fshifts(1) contains
the frequency shift between fintervals{end} and fintervals{1}, fshifts(2) contains the
frequency shift between fintervals{1} and fintervals{2}, and so on.

[cfs,f,g,fshifts,fintervals,bw] = cqt(x) returns the bandwidth, bw, in DFT bins of the
frequency intervals, fintervals.

[ ___ ] = cqt( ___ ,Name,Value) returns the CQT with additional options specified by one or
more Name,Value pair arguments, using any of the preceding syntaxes.

cqt( ___ ) with no output arguments plots the CQT in the current figure. Plotting is supported for
vector inputs only. If the input signal is real and Fs is the sampling frequency, the CQT is plotted over
the range [0,Fs/2]. If the signal is complex, the CQT is plotted over the range [0,Fs).
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Note In order to visualize a sparse CQT, coefficients have to be interpolated. When interpolation
occurs, the plot can have significant smearing and be difficult to interpret. If you want to plot the
CQT, we recommend using the default TransformType value 'full'.

Examples

Constant-Q Transform Using Default Values

Load a signal and obtain the constant-Q transform.

load noisdopp
cfs = cqt(noisdopp);

Center Frequencies of the Constant-Q Transform

Load a real-valued signal and obtain the constant-Q transform. Return the approximate bandpass
center frequencies.

load handel
[cfs,f] = cqt(y);

Plot on a logarithmic scale the bandpass center frequencies through the Nyquist frequency.

lfreq = length(f);
nyquistBin = floor(lfreq/2)+1;
plot(f(1:nyquistBin))
title('Bandpass Center Frequencies')
grid on
set(gca,'yscale','log')
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To confirm the ratios of consecutive pairs of frequencies are constant, plot the ratios. Since cqt uses
12 bins per octave by default, the ratio should equal 21/12. Since the DC and Nyquist frequencies are
not members of the geometric sequence of center frequencies but are included in the frequency
vector, exclude them from the plot.

figure
plot(f(3:nyquistBin-1)./f(2:nyquistBin-2))
grid on
title(['Ratio: ',num2str(2^(1/12))])
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Visualize and Apply Constant-Q Transform Gabor Frames

Obtain the minimally redundant constant-Q transform of an audio signal. Use the Blackman-Harris
window as the prototype function for the Gabor frames.

load handel
df = Fs/numel(y);
[cfs,f,g,fshifts,fintervals,bw] = cqt(y,'SamplingFrequency',Fs,'TransformType',"sparse",'Window',"blackmanharris");

cfs is a cell array, where each element in the array corresponds to a bandpass center frequency and
Gabor frame. Plot the Gabor frame associated with the Nyquist frequency.

lf = length(f);
ind = floor(lf/2)+1;
gFrame = fftshift(g{ind});
fvec = f(ind-1):df:f(ind+1)-df;
plot(fvec,gFrame)
xlabel('Frequency (Hz)')
grid on
title({['Gabor Frame - Freq: ',num2str(f(ind)),' Hz'];['Bandwidth ',num2str(bw(ind)*Fs/numel(y)),' Hz']})

1 Functions

1-122



In the constant-Q transform, the Gabor frames are applied to the discrete Fourier transform of the
input signal, and the inverse discrete Fourier transform is performed. The k-th Gabor frame is applied
to the k-th frequency interval specified in fintervals. Take the discrete Fourier transform of the
signal and plot its magnitude spectrum. Use fintervals to indicate over which Fourier coefficients
are the Gabor frame associated with the Nyquist frequency are applied.

yDFT = fft(y);
lyDFT = length(yDFT);
plot(Fs*(0:lyDFT-1)/lyDFT,abs(yDFT))
grid on
fIntervalGabor = fintervals{ind};
mx = max(abs(yDFT));
hold on
plot([df*fIntervalGabor(1) df*fIntervalGabor(1)],[0 mx],'r-','LineWidth',2)
plot([df*fIntervalGabor(end) df*fIntervalGabor(end)],[0 mx],'r-','LineWidth',2)
str = sprintf('Gabor Frame Interval (Hz): [%3.2f, %3.2f]',df*fIntervalGabor(1),df*fIntervalGabor(end));
title(str)
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Window the Fourier coefficients in the interval with the Gabor frame, and take the inverse discrete
Fourier transform. Normalize the result, and compare with computed constant-Q coefficients and
confirm they are equal.

lGframe = length(gFrame);
indx = 1:lGframe;
indx = fftshift(indx);
winDFT(indx) = yDFT(fIntervalGabor).*fftshift(gFrame(indx));
cqCoefs = ifft(winDFT);
cqCoefs = (2*lGframe/length(y))*cqCoefs;
max(abs(cqCoefs(:)-cfs{ind}(:)))

ans = 0

Constant-Q Transform of Audio Signal

Load an audio signal. Plot the constant-Q transform (CQT) using the maximally redundant version of
the transform and using 12 bins per octave.

load handel
cqt(y,'SamplingFrequency',Fs)
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Perform the CQT of the same signal using 48 bins per octave. Set the frequency range over which the
CQT has a logarithmic frequency response to be the minimum allowable frequency to 2 kHz.

minFreq = Fs/length(y);
maxFreq = 2000;
figure
cqt(y,'SamplingFrequency',Fs,'BinsPerOctave',48,'FrequencyLimits',[minFreq maxFreq])
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a real or complex vector or matrix. x must have at least four samples.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SamplingFrequency',20,'BinsPerOctave',15

SamplingFrequency — Sampling frequency
positive scalar

Sampling frequency, in Hz, specified as the comma-separated pair consisting of
'SamplingFrequency' and a positive scalar.
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BinsPerOctave — Number of bins per octave
12 (default) | positive integer from 1 to 96

Number of bins per octave to use in the CQT, specified as a positive integer from 1 to 96.

TransformType — Type of constant-Q transform
'full' (default) | 'sparse'

Type of constant-Q transform to perform, specified as the comma-separated pair consisting of
'TransformType' and 'full' or 'sparse'. The sparse transform is the minimally redundant
version of the constant-Q transform.

FrequencyLimits — Frequency limits
two-element real vector

Frequency limits over which the CQT has a logarithmic frequency response with the specified number
of frequency bins per octave, specified as the comma-separated pair 'FrequencyLimits' and a
two-element real vector.

• The first element must be greater than or equal to Fs/N, where Fs is the sampling frequency and
N is the length of the signal.

• The second element must be strictly less than the Nyquist frequency.

Window — Window to use as prototype function
'hann' (default) | 'hamming' | 'blackmanharris' | 'itersine' | 'bartlett'

Window to use as the prototype function for the nonstationary Gabor frames, specified as 'hann',
'hamming', 'blackmanharris', 'itersine', or 'bartlett'. These compactly support functions
are defined in frequency. For normalized frequencies, they are defined on the interval (-1/2,1/2). If
you specify a sampling frequency, Fs, they are defined on the interval (-Fs/2,Fs/2).

Output Arguments
cfs — Constant-Q transform
matrix | multidimensional array | cell array | structure array

Constant-Q transform, returned as a matrix, multidimensional array, cell array, or structure array.

• If 'TransformType' is specified as 'full' without 'FrequencyLimits', cfs is a matrix or
multidimensional array.

• If x is a vector, then cqt returns a matrix corresponding to the CQT.
• If x is a matrix, then cqt obtains the CQT for each column (independent channel) of x. The

function returns a multidimensional array corresponding to the maximally redundant version of
the CQT.

The array, cfs, corresponds to the maximally redundant version of the CQT. Each row of the pages
of cfs corresponds to passbands with normalized center frequencies (cycles/sample)
logarithmically spaced between 0 and 1. A normalized frequency of 1/2 corresponds to the Nyquist
frequency. The number of columns, or hops, corresponds to the largest bandwidth center
frequency, which usually occurs one frequency bin below or above the Nyquist bin.

• If 'TransformType' is specified as 'full' and you specify frequency limits, cfs is returned as
a structure array with the following four fields.
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• c — Coefficient matrix of multidimensional array for the frequencies within the specified
frequency limits. This includes both the positive and "negative" frequencies.

• DCcfs — Coefficient vector or matrix for the passband from 0 to the lower frequency limit.
• Nyquistcfs — Coefficient vector or matrix for the passband from the upper frequency limit to

the Nyquist.
• NyquistBin — DFT bin corresponding to the Nyquist frequency. This field is used when

inverting the CQT.
• If 'TransformType' is specified as 'sparse', cfs is a cell array with the number of elements

equal to the number of bandpass frequencies. Each element of the cell array, cfs, is a vector or
matrix with the number of rows equal to the value of the bandwidth in DFT bins, bw.

cfs, g, and fshifts are required inputs for the inversion of the CQT with icqt.

f — Approximate bandpass center frequencies
real-valued vector

Approximate bandpass center frequencies corresponding to the rows of cfs, returned as a real-
valued vector. The frequencies are ordered from 0 to 1 and are in cycles/sample. If you specified
'SamplingFrequency', then f is in Hertz.

g — Gabor frames
cell array of real-valued vectors

Gabor frames used in the analysis of x, returned as a cell array of real-valued vectors. Each vector in
g corresponds to a row of cfs.

cfs, g, and fshifts are required inputs for the inversion of the CQT with icqt.

fshifts — Frequency shifts
real-valued vector

Frequency shifts in discrete Fourier transform bins, returned as a real-valued vector. The shifts are
between the passbands in the rows of cfs.

cfs, g, and fshifts are required inputs for the inversion of the CQT with icqt.

fintervals — Frequency intervals
cell array of real-valued vectors

Frequency intervals corresponding to the rows of cfs, returned as a cell array. Each element in
fintervals is a real-valued vector. The kth element of fshifts is the frequency shift in DFT bins
between the ((k-1) mod N) and (k mod N) element of fintervals with k = 0,1,2,...,N-1
where N is the number of frequency shifts. Because MATLAB indexes from 1, fshifts(1) contains
the frequency shift between fintervals{end} and fintervals{1}, fshifts(2) contains the
frequency shift between fintervals{1} and fintervals{2}, and so on.

bw — Bandwidths
real-valued vector

Bandwidths in DFT bins of the frequency intervals, fintervals, returned as a real-valued vector.
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Algorithms
Nonstationary Gabor Frames

The theory of nonstationary Gabor (NSG) frames for frequency-adaptive analysis and efficient
algorithms for analysis and synthesis using NSG frames are due to Dörfler, Holighaus, Grill, and
Velasco [1],[2]. The algorithms used in CQT and ICQT were developed by Dörfler, Holighaus, Grill,
and Velasco and are described in [1],[2]. In [3], Schörkhuber, Klapuri, Holighaus, and Dörfler develop
and provide algorithms for a phase-corrected CQT transform which matches the CQT coefficients that
would be obtained by naïve convolution. The Large Time-Frequency Analysis Toolbox (https://
github.com/ltfat) provides an extensive suite of algorithms for nonstationary Gabor frames [4].

Perfect Reconstruction

To achieve the perfect reconstruction property of the constant-Q analysis with nonstationary Gabor
frames, cqt internally prepends the zero frequency (DC) and appends the Nyquist frequency to the
frequency interval. The negative frequencies are mirrored versions of the positive center frequencies
and bandwidths

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The value of the 'TransformType' name-value pair argument must be constant. Use
coder.Constant.

• Plotting is not supported.
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See Also
icqt

Topics
“Nonstationary Gabor Frames and the Constant-Q Transform”
“Time-Frequency Gallery”
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createDatastores
Create datastores pointing to signal and label data

Syntax
[sigdata,lbldata] = createDatastores(lss,lblnames)

Description
[sigdata,lbldata] = createDatastores(lss,lblnames) creates a datastore, sigdata,
containing signal member data, and a datastore, lbldata, containing label data from labels specified
in the string array lblnames. createDatastores does not apply to sublabels. Set lblnames to one
or more parent label names to get the parent labels and the corresponding sublabel values.

Examples

Create Datastores

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Display the labels for the first member of the set.

lss.Labels(1,:)

ans=1×3 table
                 WhaleType    MoanRegions    TrillRegions
                 _________    ___________    ____________

    Member{1}      blue       {3x2 table}    {1x3 table} 

Get the names of the labels in the set. Create a signal datastore with the signal information and an
array datastore with the label information.
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lbls = getLabelNames(lss);
[sgd,lbd] = createDatastores(lss,lbls)

sgd = 
  signalDatastore with properties:

    MemberNames:{
                'Member{1}';
                'Member{2}'
                }
       Members: {2x1 cell}
      ReadSize: 1
    SampleRate: 4000

lbd = 
  ArrayDatastore with properties:

              ReadSize: 1
    IterationDimension: 1
            OutputType: "cell"

Display the labels for the first member of the set.

lbls = read(lbd);
lbls{:}

ans=1×3 table
    WhaleType    MoanRegions    TrillRegions
    _________    ___________    ____________

      blue       {3x2 table}    {1x3 table} 

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
    {'laughter.mat'}
    {'mtlb.mat'    }
    {'splat.mat'   }
    {'train.mat'   }
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Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
    'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
    'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
    'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-135 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)
    
    [sig,info] = read(sds);
    fs = info.SampleRate;

    [~,fn] = fileparts(info.FileName);
    if fn=="handel" || fn=="laughter"
        setLabelValue(lss,kj,"Voice",true)
    end
    
    xm = find(islocalmax(sig,'MaxNumExtrema',1));
    setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

    N = length(sig);
    rois = randROI(N,round(N/10),round(N/6));
    setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

    kj = kj+1;
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end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
    Voice    Count    Percent
    _____    _____    _______

    false      4      66.667 
    true       2      33.333 

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
           Maximum            Count    Percent    MemberCount
    ______________________    _____    _______    ___________

    0.80000000000000004441      1      16.667          1     
    0.89113331915798421612      1      16.667          1     
    0.94730769230769229505      1      16.667          1     
    1                           2      33.333          2     
    1.0575668990330560071       1      16.667          1     

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
    RanROI    Count    Percent    MemberCount
    ______    _____    _______    ___________

    ROI        24        100           6     
    other       0          0           0     

Create two datastores with the data in the labeled signal set:

• The signalDatastore (Signal Processing Toolbox) object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

• Use a signalMask (Signal Processing Toolbox) object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.
• Add a red axis label to the signals that contain human voices.

tiledlayout flow
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while hasdata(sd)

    [sg,nf] = read(sd);
    
    lbls = read(ld);
    
    nexttile
    
    msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);    
    plotsigroi(msk,sg)
    colorbar off
    xlabel('')
    
    xline(lbls{:}.Maximum{:}.Location, ...
        'LineWidth',2,'Color','#EDB120')
    
    if lbls{:}.Voice{:}
        ylabel('VOICED','Color','#D95319')
    end

end

function roilims = randROI(N,wid,sep)

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
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roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblnames — Label names
character vector | string scalar | cell array of character vectors | string array

Label names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Data Types: char | string

Output Arguments
sigdata — Signal data
signalDatastore object | audioDatastore object

Signal data, returned as a signalDatastore object or an audioDatastore object.

lbldata — Label data
arrayDatastore object

Label data, returned as an arrayDatastore object.

Version History
Introduced in R2021a

See Also
labeledSignalSet | signalLabelDefinition
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ctranspose
Laurent matrix transpose

Syntax
B = ctranspose(A)

Description
B = ctranspose(A) returns the transpose of the Laurent matrix A.

Examples

Laurent Matrix Transpose

Create two Laurent polynomials:

• a(z) = 2 + 4z−1 + 6z−2

• b(z) = z2 + 3z + 5

lpA = laurentPolynomial(Coefficients=[2 4 6]);
lpB = laurentPolynomial(Coefficients=[1 3 5],MaxOrder=2);

Create the Laurent matrix lmat = 
−1 a z
b z 7

.

lmat = laurentMatrix(Elements={-1 lpA; lpB 7});

Display the elements of the transpose of lmat.

lmatTrans = ctranspose(lmat);
for j=1:2
    for k=1:2
        elt = lmatTrans.Elements{j,k};
        fprintf("===================\nlmatTrans(%d,%d):\n",j,k);
        elt
    end
end

===================
lmatTrans(1,1):

elt = 
  laurentPolynomial with properties:

    Coefficients: -1
        MaxOrder: 0

===================
lmatTrans(1,2):
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elt = 
  laurentPolynomial with properties:

    Coefficients: [1 3 5]
        MaxOrder: 2

===================
lmatTrans(2,1):

elt = 
  laurentPolynomial with properties:

    Coefficients: [2 4 6]
        MaxOrder: 0

===================
lmatTrans(2,2):

elt = 
  laurentPolynomial with properties:

    Coefficients: 7
        MaxOrder: 0

Input Arguments
A — Laurent matrix
laurentMatrix object

Laurent matrix, specified as a laurentMatrix object.

Output Arguments
B — Transpose
laurentMatrix object

Transpose of a Laurent matrix, returned as a laurentMatrix object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Objects
laurentMatrix | laurentPolynomial
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cwt
Continuous 1-D wavelet transform

Syntax
wt = cwt(x)
wt = cwt(x,wname)

[wt,f] = cwt( ___ ,fs)
[wt,period] = cwt( ___ ,ts)
[wt,f,coi] = cwt( ___ )
[wt,period,coi] = cwt( ___ ,ts)

[ ___ ,coi,fb] = cwt( ___ )
[ ___ ,fb,scalingcfs] = cwt( ___ )
[ ___ ] = cwt( ___ ,Name=Value)

cwt( ___ )

Description
wt = cwt(x) returns the continuous wavelet transform (CWT) of x. The CWT is obtained using the
analytic Morse wavelet with the symmetry parameter, gamma (γ), equal to 3 and the time-bandwidth
product equal to 60. cwt uses 10 voices per octave. The minimum and maximum scales are
determined automatically based on the energy spread of the wavelet in frequency and time.

The cwt function uses L1 normalization. With L1 normalization, if you have equal amplitude
oscillatory components in your data at different scales, they will have equal magnitude in the CWT.
Using L1 normalization shows a more accurate representation of the signal. See “L1 Norm for CWT”
on page 1-170 and “Continuous Wavelet Transform of Two Complex Exponentials” on page 1-146.

wt = cwt(x,wname) uses the analytic wavelet specified by wname to compute the CWT.

[wt,f] = cwt( ___ ,fs) specifies the sampling frequency, fs, in hertz, and returns the scale-to-
frequency conversions f in hertz. If you do not specify a sampling frequency, cwt returns f in cycles
per sample.

[wt,period] = cwt( ___ ,ts) specifies the sampling period, ts, as a positive duration scalar.
cwt uses ts to compute the scale-to-period conversions, period. period is an array of durations
with the same Format property as ts.

[wt,f,coi] = cwt( ___ ) returns the cone of influence, coi, in cycles per sample. Specify a
sampling frequency, fs, in hertz, to return the cone of influence in hertz.

[wt,period,coi] = cwt( ___ ,ts) returns the cone of influence, coi, as an array of durations
with the same Format property as ts.

[ ___ ,coi,fb] = cwt( ___ ) returns the filter bank used in the CWT. See cwtfilterbank.

[ ___ ,fb,scalingcfs] = cwt( ___ ) returns the scaling coefficients for the wavelet transform.
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[ ___ ] = cwt( ___ ,Name=Value) specifies one or more additional name-value arguments. For
example, wt = cwt(x,TimeBandwidth=40,VoicesPerOctave=20) specifies a time-bandwidth
product of 40 and 20 voices per octave.

cwt( ___ ) with no output arguments plots the CWT scalogram. The scalogram is the absolute value
of the CWT plotted as a function of time and frequency. Frequency is plotted on a logarithmic scale.
The cone of influence showing where edge effects become significant is also plotted. Gray regions
outside the dashed white line delineate regions where edge effects are significant. If the input signal
is complex-valued, the positive (counterclockwise) and negative (clockwise) components are plotted
in separate scalograms.

If you do not specify a sampling frequency or sampling period, the frequencies are plotted in cycles
per sample. If you specify a sampling frequency, the frequencies are in hertz. If you specify a
sampling period, the scalogram is plotted as a function of time and periods. If the input signal is a
timetable, the scalogram is plotted as a function of time and frequency in hertz and uses the
RowTimes as the basis for the time axis.

To see the time, frequency, and magnitude of a scalogram point, enable data tips in the figure axes
toolbar and click the desired point in the scalogram.

Note  Before plotting, cwt clears (clf) the current figure. To plot the scalogram in a subplot, use a
plotting function. See “Plot CWT Scalogram in Subplot” on page 1-162.

Examples

Continuous Wavelet Transform Using Default Values

Obtain the continuous wavelet transform of a speech sample using default values.

load mtlb;
w = cwt(mtlb);
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Continuous Wavelet Transform Using Specified Wavelet

Load a speech sample.

load mtlb

Loading the file mtlb.mat brings the speech signal, mtlb, and the sample rate, Fs, into the
workspace. Display the scalogram of the speech sample obtained using the bump wavelet.

load mtlb
cwt(mtlb,"bump",Fs)

Compare with the scalogram obtained using the default Morse wavelet.

cwt(mtlb,Fs)
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Continuous Wavelet Transform of Earthquake Data

Obtain the CWT of the Kobe earthquake data. The data are seismograph (vertical acceleration, nm/
sq.sec) measurements recorded at Tasmania University, Hobart, Australia on 16 January 1995
beginning at 20:56:51 (GMT) and continuing for 51 minutes. The sampling frequency is 1 Hz.

load kobe

Plot the earthquake data.

plot((1:numel(kobe))./60,kobe)
xlabel("Time (mins)")
ylabel("Vertical Acceleration (nm/s^2)")
title("Kobe Earthquake Data")
grid on
axis tight
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Obtain the CWT, frequencies, and cone of influence.

[wt,f,coi] = cwt(kobe,1);

View the scalogram, including the cone of influence.

cwt(kobe,1)

1 Functions

1-144



Obtain the CWT, time periods, and cone of influence by specifying a sampling period instead of a
sampling frequency.

[wt,periods,coi] = cwt(kobe,minutes(1/60));

View the scalogram generated when specifying a sampling period.

cwt(kobe,minutes(1/60))
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Continuous Wavelet Transform of Two Complex Exponentials

Create two complex exponentials, of different amplitudes, with frequencies of 32 and 64 Hz. The data
is sampled at 1000 Hz. The two complex exponentials have disjoint support in time.

Fs = 1e3;
t = 0:1/Fs:1;
z = exp(1i*2*pi*32*t).*(t>=0.1 & t<0.3)+2*exp(-1i*2*pi*64*t).*(t>0.7);

Add complex white Gaussian noise with a standard deviation of 0.05.

wgnNoise = 0.05/sqrt(2)*randn(size(t))+1i*0.05/sqrt(2)*randn(size(t));
z = z+wgnNoise;

Obtain and plot the cwt using a Morse wavelet.

cwt(z,Fs)

1 Functions

1-146



Note the magnitudes of the complex exponential components in the colorbar are essentially their
amplitudes even though they are at different scales. This is a direct result of the L1 normalization.
You can verify this by executing this script and exploring each subplot with a data cursor.
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Sinusoid and Wavelet Coefficient Amplitudes

This example shows that the amplitudes of oscillatory components in a signal agree with the
amplitudes of the corresponding wavelet coefficients.

Create a signal composed of two sinusoids with disjoint support in time. One sinusoid has a frequency
of 32 Hz and amplitude equal to 1. The other sinusoid has a frequency of 64 Hz and amplitude equal
to 2. The signal is sampled for one second at 1000 Hz. Plot the signal.

frq1 = 32;
amp1 = 1;
frq2 = 64;
amp2 = 2;

Fs = 1e3;
t = 0:1/Fs:1;
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x = amp1*sin(2*pi*frq1*t).*(t>=0.1 & t<0.3)+... 
    amp2*sin(2*pi*frq2*t).*(t>0.6 & t<0.9);

plot(t,x)
grid on
xlabel("Time (sec)")
ylabel("Amplitude")
title("Signal")

Create a CWT filter bank that can be applied to the signal. Since the signal component frequencies
are known, set the frequency limits of the filter bank to a narrow range that includes the known
frequencies. To confirm the range, plot the magnitude frequency responses for the filter bank.

fb = cwtfilterbank(SignalLength=numel(x),SamplingFrequency=Fs,...
    FrequencyLimits=[20 100]);
freqz(fb)
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Use cwt and the filter bank to plot the scalogram of the signal.

cwt(x,FilterBank=fb)
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Use a data cursor to confirm that the amplitudes of the wavelet coefficients are essentially equal to
the amplitudes of the sinusoidal components. Your results should be similar to the ones in the
following figure.
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Using CWT Filter Bank on Multiple Time Series

This example shows how using a CWT filter bank can improve computational efficiency when taking
the CWT of multiple time series.

Create a 100-by-1024 matrix x. Create a CWT filter bank appropriate for signals with 1024 samples.

x = randn(100,1024);
fb = cwtfilterbank;

Use cwt with default settings to obtain the CWT of a signal with 1024 samples. Create a 3-D array
that can contain the CWT coefficients of 100 signals, each of which has 1024 samples.

cfs = cwt(x(1,:));
res = zeros(100,size(cfs,1),size(cfs,2));

Use the cwt function and take the CWT of each row of the matrix x. Display the elapsed time.

tic
for k=1:100
    res(k,:,:) = cwt(x(k,:));
end
toc

Elapsed time is 0.928160 seconds.
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Now use the wt object function of the filter bank to take the CWT of each row of x. Display the
elapsed time.

tic
for k=1:100
    res(k,:,:) = wt(fb,x(k,:));
end
toc

Elapsed time is 0.393524 seconds.

CUDA Code from CWT

This example shows how to generate a MEX file to perform the continuous wavelet transform (CWT)
using generated CUDA® code.

First, ensure that you have a CUDA-enabled GPU and the NVCC compiler. See “The GPU
Environment Check and Setup App” (GPU Coder) to ensure you have the proper configuration.

Create a GPU coder configuration object.

cfg = coder.gpuConfig("mex");

Generate a signal of 100,000 samples at 1,000 Hz. The signal consists of two cosine waves with
disjoint time supports.

t = 0:.001:(1e5*0.001)-0.001;
x = cos(2*pi*32*t).*(t > 10 & t<=50)+ ...
    cos(2*pi*64*t).*(t >= 60 & t < 90)+ ...
    0.2*randn(size(t));

Cast the signal to use single precision. GPU calculations are often more efficiently done in single
precision. You can however also generate code for double precision if your NVIDIA® GPU supports it.

x = single(x);

Generate the GPU MEX file and a code generation report. To allow generation of the MEX file, you
must specify the properties (class, size, and complexity) of the three input parameters:

• coder.typeof(single(0),[1 1e5]) specifies a row vector of length 100,000 containing real
single values.

• coder.typeof('c',[1 inf]) specifies a character array of arbitrary length.
• coder.typeof(0) specifies a real double value.

sig = coder.typeof(single(0),[1 1e5]);
wav = coder.typeof('c',[1 inf]);
sfrq = coder.typeof(0);
codegen cwt -config cfg -args {sig,wav,sfrq} -report

Code generation successful: View report

The -report flag is optional. Using -report generates a code generation report. In the Summary tab
of the report, you can find a GPU code metrics link, which provides detailed information such as the
number of CUDA kernels generated and how much memory was allocated.
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Run the MEX file on the data and plot the scalogram. Confirm the plot is consistent with the two
disjoint cosine waves.

[cfs,f] = cwt_mex(x,'morse',1e3);
image("XData",t,"YData",f,"CData",abs(cfs),"CDataMapping","scaled")
set(gca,"YScale","log")
axis tight
xlabel("Time (Seconds)")
ylabel("Frequency (Hz)")
title("Scalogram of Two-Tone Signal")

Run the CWT command above without appending the _mex. Confirm the MATLAB® and the GPU
MEX scalograms are identical.

[cfs2,f2] = cwt(x,'morse',1e3);
max(abs(cfs2(:)-cfs(:)))

ans = single
    7.3380e-07

Change Default Frequency Axis Labels

This example shows how to change the default frequency axis labels for the CWT when you obtain a
plot with no output arguments.
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Create two sine waves with frequencies of 32 and 64 Hz. The data is sampled at 1000 Hz. The two
sine waves have disjoint support in time. Add white Gaussian noise with a standard deviation of 0.05.
Obtain and plot the CWT using the default Morse wavelet.

Fs = 1e3;
t = 0:1/Fs:1;
x = cos(2*pi*32*t).*(t>=0.1 & t<0.3)+sin(2*pi*64*t).*(t>0.7);
wgnNoise = 0.05*randn(size(t));
x = x+wgnNoise;
cwt(x,1000)

The plot uses a logarithmic frequency axis because frequencies in the CWT are logarithmic. In
MATLAB, logarithmic axes are in powers of 10 (decades). You can use cwtfreqbounds to determine
what the minimum and maximum wavelet bandpass frequencies are for a given signal length,
sampling frequency, and wavelet.

[minf,maxf] = cwtfreqbounds(numel(x),1000);

You see that by default MATLAB has placed frequency ticks at 10 and 100 because those are the
powers of 10 between the minimum and maximum frequencies. If you wish to add more frequency
axis ticks, you can obtain a logarithmically spaced set of frequencies between the minimum and
maximum frequencies using the following.

numfreq = 10;
freq = logspace(log10(minf),log10(maxf),numfreq);
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Next, get the handle to the current axes and replace the frequency axis ticks and labels with the
following.

AX = gca;
AX.YTickLabelMode = "auto";
AX.YTick = freq;

In the CWT, frequencies are computed in powers of two. To create the frequency ticks and tick labels
in powers of two, you can do the following.

newplot
cwt(x,1000)
AX = gca;
freq = 2.^(round(log2(minf)):round(log2(maxf)));
AX.YTickLabelMode = "auto";
AX.YTick = freq;
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Change Scalogram Coloration

This example shows how to scale scalogram values by maximum absolute value at each level for
plotting.

Load in a signal and display the default scalogram. Change the colormap to pink(240).

load noisdopp
cwt(noisdopp)
colormap(pink(240))
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Take the CWT of the signal and obtain the wavelet coefficients and frequencies.

[cfs,frq] = cwt(noisdopp);

To efficiently find the maximum value of the coefficients at each frequency (level), first transpose the
absolute value of the coefficients. Find the minimum value at every level. At each level, subtract the
level's minimum value.

tmp1 = abs(cfs);
t1 = size(tmp1,2);
tmp1 = tmp1';
minv = min(tmp1);
tmp1 = (tmp1-minv(ones(1,t1),:));

Find the maximum value at every level of tmp1. For each level, divide every value by the maximum
value at that level. Multiply the result by the number of colors in the colormap. Set equal to 1 all zero
entries. Transpose the result.

maxv = max(tmp1);
maxvArray = maxv(ones(1,t1),:);
indx = maxvArray<eps;
tmp1 = 240*(tmp1./maxvArray);
tmp2 = 1+fix(tmp1);
tmp2(indx) = 1;
tmp2 = tmp2';

Display the result. The scalogram values are now scaled by the maximum absolute value at each
level. Frequencies are displayed on a linear scale.
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t = 0:length(noisdopp)-1;
pcolor(t,frq,tmp2)
shading interp
xlabel("Time (Samples)")
ylabel("Normalized Frequency (cycles/sample)")
title("Scalogram Scaled By Level")
colormap(pink(240))
colorbar

Changing the Time-bandwidth Product

This example shows that increasing the time-bandwidth product P2 of the Morse wavelet creates a
wavelet with more oscillations under its envelope. Increasing P2 narrows the wavelet in frequency.

Create two filter banks. One filter bank has the default TimeBandwidth value of 60. The second filter
bank has a TimeBandwidth value of 10. The SignalLength for both filter banks is 4096 samples.

sigLen = 4096;
fb60 = cwtfilterbank(SignalLength=sigLen);
fb10 = cwtfilterbank(SignalLength=sigLen,TimeBandwidth=10);

Obtain the time-domain wavelets for the filter banks.

[psi60,t] = wavelets(fb60);
[psi10,~] = wavelets(fb10);
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Use the scales function to find the mother wavelet for each filter bank.

sca60 = scales(fb60);
sca10 = scales(fb10);
[~,idx60] = min(abs(sca60-1));
[~,idx10] = min(abs(sca10-1));
m60 = psi60(idx60,:);
m10 = psi10(idx10,:);

Since the time-bandwidth product is larger for the fb60 filter bank, verify the m60 wavelet has more
oscillations under its envelope than the m10 wavelet.

subplot(2,1,1)
plot(t,abs(m60))
grid on
hold on
plot(t,real(m60))
plot(t,imag(m60))
hold off
xlim([-30 30])
legend("abs(m60)","real(m60)","imag(m60)")
title("TimeBandwidth = 60")
subplot(2,1,2)
plot(t,abs(m10))
grid on
hold on
plot(t,real(m10))
plot(t,imag(m10))
hold off
xlim([-30 30])
legend("abs(m10)","real(m10)","imag(m10)")
title("TimeBandwidth = 10")
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Align the peaks of the m60 and m10 magnitude frequency responses. Verify the frequency response of
the m60 wavelet is narrower than the frequency response for the m10 wavelet.

cf60 = centerFrequencies(fb60);
cf10 = centerFrequencies(fb10);

m60cFreq = cf60(idx60);
m10cFreq = cf10(idx10);

freqShift = 2*pi*(m60cFreq-m10cFreq);
x10 = m10.*exp(1j*freqShift*(-sigLen/2:sigLen/2-1));

figure
plot([abs(fft(m60)).' abs(fft(x10)).'])
grid on
legend("Time-bandwidth = 60","Time-bandwidth = 10")
title("Magnitude Frequency Responses")
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Plot CWT Scalogram in Subplot

This example shows how to plot the CWT scalogram in a figure subplot.

Load the speech sample. The data is sampled at 7418 Hz. Plot the default CWT scalogram.

load mtlb
cwt(mtlb,Fs)
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Obtain the continuous wavelet transform of the signal, and the frequencies of the CWT.

[cfs,frq] = cwt(mtlb,Fs);

The cwt function sets the time and frequency axes in the scalogram. Create a vector representing the
sample times.

tms = (0:numel(mtlb)-1)/Fs;

In a new figure, plot the original signal in the upper subplot and the scalogram in the lower subplot.
Plot the frequencies on a logarithmic scale.

figure
subplot(2,1,1)
plot(tms,mtlb)
axis tight
title("Signal and Scalogram")
xlabel("Time (s)")
ylabel("Amplitude")
subplot(2,1,2)
surface(tms,frq,abs(cfs))
axis tight
shading flat
xlabel("Time (s)")
ylabel("Frequency (Hz)")
set(gca,"yscale","log")
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Input Arguments
x — Input signal
real- or complex-valued vector | timetable | gpuArray

Input signal, specified as a real- or complex-valued vector, or a single-variable regularly sampled
timetable. The input x must have at least four samples.

The cwt function also accepts GPU array inputs. For more information, see “Run MATLAB Functions
on a GPU” (Parallel Computing Toolbox).
Data Types: single | double

wname — Analytic wavelet
"morse" (default) | "amor" | "bump"

Analytic wavelet used to compute the CWT. Valid options for wname are "morse", "amor", and
"bump", which specify the Morse, Morlet (Gabor), and bump wavelet, respectively.

The default Morse wavelet has symmetry parameter gamma (γ) equal to 3 and time-bandwidth
product equal to 60.
Data Types: char | string

fs — Sampling frequency
positive scalar
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Sampling frequency in hertz, specified as a positive scalar. If you specify fs, then you cannot specify
ts. If x is a timetable, you cannot specify fs. fs is determined from the RowTimes of the timetable.
Data Types: single | double

ts — Sampling period
scalar duration

Sampling period, also known as the time duration, specified as a scalar duration. Valid durations are
years, days, hours, minutes, and seconds. You cannot use calendar durations. If you specify ts,
then you cannot specify fs. If x is a timetable, you cannot specify ts. ts is determined from the
RowTimes of the timetable when you set the PeriodLimits name-value argument.
Example: wt = cwt(x,hours(12))
Data Types: duration

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: wt = cwt(x,"bump",VoicesPerOctave=10) returns the CWT of x using the bump
wavelet and 10 voices per octave.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: wt = cwt(x,"ExtendedSignal",true,"FrequencyLimits",[0.1 0.2]) extends
the input signal symmetrically and specifies frequency limits of 0.1 to 0.2 samples per cycle.

ExtendSignal — Extend input signal symmetrically
true or 1 (default) | false or 0

Option to extend the input signal symmetrically by reflection, specified as one of these:

• 1 (true) — Extend symmetrically
• 0 (false) — Do not extend symmetrically

If ExtendSignal is false, the signal is extended periodically. Extending the signal symmetrically
can mitigate boundary effects.

Note If you want to invert the CWT using icwt with scaling coefficients and approximate synthesis
filters, set ExtendSignal to false.

Data Types: logical

FrequencyLimits — Frequency limits
two-element scalar vector

Frequency limits to use in the CWT, specified as a two-element vector with positive strictly increasing
entries. The first element specifies the lowest peak passband frequency and must be greater than or
equal to the product of the wavelet peak frequency in hertz and two time standard deviations divided
by the signal length. The second element specifies the highest peak passband frequency and must be
less than or equal to the Nyquist frequency. The base-2 logarithm of the ratio of the upper frequency
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limit, freqMax, to the lower frequency limit, freqMin, must be greater than or equal to 1/NV, where
NV is the number of voices per octave:

log2(freqMax/freqMin) ≥ 1/NV.

If you specify frequency limits outside the permissible range, cwt truncates the limits to the minimum
and maximum valid values. Use cwtfreqbounds to determine frequency limits for different
parameterizations of the CWT. For complex-valued signals, (-1) × flimits is used for the anti-
analytic part, where flimits is the vector specified by FrequencyLimits.
Example: wt = cwt(x,1000,VoicesPerOctave=10,FrequencyLimits=[80 90])
Data Types: double

PeriodLimits — Period limits
two-element duration array

Period limits to use in the CWT, specified as a two-element duration array with strictly increasing
positive entries. The first element must be greater than or equal to 2 × ts where ts is the sampling
period. The maximum period cannot exceed the signal length divided by the product of two time
standard deviations of the wavelet and the wavelet peak frequency. The base-2 logarithm of the ratio
of the minimum period, minP, to the maximum period, maxP, must be less than or equal to -1/NV,
where NV is the number of voices per octave:

log2(pMin/pMax) ≤ -1/NV.

If you specify period limits outside the permissible range, cwt truncates the limits to the minimum
and maximum valid values. Use cwtfreqbounds to determine period limits for different
parameterizations of the wavelet transform. For complex-valued signals, (-1) × plimits is used for
the anti-analytic part, where plimits is the vector specified by PeriodLimits.
Example: wt = cwt(x,seconds(0.1),VoicesPerOctave=10,PeriodLimits=[seconds(0.2)
seconds(3)])

Data Types: duration

VoicesPerOctave — Number of voices per octave
10 (default) | integer from 1 to 48

Number of voices per octave to use for the CWT, specified as an integer from 1 to 48. The CWT scales
are discretized using the specified number of voices per octave. The energy spread of the wavelet in
frequency and time automatically determines the minimum and maximum scales.

TimeBandwidth — Time-bandwidth product of the Morse wavelet
60 (default) | scalar greater than or equal to 3 and less than or equal to 120

Time-bandwidth product of the Morse wavelet, specified as a scalar greater than or equal to 3 and
less than or equal to 120. The symmetry parameter, gamma (γ), is fixed at 3. Wavelets with larger
time-bandwidth products have larger spreads in time and narrower spreads in frequency. The
standard deviation of the Morse wavelet in time is approximately sqrt(TimeBandwidth/2). The
standard deviation of the Morse wavelet in frequency is approximately 1/2 × sqrt(2/
TimeBandwidth).

If you specify TimeBandwidth, you cannot specify WaveletParameters. To specify both the
symmetry and time-bandwidth product, use WaveletParameters instead.

In the notation of “Morse Wavelets”, TimeBandwidth is P2.
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WaveletParameters — Symmetry and time-bandwidth product of the Morse wavelet
[3,60] (default) | two-element vector of scalars

Symmetry and time-bandwidth product of the Morse wavelet, specified as a two-element vector of
scalars. The first element is the symmetry, γ, which must be greater than or equal to 1. The second
element is the time-bandwidth product, which must be greater than or equal to γ. The ratio of the
time-bandwidth product to γ cannot exceed 40.

When γ is equal to 3, the Morse wavelet is perfectly symmetric in the frequency domain and the
skewness is 0. When γ is greater than 3, the skewness is positive. When γ is less than 3, the skewness
is negative.

For more information, see “Morse Wavelets”.

If you specify WaveletParameters, you cannot specify TimeBandwidth.

FilterBank — CWT filter bank
cwtfilterbank object

CWT filter bank to use to compute the CWT, specified as a cwtfilterbank object. If you set
FilterBank, you cannot specify any other options. All options for the computation of the CWT are
defined as properties of the filter bank. For more information, see cwtfilterbank.

If x is a timetable, the sampling frequency or sampling period in fb must agree with the sampling
frequency or sampling period determined by the RowTimes of the timetable.
Example: wt = cwt(x,FilterBank=cfb)

Output Arguments
wt — Continuous wavelet transform
matrix

Continuous wavelet transform, returned as a matrix of complex values. By default, cwt uses the
analytic Morse (3,60) wavelet, where 3 is the symmetry and 60 is the time-bandwidth product. cwt
uses 10 voices per octave.

• If x is real-valued, wt is an Na-by-N matrix, where Na is the number of scales, and N is the
number of samples in x.

• If x is complex-valued, wt is a 3-D matrix, where the first page is the CWT for the positive scales
(analytic part or counterclockwise component) and the second page is the CWT for the negative
scales (anti-analytic part or clockwise component).

The minimum and maximum scales are determined automatically based on the energy spread of the
wavelet in frequency and time. See “Algorithms” on page 1-169 for information on how the scales are
determined.
Data Types: single | double

f — Scale-to-frequency conversions
vector

Scale-to-frequency conversions of the CWT, returned as a vector. If you specify a sampling frequency,
fs, then f is in hertz. If you do not specify fs, cwt returns f in cycles per sample. If the input x is
complex, the scale-to-frequency conversions apply to both pages of wt.
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period — Scale-to-period conversions
array

Scale-to-period conversions, returned as an array of durations with the same Format property as ts.
Each row corresponds to a period. If the input x is complex, the scale-to-period conversions apply to
both pages of wt.

coi — Cone of influence
array of real numbers | array of durations

Cone of influence for the CWT. If you specify a sampling frequency, fs, the cone of influence is in
hertz. If you specify a scalar duration, ts, the cone of influence is an array of durations with the same
Format property as ts. If the input x is complex, the cone of influence applies to both pages of wt.

The cone of influence indicates where edge effects occur in the CWT. Due to the edge effects, give
less credence to areas that are outside or overlap the cone of influence. For additional information,
see “Boundary Effects and the Cone of Influence”.

fb — CWT filter bank
cwtfilterbank object

CWT filter bank used in the CWT, returned as a cwtfilterbank object. See cwtfilterbank.

scalingcfs — Scaling coefficients
real- or complex-valued vector

Scaling coefficients for the CWT, returned as a real- or complex-valued vector. The length of
scalingcfs is equal to the length of the input x.

More About
Analytic Wavelets

Analytic wavelets are complex-valued wavelets whose Fourier transform vanish for negative
frequencies. Analytic wavelets are a good choice when doing time-frequency analysis with the CWT.
Because the wavelet coefficients are complex-valued, the coefficients provide phase and amplitude
information of the signal being analyzed. Analytic wavelets are well suited for studying how the
frequency content in real world nonstationary signals evolves as a function of time.

Analytic wavelets are almost exclusively based on rapidly decreasing functions. If ψ(t) is an analytic
rapidly decreasing function in time, then its Fourier transform ψ (ω) is a rapidly decreasing function
in frequency and is small outside of some interval α < ω < β where 0 < α < β. Orthogonal and
biorthogonal wavelets are typically designed to have compact support in time. Wavelets with compact
support in time have relatively poorer energy concentration in frequency than wavelets which rapidly
decrease in time. Most orthogonal and biorthogonal wavelets are not symmetric in the Fourier
domain.

If your goal is to obtain a joint time-frequency representation of your signal, we recommend you use
cwt or cwtfilterbank. Both functions support the following analytic wavelets:

• Morse Wavelet Family (default)
• Analytic Morlet (Gabor) Wavelet
• Bump Wavelet
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For more information regarding Morse wavelets, see “Morse Wavelets”. In the Fourier domain, in
terms of angular frequency:

• The analytic Morlet is defined as:

where  is the indicator function of the interval [0,∞).
• The Bump wavelet is defined as:

where ϵ = 2.2204×10-16.

If you want to do time-frequency analysis using orthogonal or biorthogonal wavelets, we recommend
modwpt.

When using wavelets for time-frequency analysis, you usually convert scales to frequencies or periods
to interpret results. cwt and cwtfilterbank do the conversion. You can obtain the corresponding
scales associated by using scales on the optional cwt output argument fb.

For guidance on how to choose the wavelet that is right for your application, see “Choose a Wavelet”.

Tips
• The syntax for the old cwt function continues to work but is no longer recommended. Use the

current version of cwt. Both the old and current versions use the same function name. The inputs
to the function determine automatically which version is used. See “cwt function syntax has
changed” on page 1-171.

• When performing multiple CWTs, for example inside a for-loop, the recommended workflow is to
first create a cwtfilterbank object and then use the wt object function. This workflow
minimizes overhead and maximizes performance. See “Using CWT Filter Bank on Multiple Time
Series” on page 1-152.

Algorithms
Minimum Scale

To determine the minimum scale, find the peak frequency ωx of the base wavelet. For Morse wavelets,
dilate the wavelet so that the Fourier transform of the wavelet at π radians is equal to 10% of the
peak frequency. The smallest scale occurs at the largest frequency:

s0 =
ωx′
π

As a result, the smallest scale is the minimum of (2, s0). For Morse wavelets, the smallest scale is
usually s0. For the Morlet wavelet, the smallest scale is usually 2.
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Maximum Scale

Both the minimum and maximum scales of the CWT are determined automatically based on the
energy spread of the wavelet in frequency and time. To determine the maximum scale, CWT uses the
following algorithm.

The standard deviation of the Morse wavelet in time, σt, is approximately P2

2 , where P2 is the time-

bandwidth product. The standard deviation in frequency, σf , is approximately 12
2
P2 . If you scale the

wavelet by some s > 1, the time duration changes to 2sσt = N, which is the wavelet stretched to
equal the full length (N samples) of the input. You cannot translate this wavelet or stretch it further
without causing it to wrap, so the largest scale is f loor N

2σt
.

Wavelet transform scales are powers of 2 and are denoted by s0 2
1

NV
j
. NV is the number of voices

per octave, and j ranges from 0 to the largest scale. For a specific small scale, s0:

s0 2
1

NV
j
≤ N

2σt

Converting to log2:

jlog2 2
1

NV ≤ log2
N

2σts0

j ≤ NVlog2
N

2σts0

Therefore, the maximum scale is

s0 2
1

NV
f loor NVlog2

N
2σts0

L1 Norm for CWT

In integral form, the CWT preserves energy. However, when you implement the CWT numerically,
energy is not preserved. In this case, regardless of the normalization you use, the CWT is not an
orthonormal transform. The cwt function uses L1 normalization.

Wavelet transforms commonly use L2 normalization of the wavelet. For the L2 norm, dilating a signal
by 1/s, where s is greater than 0, is defined as follows:

x t
s 2

2
= s x t 2

2

The energy is now s times the original energy. When included in the Fourier transform, multiplying by
1 s produces different weights being applied to different scales, so that the peaks at higher
frequencies are reduced more than the peaks at lower frequencies.
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In many applications, L1 normalization is better. The L1 norm definition does not include squaring the
value, so the preserving factor is 1/s instead of 1 s. Instead of high-frequency amplitudes being
reduced as in the L2 norm, for L1 normalization, all frequency amplitudes are normalized to the same
value. Therefore, using the L1 norm shows a more accurate representation of the signal. See example
“Continuous Wavelet Transform of Two Complex Exponentials” on page 1-146.

Version History
Introduced in R2016b

R2016b: cwt function syntax has changed
Behavior changed in R2016b

This release provides an updated version of the continuous wavelet transform, cwt. With the new and
simplified syntax, you can easily choose wavelets best suited for continuous wavelet analysis,
frequency or period ranges, and voices per octave. Default values for wavelet and scaling are
provided so they need not be specified.

The syntax for the old cwt function continues to work but is no longer recommended. Use the
updated version of cwt. Both the old and updated versions use the same function name. The inputs to
the function determine automatically which version is used.

Functionality Use This Instead Compatibility Considerations
Old cwt Updated cwt Update all instances of cwt to

use the updated cwt syntax.

R2018a: 'NumOctaves' name-value argument will be removed
Not recommended starting in R2018a

The NumOctaves name-value argument will be removed in a future release. Use either:

• Name-value argument FrequencyLimits to modify the frequency range of the CWT.
• Name-value argument PeriodLimits to modify the period range of the CWT.

See cwtfreqbounds for additional information.
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Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Single- and double-precision input signal are supported. The precision must be set at compile
time.

• Timetable input signal is not supported.
• Only analytic Morse ('morse') and Morlet ('amor') wavelets are supported.
• The following input arguments are not supported: Sampling period (ts), PeriodLimits name-

value pair, NumOctave name-value pair, and FilterBank name-value pair.
• Scaling coefficient output and filter bank output are not supported.
• Plotting is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Wavelet Time-Frequency Analyzer

Functions
cwtfilterbank | icwt | cwtfreqbounds

Topics
“Practical Introduction to Time-Frequency Analysis Using the Continuous Wavelet Transform”
“Using Wavelet Time-Frequency Analyzer App”
“Continuous and Discrete Wavelet Transforms”
“CWT-Based Time-Frequency Analysis”
“Boundary Effects and the Cone of Influence”
“Morse Wavelets”
“Time-Frequency Gallery”
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cwtfilterbank
Continuous wavelet transform filter bank

Description
Use cwtfilterbank to create a continuous wavelet transform (CWT) filter bank. The default wavelet
used in the filter bank is the analytic Morse (3,60) wavelet. You can vary the time-bandwidth and
symmetry parameters for the Morse wavelets, to tune the Morse wavelet for your needs. You can also
use the analytic Morlet (Gabor) wavelet or bump wavelet. When analyzing multiple signals in time-
frequency, for improved computational efficiency, you can precompute the filters once and then pass
the filter bank as input to cwt. With the filter bank, you can visualize wavelets in time and frequency.
You can also create filter banks with specific frequency or period ranges, and measure 3-dB
bandwidths. You can determine the quality factor for the wavelets in the filter bank.

Creation

Syntax
fb = cwtfilterbank
fb = cwtfilterbank(Name=Value)

Description

fb = cwtfilterbank creates a continuous wavelet transform (CWT) filter bank fb. The filters are
normalized so that the peak magnitudes for all passbands are approximately equal to 2. The default
filter bank is designed for a signal with 1024 samples. The default filter bank uses the analytic Morse
(3,60) wavelet. The filter bank uses the default scales: approximately 10 wavelet bandpass filters per
octave (10 voices per octave). The highest-frequency passband is designed so that the magnitude falls
to half the peak value at the Nyquist frequency.

As implemented, the CWT uses L1 normalization. With L1 normalization, equal amplitude oscillatory
components at different scales have equal magnitude in the CWT. L1 normalization provides a more
accurate representation of the signal. The amplitudes of the oscillatory components agree with the
amplitudes of the corresponding wavelet coefficients. See “Sinusoid and Wavelet Coefficient
Amplitudes” on page 1-183.

fb can be used as input for cwt.

fb = cwtfilterbank(Name=Value) creates a CWT filter bank fb with “Properties” on page 1-174
using one or more name-value arguments. Properties can be specified in any order as
Name1=Value1,...,NameN=ValueN.

Note You cannot change a property value of an existing filter bank. For example, if you have a filter
bank fb with a SignalLength of 2000, you must create a second filter bank fb2 to process a signal
with 2001 samples. You cannot assign a different SignalLength to fb.
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Properties
SignalLength — Length of the signal
1024 (default) | positive integer ≥ 4

Length of the signal, specified as a positive integer. The signal must have at least four samples.
Example: fb = cwtfilterbank(SignalLength=1700)
Data Types: double

Wavelet — Analysis wavelet
"Morse" (default) | "amor" | "bump"

Analysis wavelet used in the filter bank, specified as "Morse", "amor", or "bump". These strings
specify the analytic Morse, Morlet (Gabor), and bump wavelet, respectively. The default wavelet is the
analytic Morse (3,60) wavelet.

By default, for Morse wavelets, the frequency response decays to 50% of the peak magnitude at the
Nyquist. For the Morlet and bump wavelets, the frequency response decays to 10% of the peak
magnitude. You can change the decay percentage by setting the filter bank FrequencyLimits
property. See cwtfreqbounds.

For Morse wavelets, you can also parameterize the wavelet using the TimeBandwidth or
WaveletParameters properties.
Example: fb = cwtfilterbank(SignalLength=1700,wavelet="bump")

VoicesPerOctave — Number of voices per octave
10 (default) | integer between 1 and 48

Number of voices per octave to use for the CWT, specified as an integer between 1 and 48. The CWT
scales are discretized using the specified number of voices per octave. The energy spread of the
wavelet in frequency and time automatically determines the minimum and maximum scales.

You can use cwtfreqbounds to determine the frequency limits of the wavelet filter bank. The
frequency limits depend on parameters such as the energy spread of the wavelet, number of voices
per octave, signal length, and sampling frequency.
Data Types: single | double

SamplingFrequency — Sampling frequency in hertz
1 (default) | positive scalar

Sampling frequency in hertz, specified as a positive scalar. If unspecified, frequencies are in cycles/
sample and the Nyquist frequency is ½. To specify scales in periods, use the SamplingPeriod and
PeriodLimits name-value arguments.

You cannot specify both the SamplingFrequency and SamplingPeriod properties.
Example: fb = cwtfilterbank(SamplingFrequency=5,wavelet="amor")
Data Types: single | double

FrequencyLimits — Frequency limits
two-element scalar vector
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Frequency limits of the wavelet filter bank, specified as a two-element vector with positive strictly
increasing entries.

• The first element specifies the lowest peak passband frequency. The frequency must be greater
than or equal to the product of the wavelet peak frequency in hertz and two time standard
deviations divided by the signal length.

• The second element specifies the highest peak passband frequency. The high frequency limit must
be less than or equal to the Nyquist.

• The base-2 logarithm of the ratio of the high frequency limit, fMax, to the low frequency limit,
fMin, must be greater than or equal to 1/NV, where NV is the number of voices per octave:
log2(fMax/fMin) ≥ 1/NV.

If you specify frequency limits outside the permissible range, cwtfilterbank truncates the limits to
the minimum and maximum values. Use cwtfreqbounds to determine frequency limits for different
parametrizations of the wavelet transform.

If using a sampling period in the filter bank, you cannot specify the FrequencyLimits property.
Example: If fb =
cwtfilterbank(SignalLength=1000,SamplingFrequency=1000,FrequencyLimits=[90
100]), then log2(100/90) ≥ 1/fb.VoicesPerOctave.
Data Types: double

SamplingPeriod — Sampling period
duration scalar

Sampling period, specified as a duration scalar. You cannot specify both the SamplingFrequency
and SamplingPeriod properties.
Example: fb = cwtfilterbank(SamplingPeriod=seconds(0.5))
Data Types: duration

PeriodLimits — Period limits
two-element duration array

Period limits of the wavelet filter bank, specified as a two-element duration array with positive
strictly increasing entries.

• The first element of PeriodLimits specifies the largest peak passband frequency and must be
greater than or equal to twice the SamplingPeriod.

• The maximum period cannot exceed the signal length divided by the product of two time standard
deviations of the wavelet and the wavelet peak frequency.

• The base-2 logarithm of the ratio of the minimum period, minP, to the maximum period, maxP,
must be less than or equal to -1/NV, where NV is the number of voices per octave:
log2(minP/maxP) ≤ -1/NV.

If you specify period limits outside the permissible range, cwtfilterbank truncates the limits to the
minimum and maximum values. Use cwtfreqbounds to determine period limits for different
parametrizations of the wavelet transform.

If using a sampling frequency in the filter bank, you cannot specify the PeriodLimits property.
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Example: If fb =
cwtfilterbank(SignalLength=1000,SamplingPeriod=seconds(0.1),PeriodLimits=[sec
onds(0.2) seconds(3)]), then log2(0.2/3) ≤ -1/fb.VoicesPerOctave.
Data Types: duration

TimeBandwidth — Time-bandwidth product for the Morse wavelet
60 (default) | positive scalar

Time-bandwidth product for the Morse wavelet, specified as a positive scalar greater than or equal to
3 and less than or equal to 120. The symmetry (gamma) of the Morse wavelet is fixed at 3. This
property is only valid when Wavelet is "Morse".

The larger the time-bandwidth product, the more spread out the wavelet is in time and narrower the
wavelet is in frequency. The standard deviation of the Morse wavelet in time is approximately
sqrt(TimeBandwidth/2). The standard deviation in frequency is approximately 1/2 × sqrt(2/
TimeBandwidth). See “Generalized Morse and Analytic Morlet Wavelets” on page 1-187.

The TimeBandwidth and WaveletParameters properties cannot both be specified.

In the notation of “Morse Wavelets”, TimeBandwidth is P2.
Example: 'TimeBandwidth',20
Data Types: double

WaveletParameters — Morse wavelet parameters
[3,60] (default) | two-element vector of scalars

Morse wavelet parameters, specified as a two-element vector. The first element is the symmetry
parameter (gamma), which must be greater than or equal to 1. The second element is the time-
bandwidth product, which must be greater than or equal to gamma. The ratio of the time-bandwidth
product to gamma cannot exceed 40.

When gamma is equal to 3, the Morse wavelet is perfectly symmetric in the frequency domain. The
skewness is equal to 0. Values of gamma greater than 3 result in positive skewness, while values of
gamma less than 3 result in negative skewness.

For more information, see “Morse Wavelets”.

The WaveletParameters and TimeBandwidth name-value arguments cannot both be specified.
Example: fb = cwtfilterbank(WaveletParameters=[4,20])

Boundary — Boundary extension
"reflection" (default) | "periodic"

Boundary extension of signal, specified as either "reflection" or "periodic". Determines how
the data is treated at the boundary.

Note If you intend to invert the CWT using the dual frame, or approximate synthesis filters, set
Boundary to "periodic".

Example: fb = cwtfilterbank(Boundary="periodic")
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Object Functions
wt Continuous wavelet transform with filter bank
freqz CWT filter bank frequency responses
timeSpectrum Time-averaged wavelet spectrum
scaleSpectrum Scale-averaged wavelet spectrum
wavelets CWT filter bank time-domain wavelets
scales CWT filter bank scales
waveletsupport CWT filter bank time supports
qfactor CWT filter bank quality factor
powerbw CWT filter bank 3 dB bandwidths
centerFrequencies CWT filter bank bandpass center frequencies
centerPeriods CWT filter bank bandpass center periods

Examples

Continuous Wavelet Transform Filter Bank

Create a continuous wavelet transform filter bank.

fb = cwtfilterbank

fb = 
  cwtfilterbank with properties:

      VoicesPerOctave: 10
              Wavelet: 'Morse'
    SamplingFrequency: 1
       SamplingPeriod: []
         PeriodLimits: []
         SignalLength: 1024
      FrequencyLimits: []
        TimeBandwidth: 60
    WaveletParameters: []
             Boundary: 'reflection'

Plot the magnitude frequency response.

freqz(fb)
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Frequency Resolution of Continuous Wavelet Transform Filter Banks

Create two sine waves with frequencies of 16 and 64 Hz. The data is sampled at 1000 Hz. Plot the
signal.

Fs = 1e3;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*64*t).*(t>=0.1 & t<0.3)+ ...
    sin(2*pi*16*t).*(t>=0.5 & t<0.9);
plot(t,x)
title("Signal")
xlabel("Time (s)")
ylabel("Amplitude")

1 Functions

1-178



Create a CWT filter bank for the signal. Plot the frequency responses of the wavelets in the filter
bank.

fb = cwtfilterbank(SignalLength=numel(t),SamplingFrequency=Fs);
figure
freqz(fb)
title("Frequency Responses — Morse (3,60) Wavelet")
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The analytic Morse (3,60) wavelet is the default wavelet in the filter bank. The wavelet has a time-
bandwidth product equal to 60. Create a second filter bank identical to the first filter bank but
instead uses the analytic Morse (3,5) wavelet. Plot the frequency responses of the wavelets in the
second filter bank.

fb3x5 = cwtfilterbank(SignalLength=numel(t),SamplingFrequency=Fs,...
    TimeBandwidth=5);
figure
freqz(fb3x5)
title("Frequency Responses — Morse (3,5) Wavelet")
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Observe that the frequency responses are wider than in the first filter bank. The Morse (3,60) wavelet
is better localized in frequency than the Morse (3,5) wavelet. Apply each filter bank to the signal and
plot the resulting scalograms. Observe that the Morse (3,60) wavelet has better frequency resolution
than the Morse (3,5) wavelet.

figure
cwt(x,FilterBank=fb)
title("Magnitude Scalogram — Morse (3,60)")
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figure
cwt(x,FilterBank=fb3x5)
title("Magnitude Scalogram — Morse (3,5)")
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Sinusoid and Wavelet Coefficient Amplitudes

This example shows that the amplitudes of oscillatory components in a signal agree with the
amplitudes of the corresponding wavelet coefficients.

Create a signal composed of two sinusoids with disjoint support in time. One sinusoid has a frequency
of 32 Hz and amplitude equal to 1. The other sinusoid has a frequency of 64 Hz and amplitude equal
to 2. The signal is sampled for one second at 1000 Hz. Plot the signal.

frq1 = 32;
amp1 = 1;
frq2 = 64;
amp2 = 2;

Fs = 1e3;
t = 0:1/Fs:1;
x = amp1*sin(2*pi*frq1*t).*(t>=0.1 & t<0.3)+... 
    amp2*sin(2*pi*frq2*t).*(t>0.6 & t<0.9);

plot(t,x)
grid on
xlabel("Time (sec)")
ylabel("Amplitude")
title("Signal")
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Create a CWT filter bank that can be applied to the signal. Since the signal component frequencies
are known, set the frequency limits of the filter bank to a narrow range that includes the known
frequencies. To confirm the range, plot the magnitude frequency responses for the filter bank.

fb = cwtfilterbank(SignalLength=numel(x),SamplingFrequency=Fs,...
    FrequencyLimits=[20 100]);
freqz(fb)
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Use cwt and the filter bank to plot the scalogram of the signal.

cwt(x,FilterBank=fb)
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Use a data cursor to confirm that the amplitudes of the wavelet coefficients are essentially equal to
the amplitudes of the sinusoidal components. Your results should be similar to the ones in the
following figure.
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Generalized Morse and Analytic Morlet Wavelets

This example shows how to vary the time-bandwidth parameter of the generalized Morse wavelet to
approximate the analytic Morlet wavelet.

Generalized Morse wavelets are a family of exactly analytic wavelets. Morse wavelets have two
parameters, symmetry and time-bandwidth product. You can vary these parameters to obtain analytic
wavelets with different properties and behaviors. For additional information, see “Morse Wavelets”
and the references therein.

Load the seismograph data recorded during the 1995 Kobe earthquake. The data are seismograph
(vertical acceleration, nm/sq.sec) measurements recorded at Tasmania University, Hobart, Australia
on 16 January 1995 beginning at 20:56:51 (GMT) and continuing for 51 minutes at 1 second intervals.
Create a CWT filter bank with default settings that can be applied to the data. Use the filter bank to
generate the scalogram.

load kobe
fb = cwtfilterbank(SignalLength=numel(kobe),SamplingFrequency=1);
cwt(kobe,FilterBank=fb)
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The magnitude of the wavelet coefficients is large in the frequency range from 10 mHz to 100 mHz.
Create a new filter bank with frequency limits set to these values. Generate the scalogram.

fb2 = cwtfilterbank(SignalLength=numel(kobe),SamplingFrequency=1,...
    FrequencyLimits=[1e-2 1e-1]);
cwt(kobe,FilterBank=fb2)
title("Default Morse (3,60) Wavelet")
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By default, cwtfilterbank uses the Morse (3,60) wavelet. Create a filter bank using the analytic
Morlet wavelet with the same frequency limits. Generate a scalogram and compare with the
scalogram generated by the Morse (3,60) wavelet.

fbMorlet = cwtfilterbank(SignalLength=numel(kobe),SamplingFrequency=1,...
    FrequencyLimits=[1e-2 1e-1],...
    Wavelet="amor");
cwt(kobe,FilterBank=fbMorlet)
title("Analytic Morlet Wavelet")
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The Morlet wavelet is not as well localized in frequency as the (3,60) Morse wavelet. However, by
varying the time-bandwidth product, you can create a Morse wavelet with properties similar to the
Morlet wavelet.

Create a filter bank using the Morse wavelet with a time-bandwidth value of 30 [2], with frequency
limits as above. Generate the scalogram of the seismograph data. Note there is smearing in
frequency nearly identical to the Morlet results.

fbMorse = cwtfilterbank(SignalLength=numel(kobe),SamplingFrequency=1,...
    FrequencyLimits=[1e-2 1e-1],...
    TimeBandwidth=30);
cwt(kobe,FilterBank=fbMorse)
title("Morse (3,30)")
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Now examine the wavelets associated with the fbMorlet and fbMorse filter banks. From both filter
banks, obtain the wavelet center frequencies, filter frequency responses, and time-domain wavelets.
Confirm the center frequencies are nearly identical.

cfMorlet = centerFrequencies(fbMorlet);
[frMorlet,fMorlet] = freqz(fbMorlet);
[wvMorlet,tMorlet] = wavelets(fbMorlet);
cfMorse = centerFrequencies(fbMorse);
[frMorse,fMorse] = freqz(fbMorse);
[wvMorse,tMorse] = wavelets(fbMorse);

disp(["Number of Center Frequencies: ",num2str(length(cfMorlet))]);

    "Number of Center Frequencies: "    "34"

disp(["Maximum difference: ",num2str(max(abs(cfMorlet-cfMorse)))]);

    "Maximum difference: "    "2.7756e-17"

Each filter bank contains the same number of wavelets. Choose a center frequency, and plot the
frequency response of the associated filter from each filter bank. Confirm the responses are nearly
identical.

wv = 13;
figure
plot(fMorlet,frMorlet(wv,:));
hold on
plot(fMorse,frMorse(wv,:));
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grid on
hold off
title("Frequency Response")
xlabel("Frequency")
ylabel("Amplitude")
legend("Morlet","Morse (3,30)")

Plot the time-domain wavelets associated with the same center frequency. Confirm they are nearly
identical.

figure
subplot(2,1,1)
plot(tMorlet,real(wvMorlet(wv,:)))
hold on
plot(tMorse,real(wvMorse(wv,:)))
grid on
hold off
title("Real")
legend("Morlet","Morse (3,30)")
xlim([-100 100])
subplot(2,1,2)
plot(tMorlet,imag(wvMorlet(wv,:)))
hold on
plot(tMorse,imag(wvMorse(wv,:)))
grid on
hold off
title("Imaginary")
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legend("Morlet","Morse (3,30)")
xlim([-100 100])

Changing the Time-bandwidth Product

This example shows that increasing the time-bandwidth product P2 of the Morse wavelet creates a
wavelet with more oscillations under its envelope. Increasing P2 narrows the wavelet in frequency.

Create two filter banks. One filter bank has the default TimeBandwidth value of 60. The second filter
bank has a TimeBandwidth value of 10. The SignalLength for both filter banks is 4096 samples.

sigLen = 4096;
fb60 = cwtfilterbank(SignalLength=sigLen);
fb10 = cwtfilterbank(SignalLength=sigLen,TimeBandwidth=10);

Obtain the time-domain wavelets for the filter banks.

[psi60,t] = wavelets(fb60);
[psi10,~] = wavelets(fb10);

Use the scales function to find the mother wavelet for each filter bank.

sca60 = scales(fb60);
sca10 = scales(fb10);
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[~,idx60] = min(abs(sca60-1));
[~,idx10] = min(abs(sca10-1));
m60 = psi60(idx60,:);
m10 = psi10(idx10,:);

Since the time-bandwidth product is larger for the fb60 filter bank, verify the m60 wavelet has more
oscillations under its envelope than the m10 wavelet.

subplot(2,1,1)
plot(t,abs(m60))
grid on
hold on
plot(t,real(m60))
plot(t,imag(m60))
hold off
xlim([-30 30])
legend("abs(m60)","real(m60)","imag(m60)")
title("TimeBandwidth = 60")
subplot(2,1,2)
plot(t,abs(m10))
grid on
hold on
plot(t,real(m10))
plot(t,imag(m10))
hold off
xlim([-30 30])
legend("abs(m10)","real(m10)","imag(m10)")
title("TimeBandwidth = 10")
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Align the peaks of the m60 and m10 magnitude frequency responses. Verify the frequency response of
the m60 wavelet is narrower than the frequency response for the m10 wavelet.

cf60 = centerFrequencies(fb60);
cf10 = centerFrequencies(fb10);

m60cFreq = cf60(idx60);
m10cFreq = cf10(idx10);

freqShift = 2*pi*(m60cFreq-m10cFreq);
x10 = m10.*exp(1j*freqShift*(-sigLen/2:sigLen/2-1));

figure
plot([abs(fft(m60)).' abs(fft(x10)).'])
grid on
legend("Time-bandwidth = 60","Time-bandwidth = 10")
title("Magnitude Frequency Responses")

Using CWT Filter Bank on Multiple Time Series

This example shows how using a CWT filter bank can improve computational efficiency when taking
the CWT of multiple time series.

Create a 100-by-1024 matrix x. Create a CWT filter bank appropriate for signals with 1024 samples.
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x = randn(100,1024);
fb = cwtfilterbank;

Use cwt with default settings to obtain the CWT of a signal with 1024 samples. Create a 3-D array
that can contain the CWT coefficients of 100 signals, each of which has 1024 samples.

cfs = cwt(x(1,:));
res = zeros(100,size(cfs,1),size(cfs,2));

Use the cwt function and take the CWT of each row of the matrix x. Display the elapsed time.

tic
for k=1:100
    res(k,:,:) = cwt(x(k,:));
end
toc

Elapsed time is 0.928160 seconds.

Now use the wt object function of the filter bank to take the CWT of each row of x. Display the
elapsed time.

tic
for k=1:100
    res(k,:,:) = wt(fb,x(k,:));
end
toc

Elapsed time is 0.393524 seconds.

Plot CWT Scalogram in Subplot

This example shows how to plot the CWT scalogram in a figure subplot.

Load the speech sample. The data is sampled at 7418 Hz. Plot the default CWT scalogram.

load mtlb
cwt(mtlb,Fs)
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Obtain the continuous wavelet transform of the signal, and the frequencies of the CWT.

[cfs,frq] = cwt(mtlb,Fs);

The cwt function sets the time and frequency axes in the scalogram. Create a vector representing the
sample times.

tms = (0:numel(mtlb)-1)/Fs;

In a new figure, plot the original signal in the upper subplot and the scalogram in the lower subplot.
Plot the frequencies on a logarithmic scale.

figure
subplot(2,1,1)
plot(tms,mtlb)
axis tight
title("Signal and Scalogram")
xlabel("Time (s)")
ylabel("Amplitude")
subplot(2,1,2)
surface(tms,frq,abs(cfs))
axis tight
shading flat
xlabel("Time (s)")
ylabel("Frequency (Hz)")
set(gca,"yscale","log")
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Tips
• The first time you use a filter bank to take the CWT of a signal, the wavelet filters are constructed

to have the same datatype as the signal. A warning message is generated when you apply the
same filter bank to a signal with a different datatype. Changing datatypes comes with the cost of
redesigning or changing the precision of the filter bank. For optimal performance, use a consistent
datatype.

• When performing multiple CWTs, for example inside a for-loop, the recommended workflow is to
first create a cwtfilterbank object and then use the wt object function. This workflow
minimizes overhead and maximizes performance. See “Using CWT Filter Bank on Multiple Time
Series” on page 1-195.

Version History
Introduced in R2018a

R2018b: BPfrequencies and BPperiods will be removed
Not recommended starting in R2018b

The BPfrequencies and BPperiods object functions of cwtfilterbank have been renamed
centerFrequencies and centerPeriods, respectively. The functionality remains unchanged.
BPfrequencies and BPperiods will be removed in a future release.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The following properties are not supported: SamplingPeriod, PeriodLimits.
• The following object functions support C/C++ code generation:

• wt
• freqz

• Plotting is not supported.
• timeSpectrum
• scaleSpectrum

• PeriodLimits name-value pair is not supported.
• wavelets
• scales
• qfactor
• centerFrequencies

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Wavelet Time-Frequency Analyzer

Functions
cwt | cwtfreqbounds | icwt
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Topics
“Practical Introduction to Time-Frequency Analysis Using the Continuous Wavelet Transform”
“Using Wavelet Time-Frequency Analyzer App”
“Boundary Effects and the Cone of Influence”
“Morse Wavelets”
“Time-Frequency Gallery”
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cwtfilters2array
Convert CWT filter bank to reduced-weight tensor for deep learning

Syntax
[psifvec,filteridx] = cwtfilters2array(wfb)
[psifvec,filteridx] = cwtfilters2array( ___ ,thresh)
[psifvec,filteridx] = cwtfilters2array( ___ ,IncludeLowpass=tf)

Description
[psifvec,filteridx] = cwtfilters2array(wfb) converts the CWT filter bank wfb to a
reduced-weight CWT filter tensor psifvec for deep learning. filteridx is a bookkeeping matrix.

[psifvec,filteridx] = cwtfilters2array( ___ ,thresh) uses thresh to extract the
significant values from each of the CWT filters in wfb. By thresholding, you can significantly reduce
the number of learnable parameters in the filter bank.

[psifvec,filteridx] = cwtfilters2array( ___ ,IncludeLowpass=tf) specifies whether to
include the lowpass (scaling) filter in psifvec.

Examples

Obtain Reduced-Weight CWT Filter Tensor

Create a CWT filter bank appropriate for deep learning. Specify a signal length of 2048 samples. Use
the default Morse wavelet.

len = 2048;
fb = cwtfilterbank(SignalLength=len,Boundary="periodic");

Extract the reduced-weight CWT filter tensor from the filter bank. Specify a threshold of 1/4.

[psifvec,filteridx] = cwtfilters2array(fb,1/4);

Use the bookkeeping matrix filteridx to plot the filters in psifvec.

fBins = (0:len-1)/len;
hold on
for k=2:size(filteridx,1)
    indX = filteridx(k,1:2);
    indY = filteridx(k,3:4);
    rangeX = indX(1):indX(2);
    rangeY = indY(1):indY(2);
    plot(fBins(rangeX),squeeze(psifvec(rangeY)))
end
title("Extracted Filter Tensor")
xlabel("Normalized Frequency (cycles/sample)")
ylabel("Magnitude")
hold off
ylim([0 2])
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Input Arguments
wfb — CWT filter bank
cwtfilterbank object

CWT filter bank, specified as a cwtfilterbank object. wfb must have Boundary="periodic". For
more information, see cwtfilterbank.

thresh — Threshold
1e–8 (default) | real scalar

Threshold to apply to the CWT filters in wfb, specified as a real scalar. cwtfilters2array uses
thresh to extract the significant values from each of the CWT filters in wfb. The filters are
normalized so that the peak value for each filter is 2

• Smaller values of thresh result in more values being retained from the CWT filters and therefore
less weight reduction.

• Larger values of thresh result in more weight reduction and more divergence between the deep
learning CWT and transforms computed with the full filter bank.

• Any threshold less than realmin, the smallest positive normalized floating-point number in
double precision, is set to realmin for extracting the filter values.

Setting thresh to a value which results in no values being retained for any individual filter results in
an error.
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Data Types: single | double

tf — Include lowpass filter
false or 0 (default) | true or 1

Include lowpass filter, specified as a numeric or logical 1 (true) or 0 (false). Specify true to
include the lowpass (scaling) filter in psifvec. The size of filteridx increases to Nfilt+2-by-4,
where Nfilt is the number of filters in the CWT filter bank wfb. The meta information for the scaling
filter is included in the final row of filteridx.
Data Types: logical

Output Arguments
psifvec — Reduced-weight CWT filter tensor
array

Reduced-weight CWT filter tensor, returned as a 1-by-1-by-Nr tensor, where Nr is the number of filter
values greater than thresh.
Data Types: double

filteridx — Bookkeeping matrix
matrix

Bookkeeping matrix that describes psifvec, returned as an Nfilt+1-by-4 matrix, where Nfilt is the
number of filters in the CWT filter bank wfb.

• The first row of filteridx is [1 Nf 0 0], where Nf is the number of frequency bins, or
equivalently the number of time points in the wavelet filter. Nf is equal to the SignalLength
property of wfb.

• For rows 2 through Nfilt+1, the first two columns of filteridx contain the beginning and ending
frequency bins for the corresponding wavelet filters ordered by decreasing center frequency. The
third and fourth columns of filteridx contain the beginning and ending indices of the
corresponding filter in the reshaped tensor, psifvec.

Use array2cwtfilters to reconstruct an approximation to the wavelet filter bank from
psifvec and filteridx.

Data Types: uint32

Version History
Introduced in R2022b

See Also
Functions
dlcwt | array2cwtfilters | dlmodwt

Objects
cwtLayer | modwtLayer | stftLayer
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cwtfreqbounds
CWT maximum and minimum frequency or period

Syntax
[minfreq,maxfreq] = cwtfreqbounds(N)
[minfreq,maxfreq] = cwtfreqbounds(N,Fs)
[maxperiod,minperiod] = cwtfreqbounds(N,Ts)
[ ___ ] = cwtfreqbounds( ___ ,Name=Value)

Description
[minfreq,maxfreq] = cwtfreqbounds(N) returns the minimum and maximum wavelet
bandpass frequencies in cycles/sample for a signal of length N. The minimum and maximum
frequencies are determined for the default Morse (3,60) wavelet. The minimum frequency is
determined so that two time standard deviations of the default wavelet span the N-point signal at the
coarsest scale. The maximum frequency is such that the highest frequency wavelet bandpass filter
drops to ½ of its peak magnitude at the Nyquist frequency.

[minfreq,maxfreq] = cwtfreqbounds(N,Fs) returns the bandpass frequencies in hertz for the
sampling frequency Fs.

[maxperiod,minperiod] = cwtfreqbounds(N,Ts) returns the bandpass periods for the
sampling period Ts. maxperiod and minperiod are scalar durations with the same format as Ts. If
the number of standard deviations is set so that log2(maxperiod/minperiod) < 1/NV where NV
is the number of voices per octave, maxperiod is adjusted to minperiod × 2^(1/NV).

[ ___ ] = cwtfreqbounds( ___ ,Name=Value) returns the minimum and maximum wavelet
bandpass frequencies or periods with additional options specified by one or more Name=Value
arguments. For example, [minf,maxf] = cwtfreqbounds(1000,TimeBandwidth=30) sets the
time-bandwidth parameter of the default Morse wavelet to 30.

Examples

Wavelet Bandpass Frequencies Using Default Values

Obtain the minimum and maximum wavelet bandpass frequencies for a signal with 1000 samples
using the default values.

[minfreq,maxfreq] = cwtfreqbounds(1000)

minfreq = 0.0033

maxfreq = 0.4341
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Construct CWT Filter Bank With Peak Magnitude at Nyquist

Obtain the minimum and maximum wavelet bandpass frequencies for the default Morse wavelet for a
signal of length 10,000 and a sampling frequency of 1 kHz. Set the cutoff to 100% so that the highest
frequency wavelet bandpass filter peaks at the Nyquist frequency of 500 Hz.

sigLength = 10000;
Fs = 1e3;
[minfreq,maxfreq] = cwtfreqbounds(sigLength,Fs,cutoff=100);

Construct a CWT filter bank using the values cwtfreqbounds returns. Obtain the frequency
responses of the filter bank.

fb = cwtfilterbank(SignalLength=sigLength,SamplingFrequency=Fs,...
    FrequencyLimits=[minfreq maxfreq]);
[psidft,f] = freqz(fb);

Construct a second CWT filter bank identical to the first, but instead use the default frequency limits.
Obtain the frequency responses of the second filter bank.

fb2 = cwtfilterbank(SignalLength=sigLength,SamplingFrequency=Fs);
[psidft2,~] = freqz(fb2);

For each filter bank, plot the frequency response of the filter with the highest center frequency.
Confirm the frequency response from the first filter bank peaks at the Nyquist, and the frequency
response from the second filter bank is 50% of the peak magnitude at the Nyquist.

plot(f,psidft(1,:))
hold on
plot(f,psidft2(1,:))
hold off
title("Frequency Responses")
xlabel("Frequency (Hz)")
ylabel("Magnitude")
legend("First Filter Bank","Second Filter Bank",...
    Location="NorthWest")
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Decay Highest Frequency Wavelet in CWT Filter Bank to Specific Value

Obtain the minimum and maximum frequencies for the bump wavelet for a signal of length 5,000 and
a sampling frequency of 10 kHz. Specify a cutoff value of 100 × 10−8/2 so that the highest frequency
wavelet bandpass filter decays to 10−8 at the Nyquist.

[minf,maxf] = cwtfreqbounds(5e3,1e4,wavelet="bump",cutoff=100*1e-8/2);

Construct the filter bank using the values returned by cwtfreqbounds. Plot the frequency
responses.

fb = cwtfilterbank(SignalLength=5e3,Wavelet="bump",...
    SamplingFrequency=1e4,FrequencyLimits=[minf maxf]);
freqz(fb)
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Frequency Range for Strictly Zero and Effectively Zero Cutoff Values

Obtain the minimum and maximum wavelet bandpass frequencies for a signal of length 4096. Specify
a cutoff of 0. Display the minimum and maximum bandpass frequencies.

sLength = 4096;
co = 0;
[minfreq,maxfreq] = cwtfreqbounds(sLength,Cutoff=co);
fprintf("Min Frequency: %f cycles/sample\nMax Frequency: %f cycles/sample", ...
    minfreq,maxfreq)

Min Frequency: 0.000805 cycles/sample
Max Frequency: 0.103574 cycles/sample

Create a filter bank using the frequency limits. Obtain the two-sided wavelet frequency responses.

fb = cwtfilterbank(SignalLength=sLength,FrequencyLimits=[minfreq,maxfreq]);
[psif,f] = freqz(fb,FrequencyRange="twosided");

Obtain the minimum and maximum wavelet bandpass frequencies for a signal of length 4096, but this
time specify a cutoff of 100 × 10−8/2. Create a second filter bank using these new frequencies.
Confirm the second frequency range is larger than the first frequency range.

co = 100*(1e-8/2);
[minfreq2,maxfreq2] = cwtfreqbounds(sLength,Cutoff=co);
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fb2 = cwtfilterbank(SignalLength=sLength,FrequencyLimits=[minfreq2,maxfreq2]);
fprintf("Min Frequency: %f cycles/sample\nMax Frequency: %f cycles/sample", ...
    minfreq2,maxfreq2);

Min Frequency: 0.000805 cycles/sample
Max Frequency: 0.281770 cycles/sample

Obtain the two-sided wavelet frequency responses of the second filter bank.

[psif2,f2] = freqz(fb2,FrequencyRange="twosided");

Plot the frequency responses of the filter banks.

subplot(2,1,1)
plot(f,psif)
title("Frequency Responses: Zero Cutoff Filter Bank")
ylabel("Magnitude")
xlabel("Normalized Frequency (cycles/sample)")
subplot(2,1,2)
plot(f2,psif2)
title("Frequency Responses: Nonzero Cutoff Filter Bank")
ylabel("Magnitude")
xlabel("Normalized Frequency (cycles/sample)")

For the wavelet filter with the highest center frequency in each filter bank, obtain the magnitude of
the frequency response at the Nyquist. Observer there is minimal difference between the two values.

fprintf("Zero Cutoff / Magnitude at Nyquist: %g",psif(1,floor(size(psif,2)/2)))
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Zero Cutoff / Magnitude at Nyquist: 2.43333e-309

fprintf("Nonzero Cutoff / Magnitude at Nyquist: %g",psif2(1,floor(size(psif2,2)/2)))

Nonzero Cutoff / Magnitude at Nyquist: 1.02265e-08

Input Arguments
N — Signal length
positive integer ≥ 4

Signal length, specified as a positive integer greater than or equal to 4.
Data Types: double

Fs — Sampling frequency
positive scalar

Sampling frequency in hertz, specified as a positive scalar.
Example: [minf,maxf] = cwtfreqbounds(2048,100)
Data Types: double

Ts — Sampling period
scalar duration

Sampling period, specified as a positive scalar duration.
Example: [minp,maxp] = cwtfreqbounds(2048,seconds(2))
Data Types: duration

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [minf,maxf] = cwtfreqbounds(1000,Wavelet="bump",VoicesPerOctave=10)
returns the minimum and maximum bandpass frequencies using the bump wavelet and 10 voices per
octave for a signal with 1000 samples.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [minf,maxf] =
cwtfreqbounds(1000,"Wavelet","bump","VoicesPerOctave",10)

Wavelet — Analysis wavelet
"Morse" (default) | "amor" | "bump"

Analysis wavelet used to determine the minimum and maximum frequencies or periods, specified as
"Morse", "amor", or "bump". These strings specify the analytic Morse, Morlet, and bump wavelet,
respectively. The default wavelet is the analytic Morse (3,60) wavelet.

For Morse wavelets, you can also parametrize the wavelet using the TimeBandwidth or
WaveletParameters name-value arguments.
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Example: [minp,maxp] = cwtfreqbound(2048,seconds(1),Wavelet="bump")

Cutoff — Percentage of the peak magnitude
50 for the Morse wavelet, 10 for the analytic Morlet and bump wavelets (default) | scalar between 0
and 100

Percentage of the peak magnitude at the Nyquist, specified as a scalar between 0 and 100. Setting
Cutoff to 0 indicates that the wavelet frequency response decays to 0 at the Nyquist. Setting
Cutoff to 100 indicates that the value of the wavelet bandpass filters peaks at the Nyquist.

For cwtfilterbank, the analytic wavelets filters peak at a value of 2. As a result, you can ensure the
highest frequency wavelet decays to a value of α at the Nyquist frequency by setting Cutoff to 100
× α/2. In that case, you must have 0 ≤ α ≤ 2.

Note Unless your application requires a strict cutoff value of 0, consider setting Cutoff to a small
nonzero value, for example, on the order of 10-8. By specifying a small value, you can increase the
frequency range [minfreq,maxfreq] and still obtain a wavelet frequency response that effectively
decays to 0 at the Nyquist. See “Frequency Range for Strictly Zero and Effectively Zero Cutoff
Values” on page 1-207.

Data Types: double

StandardDeviations — Number of time standard deviations
2 (default) | positive integer ≥ 2

Number of time standard deviations used to determine the minimum frequency (longest scale),
specified as a positive integer greater than or equal to 2. For the Morse, analytic Morlet, and bump
wavelets, four standard deviations generally ensures that the wavelet decays to zero at the ends of
the signal support. Incrementing StandardDeviations by multiples of 4, for example 4*M, ensures
that M whole wavelets fit within the signal length. If the number of standard deviations is set so that
log2(minfreq/maxfreq) > -1/NV, where NV is the number of voices per octave, minfreq is
adjusted to maxfreq × 2^(-1/NV).
Data Types: double

TimeBandwidth — Time-bandwidth for the Morse wavelet
60 (default) | scalar greater than 3 and less than or equal to 120

Time-bandwidth for the Morse wavelet, specified as a positive scalar. The symmetry (gamma) of the
Morse wavelet is assumed to be 3. The larger the time-bandwidth parameter, the more spread out the
wavelet is in time and narrower the wavelet is in frequency. The standard deviation of the Morse
wavelet in time is approximately sqrt(TimeBandwidth/2). The standard deviation in frequency is
approximately 1/2*sqrt(2/TimeBandwidth).

If you specify TimeBandwidth, you cannot specify WaveletParameters.
Data Types: double

WaveletParameters — Morse wavelet parameters
[3,60] (default) | two-element vector of scalars

Morse wavelet parameters, specified as a two-element vector. The first element is the symmetry
parameter (gamma), which must be greater than or equal to 1. The second element is the time-
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bandwidth parameter, which must be greater than or equal to gamma. The ratio of the time-
bandwidth parameter to gamma cannot exceed 40.

When gamma is equal to 3, the Morse wavelet is perfectly symmetric in the frequency domain. The
skewness is equal to 0. Values of gamma greater than 3 result in positive skewness, while values of
gamma less than 3 result in negative skewness.

If you specify WaveletParameters, you cannot specify TimeBandwidth.
Data Types: double

VoicesPerOctave — Number of voices per octave
10 (default) | integer between 1 and 48

Number of voices per octave to use in determining the necessary separation between the minimum
and maximum scales, specified as an integer between 1 and 48. The minimum and maximum scales
are equivalent to the minimum and maximum frequencies or maximum and minimum periods,
respectively.
Data Types: double

Output Arguments
minfreq — Minimum wavelet bandpass frequency
scalar

Minimum wavelet bandpass frequency, returned as a scalar. minfreq is in cycles/sample if
SamplingFrequency is not specified. Otherwise, minfreq is in hertz.
Data Types: double

maxfreq — Maximum wavelet bandpass frequency
scalar

Maximum wavelet bandpass frequency, returned as a scalar. maxfreq is in cycles/sample if
SamplingFrequency is not specified. Otherwise, maxfreq is in hertz.
Data Types: double

maxperiod — Maximum wavelet bandpass period
scalar duration

Maximum wavelet bandpass period, returned as a scalar duration with the same format as Ts.

If the number of standard deviations is set so that log2(maxperiod/minperiod) < 1/NV, where
NV is the number of voices per octave, maxperiod is adjusted to minperiod × 2^(1/NV).
Data Types: duration

minperiod — Minimum wavelet bandpass period
scalar duration

Minimum wavelet bandpass period, returned as a scalar duration with the same format as Ts.

If the number of standard deviations is set so that log2(maxperiod/minperiod) < 1/NV, where
NV is the number of voices per octave, maxperiod is adjusted to minperiod × 2^(1/NV)
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Data Types: duration

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The sampling period (Ts) input argument is not supported.

See Also
cwtfilterbank | cwt
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cwtftinfo2
Supported 2-D CWT wavelets and Fourier transforms

Syntax
cwtftinfo2
cwtftinfo2(wname)

Description
cwtftinfo2 lists the supported 2-D continuous wavelet transform (CWT) wavelets and
corresponding parameters for use with cwtft2.

cwtftinfo2(wname) displays the equation for the 2-D Fourier transform of the wavelet, wname. The
figure with the 2-D Fourier transform of the analyzing wavelet has a drop-down list from which you
can select other wavelets.

Examples

Available Wavelets with Parameters

cwtftinfo2

 CWTFTINFO2 Information on wavelets for CWTFT2
  CWTFTINFO2 provides information on the available wavelets  
  for 2-D Continuous Wavelet Transform using FFT.
  The wavelets are defined by their Fourier transform.
 
  The formulae giving the Fourier transform of 
  the wavelet which short name (see below) is SNAME 
  will be displayed using CWTFTINFO2(SNAME).   
 
  The table below gives the short name of each wavelet
  and the associated parameters: first, the name of parameter 
  and then the default value.
 
  WAV_Param_Table = {...
      'morlet'      , 
            defaults: omega0 = 6; sigma = 1; epsilon = 1;
      'marr'      , 
            defaults: p = 2; sigmax = 1; sigmay = 1;
      'paul'      , 
            defaults: p = 4;
      'dog'       , 
            defaults: alpha = 2;
      'cauchy'    , 
            defaults: alpha = pi/6; sigma = 1; L = 4; M = 4;
      'escauchy'  , 
            defaults: alpha = pi/6; sigma = 1; L = 4; M = 4;
      'gaus'      , 
            defaults: p = 1; sigmax = 1; sigmay = 1;
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      'wheel'     , 
            defaults:  sigma = 2; 
      'fan'       , 
            defaults: omega0 = 5.336; sigma = 1; epsilon = 1; J = 6.5;
      'pethat'    , 
            defaults: No parameters.
      'dogpow'    , 
            defaults: alpha = 1.25; p = 2;
      'esmorl'    , 
            defaults: omega0 = 6; sigma = 1; epsilon = 1;
      'esmexh'
            defaults:   sigma = 1; epsilon = 0.5;
      'gaus2'     , 
            defaults:  p = 1; sigmax = 1; sigmay = 1; 
      'gaus3'     , 
            defaults:  A = 1; B = 1; p = 1; sigmax = 1; sigmay = 1;
      'isodog'    , 
            defaults:  alpha = 1.25; 
      'dog2'      , 
            defaults = alpha = 1.25;
      'isomorl'   , 
            defaults:  omega0 = 6; sigma = 1; 
      'rmorl'     , 
            defaults:  omega0 = 6; sigma = 1; epsilon = 1;
      'endstop1'  , 
            defaults:  omega0 = 6;
      'endstop2'  , 
            defaults:  omega0 = 6; sigma = 1; 
      'gabmexh'   , 
            defaults:  omega0 = 5.336; epsilon = 1; 
      'sinc'      , 
            defaults:  Ax = 1; Ay = 1; p = 1; omega0X= 0; Omega0Y = 0; 
      };
 
  The various wavelets may be grouped in families as follow:
    MORLET:  'morlet'   , 'esmorl' , 'rmorl' , 'isomorl'
    DOG:     'dog'    , 'isodog' , 'dog2'  , 'dogpow'
    GAUSS:   'marr'   , 'gaus'   , 'gaus2' , 'gaus3' , 'esmexh'
    PAUL:    'paul'
    CAUCHY:  'cauchy' , 'escauchy'
    WHEEL:   'wheel', 'pethat'
    MISCELLANEOUS : 'endstop1' , 'endstop2' , 'gabmexh' , 'sinc' , 'fan'
 
    See also CWTFT2

Display the Expression for the 2-D Fourier Transform

Display the expression for the 2-D Fourier transform of the Cauchy wavelet. After displaying the
Fourier transform for any wavelet, you can use the drop-down list in the bottom left to view the
Fourier transform for any supported wavelet.

cwtftinfo2('cauchy')

1 Functions

1-214



Input Arguments
wname — Wavelet name
character vector | string scalar

Wavelet name, specified as a character vector or string scalar. The following table lists the supported
wavelets for the 2-D CWT and associated parameters:

Wavelet name Parameters
'morlet' {'Omega0',6;'Sigma',1;'Epsilon',1}
'marr' {'p',2;'sigmax',1;'sigmay',1}
'paul' {'p',4}
'dog' {'alpha',1.25}
'cauchy' {'alpha','pi/6';'sigma',1;'L',4;'M',4}
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Wavelet name Parameters
'escauchy' {'alpha','pi/6';'sigma',1;'L',4;'M',4}
'gaus' {'p',1;'sigmax',1;'sigmay',1}
'wheel' {'sigma',2}
'fan' {'Omega0X',5.336;'Sigma',1;'Epsilon',1

;'J',6.5}
'pethat' None
'dogpow' {'alpha',1.25;'p',2}
'esmorl' {'Omega0',6;'Sigma',1;'Epsilon',1}
'esmexh' {'Sigma',1;'Epsilon',0.5}
'gaus2' {'p',1;'sigmax',1;'sigmay',1}
'gaus3' {'A',1;'B',1;'p',1;'sigmax',1;'sigmay'

,1}
'isodog' {'alpha',1.25}
'dog2' {'alpha',1.25}
'isomorl' {'Omega0',6;'Sigma',1}
'rmorl' {'Omega0',6;'Sigma',1;'Epsilon',1}
'endstop1' {'Omega0',6}
'endstop2' {'Omega0',6;'Sigma',1}
'gabmexh' {'Omega0',5.336;'Epsilon',1}
'sinc' {'Ax',1;'Ay',1;'p',1;'Omega0X',0;'Omeg

a0Y',0}

Example: cwtftinfo2('paul')
Data Types: char

Version History
Introduced in R2013b

See Also
cwtft2
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cwtft2
2-D continuous wavelet transform

Syntax
cwtstruct = cwtft2(X)
cwtstruct = cwtft2(X,"plot")
cwtstruct = cwtft2( ___ ,Name,Value)

Description
cwtstruct = cwtft2(X) returns the 2-D continuous wavelet transform (CWT) of X.

cwtstruct = cwtft2(X,"plot") plots the data and the 2-D CWT.

cwtstruct = cwtft2( ___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in previous syntaxes.

Examples

2-D CWT with Morlet Wavelet

Load and display the star image.

img = imread("star.jpg");
image(img)
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Obtain the 2-D CWT of the star image using the default Morlet wavelet, scales 2.^(0:5), and an
angle of 0. Visualize the 2-D CWT coefficient magnitudes at the finest scale.

cwtout = cwtft2(img);
sca = 1;
imagesc(abs(cwtout.cfs(:,:,1,1,sca)))
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Plot 2-D CWT

Load an image of a woman, obtain the 2-D CWT using the default Morlet wavelet, and plot the CWT
coefficients.

load woman
cwtmorl = cwtft2(X,"plot");
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Compare Isotropic and Anisotropic Wavelets

Shows how an isotropic wavelet does not discern the orientation of features while an anisotropic
wavelet does. The example uses the Marr isotropic wavelet and the directional (anisotropic) Cauchy
wavelet.

Load and view the hexagon image.

img = imread("hexagon.jpg");
imagesc(img)

Obtain the scale-one 2-D CWT with both the Marr and Cauchy wavelets. Specify a vector of angles
going from 0 to 15π/8 in π/8 increments.

cwtAngles = 0:pi/8:2*pi-pi/8;
cwtcauchy = cwtft2(img,wavelet="cauchy",scales=1, ...
    angles=cwtAngles);
cwtmarr = cwtft2(img,wavelet="marr",scales=1, ...
    angles=cwtAngles);

There are 16 angles. Visualize the scale-one 2-D CWT coefficient magnitudes at any two consecutive
angles. Confirm that using the Marr isotropic wavelet does not discern the orientation of features, but
the Cauchy wavelet does.

angz = {"0", "pi/8", "pi/4", "3pi/8", "pi/2", "5pi/8", "3pi/4", ...
    "7pi/8","pi", "9pi/8", "5pi/4", "11pi/8", "3pi/2", ...
    "13pi/8" "7pi/4", "15pi/8"};
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indexAngle1 = 7;
indexAngle2 = 8;

tiledlayout(2,2)
for k=[indexAngle1 indexAngle2]
    nexttile
    imagesc(abs(cwtmarr.cfs(:,:,1,1,k)));
    title(["Marr Wavelet at " angz(k) "radians"]);
    nexttile
    imagesc(abs(cwtcauchy.cfs(:,:,1,1,k)));
    title(["Cauchy Wavelet at " angz(k) "radians"]);
end

Visualize the scale-one 2-D CWT coefficient magnitudes obtained using the Marr isotropic wavelet at
any two angles. Confirm the wavelet does not discern the orientation of features.

indexAngle1 = 2;
indexAngle2 = 7;

tiledlayout(1,2)
for k=[indexAngle1 indexAngle2]
    nexttile
    imagesc(abs(cwtmarr.cfs(:,:,1,1,k)));
    title(["Marr Wavelet at " angz(k) "radians"]);
end
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Input Arguments
X — Input data
array

Input data, specified as a numeric array. X can be an M-by-N array representing an indexed image or
an M-by-N-by-3 array representing a truecolor image.
Data Types: double | single | uint8

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: wavelet="paul",scales=2.^(0:5) specifies to use the Paul wavelet and a vector of
scales.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "wavelet","paul","scales",2.^(0:5) specifies to use the Paul wavelet and a vector
of scales.

angles — Angles
0 (default) | scalar | vector
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Angles in radians used in the 2-D CWT, specified as a scalar or a vector.
Example: angles=[0 pi/2 pi]

norm — Normalization
"L2" (default) | "L1" | "L0"

Normalization used in the 2-D CWT, specified as one of these:

• "L2" — The Fourier transform of the analyzing wavelet at a given scale is multiplied by the
corresponding scale. "L2" is the default normalization.

• "L1" — The Fourier transform of the analyzing wavelet is multiplied by 1 at all scales.
• "L0" — The Fourier transform of the analyzing wavelet at a given scale is multiplied by the

square of the corresponding scale.

Example: norm="L1"

scales — Scales
2.^(0:5) (default) | scalar | vector

Scales, specified as a positive real-valued scalar or a vector of positive real numbers.
Example: scales=2.^(1:6)

wavelet — Analyzing wavelet
"morlet" (default) | character vector | string scalar | structure | cell array

Analyzing wavelet, specified as a character vector, a string scalar, a structure, or a cell array.
cwtftinfo2 provides a comprehensive list of supported wavelets and associated parameters.

If you specify wavelet as a structure, the structure must contain two fields:

• name — character vector or string scalar corresponding to a supported wavelet.
• param — cell array containing optional parameters, which depend on the wavelet. If you do not

wish to specify optional parameters, use an empty cell array.

If you specify wavelet as a cell array, wav, the cell array must contain two elements:

• wav{1} — character vector or string scalar corresponding to a supported wavelet.
• wav{2} — cell array with the parameters of the wavelet.

Example: "wavelet",{"morlet",{6,1,1}} specifies the Morlet wavelet as a cell array.
Example: "wavelet",struct("name","paul","param",{{2}}) specifies the Paul wavelet as a
structure array.

Output Arguments
cwtstruct — 2-D CWT
structure

The 2-D CWT, returned as a structure with the following fields:

wav — Analyzing wavelet and parameters
structure
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Analyzing wavelet and parameters, returned as a structure with the following fields:

• wname — Wavelet name
• param — Wavelet parameters

wav_norm — Normalization constants
matrix

Normalization constants, returned as an M-by-N matrix, where M is the number of scales and N is the
number of angles.

cfs — CWT coefficients
array

CWT coefficients, returned as an N-D array.

• The row and column dimensions of the array equal the row and column dimensions of the input
data.

• The third page of the array is equal to 1 or 3 depending on whether the input data is a grayscale
or truecolor image.

• The fourth page of the array is equal to the number of scales.
• The fifth page of the array is equal to the number of angles.

scales — Scales
vector

Scales for the 2-D CWT, returned as a row vector.

angles — Angles
vector

Angles for the 2-D CWT, returned as a row vector.

meanSIG — Mean
scalar

Mean of the input data, returned as a scalar

Version History
Introduced in R2013b

See Also
cwtftinfo2

Topics
“Two-Dimensional CWT of Noisy Pattern”
“2-D Continuous Wavelet Transform”
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cwtLayer
Continuous wavelet transform (CWT) layer

Description
A CWT layer computes the CWT of the input. Use of this layer requires Deep Learning Toolbox™.

Creation

Syntax
layer = cwtLayer
layer = cwtLayer(Name=Value)

Description

layer = cwtLayer creates a CWT layer for a signal of length 1024 samples. The layer uses 10
wavelet filters per octave and periodic boundary conditions. By default, the layer uses the analytic
Morse (3,60) wavelet.

The input to cwtLayer must be a dlarray object in "CBT" format. The size along the time
dimension of the tensor input is padded to equal the value of SignalLength. By default, cwtLayer
formats the output as "SCBT". For more information, see “Layer Output Format” on page 1-239.

Note cwtLayer initializes the weights internally to be the wavelet filters used in the CWT. It is not
recommended to initialize the weights directly.

layer = cwtLayer(Name=Value) creates a CWT layer with properties on page 1-226 specified by
one or more name-value arguments. For example, layer = cwtLayer(Wavelet="amor") creates
a layer that uses the analytic Morlet wavelet in the CWT. You can specify multiple name-value
arguments.

Properties
CWT

SignalLength — Signal length in samples
1024 (default) | positive integer

Signal length in samples, specified as a positive integer greater than or equal to 4. All sequence
inputs to cwtLayer are padded to have size SignalLength along the time dimension.
Data Types: single | double

Wavelet — Analysis wavelet
"Morse" (default) | "amor" | "bump"
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Analysis wavelet used in the CWT, specified as "Morse", "amor", or "bump", representing the
analytic Morse, Morlet (Gabor), and bump wavelet, respectively. The default wavelet is the analytic
Morse (3,60) wavelet.

Threshold — Weight threshold
1e–8 (default) | positive real scalar

Weight threshold, specified as a positive real scalar. cwtLayer uses the threshold value to determine
the significant values for each of the CWT filters in the wavelet filter bank prior to any weight
modification through learning. It sets values below the specified threshold to zero and excludes them
from learning. The CWT filters are normalized so that the peak value is 2 for each filter.

• Smaller values of Threshold result in more values being retained from the CWT filters and
therefore less weight reduction.

• Larger values of Threshold result in more weight reduction and more divergence between the
deep learning CWT and transforms computed with the full filter bank.

• A threshold less than realmin, the smallest positive normalized floating-point number in double
precision, is clipped to realmin for computing significant filter values.

Setting Threshold to a value which results in no values being retained for any individual filter
results in an error.
Data Types: single | double

IncludeLowpass — Include lowpass filter
false or 0 (default) | true or 1

Include lowpass filter, specified as a numeric or logical 1 (true) or 0 (false). Specify true to
include the lowpass (scaling) filter in the CWT.
Data Types: logical

VoicesPerOctave — Number of voices per octave
10 (default) | integer between 1 and 48

Number of voices per octave in the CWT, specified as an integer between 1 and 48. The CWT scales
are discretized using the specified number of voices per octave. The energy spread of the wavelet in
frequency and time automatically determines the minimum and maximum scales.

You can use cwtfreqbounds to determine the frequency limits of the wavelet filter bank. The
frequency limits depend on parameters such as the energy spread of the wavelet, number of voices
per octave, and signal length.
Data Types: single | double

FrequencyLimits — Frequency limits
two-element scalar vector

Frequency limits for the CWT, specified as a two-element vector with positive strictly increasing
entries. The frequency limits are interpreted as normalized frequencies, cycles/sample.

• The first element specifies the lowest peak passband frequency and must be greater than or equal
to the product of the wavelet peak frequency in normalized frequency and two time standard
deviations divided by SignalLength.
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• The second element specifies the highest peak passband frequency and must be less than or equal
to the Nyquist frequency.

The base-2 logarithm of the ratio of the upper frequency limit freqMax to the lower frequency limit
freqMin must be greater than or equal to 1/VoicesPerOctave:

log2(freqMax/freqMin) ≥ 1/VoicesPerOctave.
For more information, see “CWT Frequency Limits” on page 1-234.

To obtain normalized frequencies, divide your desired frequency limits in hertz by the sample rate in
hertz. For example, if the sample rate is 1000 Hz and your desired frequency limits are [100,400] Hz,
divide each element by 1000 to obtain the normalized frequencies: [100/1000,400/1000].

Frequency limits apply only to wavelet filters. If you additionally specify IncludeLowpass as true,
cwtLayer also includes the lowpass (scaling) filter.

Note If you use Deep Network Designer to create or edit a deep learning network, and change the
Wavelet property of a cwtLayer, the app does not change the frequency limits of the layer. If you
want the app to provide the default frequency limits appropriate for the new wavelet, you must take
additional steps. For more information, see “Reset Frequency Limits to Default Values in Deep
Network Designer” on page 1-237.

Data Types: single | double

TimeBandwidth — Time-bandwidth product for Morse wavelet
60 (default) | positive scalar

Time-bandwidth product for the Morse wavelet, specified as a positive scalar greater than or equal to
3 and less than or equal to 120. The symmetry (gamma) of the Morse wavelet is fixed at 3. This
property is only valid when Wavelet is "Morse". The time-bandwidth product is ignored for the
"amor" and "bump" wavelets. For Morse wavelets, the larger the time-bandwidth product, the more
spread out the wavelet is in time and narrower the wavelet is in frequency.

In the notation of “Morse Wavelets”, TimeBandwidth is P2.
Data Types: single | double

TransformMode — Layer transform mode
"mag" (default) | "squaremag" | "realimag"

Layer transform mode, specified as one of these:

• "mag" — CWT magnitude
• "squaremag" — CWT squared magnitude
• "realimag" — CWT real and imaginary parts concatenated along the channel dimension

Layer

WeightLearnRateFactor — Multiplier for weight learning rate
0 (default) | nonnegative scalar

Multiplier for weight learning rate, specified as a nonnegative scalar. The weights are the reduced
CWT filter values represented as a 1-by-1-by-Nr tensor. See cwtfilters2array for details. By
default, the weights do not update with training.

1 Functions

1-228



Data Types: single | double

Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{"in"} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Object Functions
filterbank Full-weight CWT filter bank for deep learning

Examples

Use cwtLayer in Deep Learning Network

Create a CWT layer for a signal of length 2000 samples. Set the learning rate factor to 1.
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cLayer = cwtLayer(SignalLength=2000,WeightLearnRateFactor=1);

Create a three-layer dlnetwork containing a sequence input layer, the CWT layer you just made, and
a 2-D max pooling layer.

sqLayer = sequenceInputLayer(1,Name="input",MinLength=2000);
mpLayer = maxPooling2dLayer([2 25],Stride=[2 12]);
layers = [sqLayer
    cLayer
    mpLayer];
dlnet = dlnetwork(layers);

Run a batch of 10 random single-channel signals through the dlnetwork.

dataout = forward(dlnet, ...
    dlarray(randn(1,10,2000,"single"),"CBT"));
size(dataout)

ans = 1×4

    40     1    10   165

dims(dataout)

ans = 
'SCBT'

Compare CWT With cwtLayer and Filter Bank

Load the Espiga3 EEG dataset. The data consists of 23 channels of EEG sampled at 200 Hz. There are
995 samples in each channel. Save the multisignal as a dlarray, specifying the dimensions in order.
dlarray permutes the array dimensions to the "CBT" shape expected by a deep learning network.

load Espiga3
[N,nch] = size(Espiga3);
x = dlarray(Espiga3,"TCB");
whos Espiga3 x

  Name           Size                Bytes  Class      Attributes

  Espiga3      995x23               183080  double               
  x             23x1x995            183110  dlarray              

Create a CWT filter bank that is appropriate for the channels in the dataset. Use the default analytic
Morse (3,60) wavelet. Specify periodic boundary conditions. Use the filter bank to obtain the CWT of
one of the channels. The CWT is a 2-D matrix. The row dimension corresponds to scale, or frequency,
and the column dimension corresponds to time.

fb = cwtfilterbank(SignalLength=N,Boundary="periodic");
colInd = 11;
cfs = wt(fb,Espiga3(:,colInd));
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Layer Transform Mode — "mag"

Create a CWT layer that can be used with the EEG data. By default, the layer outputs the absolute
value of the CWT, or scalogram, of each channel.

clayer = cwtLayer(SignalLength=N);

Create a two-layer dlnetwork object containing a sequence input layer and the CWT layer you just
created. Treat each channel as a feature. Specify the signal length as the minimum sequence length
for the input layer.

slayer = sequenceInputLayer(nch,MinLength=N);
layers = [slayer
    clayer];
dlnet = dlnetwork(layers);

Run the EEG data through the forward method of the network.

dataout = forward(dlnet,x);

By default, the output of cwtLayer is a dlarray object in "SCBT" format. The spatial dimension
corresponds to frequency. Convert the network output to a numeric array. Permute the dimensions of
the network output to correspond with "STCB" format. The result is a 3-D numeric array because
there is only one batch.

q = extractdata(dataout);
q = permute(q,[1 4 2 3]);
whos q cfs

  Name       Size                  Bytes  Class     Attributes

  cfs       71x995               1130320  double    complex   
  q         71x995x23            6499340  single              

Extract from the output the result that corresponds to the channel you chose. Compare with the
absolute value of the CWT you obtained previously.

r = q(:,:,colInd);
d = max(abs(r(:)-abs(cfs(:))));
str = sprintf("Difference: %g",d);
fprintf("%s\n",str)

Difference: 8.86966e-06

subplot(2,1,1)
imagesc(r)
title("Layer Output")
subplot(2,1,2)
imagesc(abs(cfs))
title("Filter Bank Output")
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Layer Transform Mode — "realimag"

Create a CWT layer that can be used with the data. Specify the layer outputs to be the real and
imaginary parts of the CWT. Create a two-layer dlnetwork object containing a sequence input layer
and the CWT layer. Run the EEG data through the forward method of the network.

clayer2 = cwtLayer(SignalLength=N,TransformMode="realimag");
layers2 = [slayer
    clayer2];
dlnet2 = dlnetwork(layers2);
dataout2 = forward(dlnet2,x);

Convert the network output to a numeric array. Permute the dimensions of the network output to
correspond with "STCB" format. Because the output are the real and imaginary parts of the CWT, the
size of the channel dimension is twice the number of input channels.

q2 = extractdata(dataout2);
q2 = permute(q2,[1 4 2 3]);
whos q2

  Name       Size                   Bytes  Class     Attributes

  q2        71x995x46            12998680  single              

Choose a channel. Use the CWT filter bank to obtain the CWT of that channel. Compare the real and
imaginary parts of the CWT with the corresponding results from the network output.
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colInd = 23;
cfs = wt(fb,Espiga3(:,colInd));
r = q2(:,:,[colInd nch+colInd]);

a1 = real(cfs);
a2 = r(:,:,1);
str1 = sprintf("Difference (real part): %g",max(abs(a1(:)-a2(:))));

a1 = imag(cfs);
a2 = r(:,:,2);
str2 = sprintf("Difference (imag part): %g",max(abs(a1(:)-a2(:))));

fprintf("%s\n%s\n",str1,str2)

Difference (real part): 7.102e-05
Difference (imag part): 6.94453e-05

figure
subplot(2,2,1)
imagesc(real(cfs))
title("Filter Bank — Real")
subplot(2,2,2)
imagesc(r(:,:,1))
title("Layer — Real")
subplot(2,2,3)
imagesc(imag(cfs))
title("Filter Bank — Imag")
subplot(2,2,4)
imagesc(r(:,:,2))
title("Layer — Imag")
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CWT Frequency Limits

Create a CWT layer using default values. By default, the CWT layer is for a signal length of 1024
samples. The layer uses the analytic Morse (3,60) wavelet in the CWT with 10 voices per octave and
periodic boundary conditions. Inspect the default frequency limits of the layer. The frequency limits,
which are in units of cycles/sample, are based on the energy spread of the wavelet, the signal length,
and the voices per octave.

clayer = cwtLayer;
clayer.FrequencyLimits

ans = 1×2

    0.0032    0.4341

Use the filterbank method of the layer to obtain the full-weight CWT filter bank for the layer. Each
row contains the values of a filter. The filters are ordered from high center frequency to low.

psif = filterbank(clayer);
whos psif

  Name       Size               Bytes  Class     Attributes

  psif      71x1024            290816  single              
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You can determine the center frequencies by creating a cwtfilterbank object, specifying the same
wavelet parameters as used in the CWT layer, and then use the centerFrequencies object
function.

Create a cwtfilterbank. The default wavelet parameters are identical to those in the CWT layer.
Obtain the center frequencies. The frequencies are ordered from high to low. Plot the center
frequencies.

fb = cwtfilterbank;
cf = centerFrequencies(fb);
subplot(2,1,1)
plot(cf)
ylabel("Cycles/Sample")
title("Wavelet Center Frequencies")
grid on
subplot(2,1,2)
semilogy(cf)
grid on
ylabel("Cycles/Sample")
title("Semi-Log Scale")

The plots show that the wavelet center frequencies are not linearly spaced as is commonly the case
with other filter banks. Specifically, the center frequencies are exponentially decreasing. In
continuous wavelet analysis, the center frequencies of the wavelet filters are logarithmically spaced.
The most common spacing is the base 2^(1/NV), where NV is the number of voices per octave, raised
to integer powers. In other words, in a CWT filter bank, it is not possible for consecutive center
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frequencies f1 and f2, where f1 < f2, to satisfy log2 f2/ f1 < 1/NV. Frequency limits you specify in
the CWT layer must satisfy log2 f2/ f1 ≥ 1/NV.

The CWT layer uses 10 voices per octave. Compute the base-2 logarithm of the ratios of consecutive
pairs of center frequencies. Confirm the minimum and maximum values of the result are both equal
to 1/10.

cfRatio = log2(cf(1:end-1)./cf(2:end));
[min(cfRatio) max(cfRatio)]

ans = 1×2

    0.1000    0.1000

Plot the full-weight CWT filter bank and the center frequencies. The center frequencies correspond to
the peaks of the frequency response of each wavelet in the filter bank.

slen = clayer.SignalLength;
f = 0:1/slen:1-1/slen;
figure
plot(f,psif')
xlim([0 1/2])
xlabel("Cycles/Sample")
ylabel("Magnitude")
title(["Full-Weight Filter Bank", "With Center Frequencies"])
hold on
plot(cf,2*ones(size(psif,1),1),'bx')
hold off
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If the CWT layer you created does not support your frequency limits, try increasing the number of
voices per octave in the layer. For more information, see “Practical Introduction to Time-Frequency
Analysis Using the Continuous Wavelet Transform” and “Continuous and Discrete Wavelet
Transforms”.

Reset Frequency Limits to Default Values in Deep Network Designer

This example shows how to reset the frequency limits to default values after changing the wavelet of
a cwtLayer in Deep Network Designer.

Suppose you are editing a deep learning network using Deep Network Designer. The network has a
cwtLayer that uses the Morse wavelet and has frequency limits set at [0.1,0.3].
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Use the drop-down list to change the Wavelet to amor. The frequency limits do not change, but the
number of weights does change.

To change the frequency limits to default values appropriate for the amor wavelet, first do one of the
following:

• Delete the FrequencyLimits 0.1,0.3.
• Set the FrequencyLimits to [].
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Then click the mouse outside the FrequencyLimits edit field to move the focus. The app
automatically populates FrequencyLimits with default values for the amor wavelet. The number of
weights also changes to reflect the new limits.

Tip: If you change the frequency limits, and later want to restore the default values, follow the same
steps.

More About
Layer Output Format

cwtLayer formats the output as "SCBT", a sequence of 1-D images where the image height
corresponds to scale, or frequency. The second dimension corresponds to the channel, the third
dimension corresponds to the batch, and the fourth dimension corresponds to time.

• You can feed the output of cwtLayer unchanged to a 1-D convolutional layer when you want to
convolve along the frequency ("S") dimension. For more information, see convolution1dLayer.

• To feed the output of cwtLayer to a 1-D convolutional layer when you want to convolve along the
time ("T") dimension, you must place a flatten layer after the cwtLayer. For more information,
see flattenLayer.

• You can feed the output of cwtLayer unchanged to a 2-D convolutional layer when you want to
convolve along the frequency ("S") and time ("T") dimensions jointly. For more information, see
convolution2dLayer.

• To use cwtLayer as part of a recurrent neural network, you must place a flatten layer after the
cwtLayer. For more information, see lstmLayer and gruLayer.

• To use the output of cwtLayer with a fully connected layer as part of a classification workflow,
you must reduce the time ("T") dimension of the output so that it has size 1. To reduce the time
dimension of the output, place a global pooling layer before the fully connected layer. For more
information, see globalAveragePooling2dLayer and fullyConnectedLayer.
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Version History
Introduced in R2022b

See Also
Apps
Deep Network Designer

Functions
dlcwt | cwtfilters2array | cwt | cwtfreqbounds | dlmodwt

Objects
cwtfilterbank | modwtLayer | stftLayer | dlarray | dlnetwork

Topics
“Practical Introduction to Time-Frequency Analysis Using the Continuous Wavelet Transform”
“Time-Frequency Convolutional Network for EEG Data Classification”
“Time-Frequency Feature Embedding with Deep Metric Learning”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)
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dbaux
Daubechies wavelet filter computation

Syntax
W = dbaux(N)
W = dbaux(N,SUMW)

Description
The dbaux function generates the scaling filter coefficients for the "extremal phase" Daubechies
wavelets.

W = dbaux(N) is the order N Daubechies scaling filter such that sum(W) = 1.

Note

• Instability may occur when N is too large. Starting with values of N in the 30s range, function
output will no longer accurately represent scaling filter coefficients.

• For N = 1, 2, and 3, the order N Symlet filters and order N Daubechies filters are identical. See
“Extremal Phase” on page 1-246.

W = dbaux(N,SUMW) is the order N Daubechies scaling filter such that sum(W) = SUMW.

W = dbaux(N,0) is equivalent to W = dbaux(N,1).

Examples

Daubechies Extremal Phase Scaling Filter with Specified Sum

This example shows how to determine the Daubechies extremal phase scaling filter with a specified
sum. The two most common values for the sum are 2 and 1.

Construct two versions of the db4 scaling filter. One scaling filter sums to 2 and the other version
sums to 1.

NumVanishingMoments = 4;
h = dbaux(NumVanishingMoments,sqrt(2));
m0 = dbaux(NumVanishingMoments,1);

The filter with sum equal to 2 is the synthesis (reconstruction) filter returned by wfilters and
used in the discrete wavelet transform.

[LoD,HiD,LoR,HiR] = wfilters('db4');
max(abs(LoR-h))

ans = 4.2590e-13
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For orthogonal wavelets, the analysis (decomposition) filter is the time-reverse of the synthesis filter.

max(abs(LoD-fliplr(h)))

ans = 4.2590e-13

Symlet and Daubechies Scaling Filters

This example shows that symlet and Daubechies scaling filters of the same order are both solutions of
the same polynomial equation.

Generate the order 4 Daubechies scaling filter and plot it.

wdb4 = dbaux(4)

wdb4 = 1×8

    0.1629    0.5055    0.4461   -0.0198   -0.1323    0.0218    0.0233   -0.0075

stem(wdb4)
title('Order 4 Daubechies Scaling Filter')

wdb4 is a solution of the equation: P = conv(wrev(w),w)*2, where P is the "Lagrange trous" filter for
N = 4. Evaluate P and plot it. P is a symmetric filter and wdb4 is a minimum phase solution of the
previous equation based on the roots of P.
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P = conv(wrev(wdb4),wdb4)*2;
stem(P)
title('''Lagrange trous'' filter')

Generate wsym4, the order 4 symlet scaling filter and plot it. The Symlets are the "least asymmetric"
Daubechies' wavelets obtained from another choice between the roots of P.

wsym4 = symaux(4)

wsym4 = 1×8

    0.0228   -0.0089   -0.0702    0.2106    0.5683    0.3519   -0.0210   -0.0536

stem(wsym4)
title('Order 4 Symlet Scaling Filter')
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Compute conv(wrev(wsym4),wsym4)*2 and confirm that wsym4 is another solution of the equation P
= conv(wrev(w),w)*2.

P_sym = conv(wrev(wsym4),wsym4)*2;
err = norm(P_sym-P)

err = 1.8677e-15

Extremal Phase

This example demonstrates that for a given support, the cumulative sum of the squared coefficients of
a scaling filter increase more rapidly for an extremal phase wavelet than other wavelets.

Generate the scaling filter coefficients for the db15 and sym15 wavelets. Both wavelets have support
of width 2 × 15− 1 = 29.

[~,~,LoR_db,~] = wfilters('db15');
[~,~,LoR_sym,~] = wfilters('sym15');

Next, generate the scaling filter coefficients for the coif5 wavelet. This wavelet also has support of
width 6 × 5− 1 = 29.

[~,~,LoR_coif,~] = wfilters('coif5');

Confirm the sum of the coefficients for all three wavelets equals 2.
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sqrt(2)-sum(LoR_db)

ans = 2.2204e-16

sqrt(2)-sum(LoR_sym)

ans = 0

sqrt(2)-sum(LoR_coif)

ans = 2.2204e-16

Plot the cumulative sums of the squared coefficients. Note how rapidly the Daubechies sum
increases. This is because its energy is concentrated at small abscissas. Since the Daubechies wavelet
has extremal phase, the cumulative sum of its squared coefficients increases more rapidly than the
other two wavelets.

plot(cumsum(LoR_db.^2),'rx-')
hold on
plot(cumsum(LoR_sym.^2),'mo-')
plot(cumsum(LoR_coif.^2),'b*-')
legend('Daubechies','Symlet','Coiflet')
title('Cumulative Sum')

Input Arguments
N — Order of Daubechies scaling filter
positive integer

Order of Daubechies scaling filter, specified as a positive integer.
Data Types: single | double
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SUMW — Sum of coefficients
1 (default) | positive scalar

Sum of coefficients, specified as a positive scalar. Set to sqrt(2) to generate vector of coefficients
whose norm is 1.
Data Types: single | double

Output Arguments
W — Scaling filter coefficients
vector

Scaling filter coefficients returned as a vector.

The scaling filter coefficients satisfy a number of properties. As the example “Daubechies Extremal
Phase Scaling Filter with Specified Sum” on page 1-241 demonstrates, you can construct scaling
filter coefficients with a specific sum. If {hk} denotes the set of order N Daubechies scaling filter

coefficients, where n = 1, ..., 2N, then ∑
n = 1

2N
hn

2 = 1 . The coefficients also satisfy the relation

∑nh(n)h(n− 2k) = δ(k) . You can use these properties to check your results.

Limitations
• The computation of the dbN Daubechies scaling filter requires the extraction of the roots of a

polynomial of order 4N. Instability may occur beginning with values of N in the 30s.

More About
Extremal Phase

Constructing a compactly supported orthogonal wavelet basis involves choosing roots of a particular
polynomial equation. Different choices of roots will result in wavelets whose phases are different.
Choosing roots that lie within the unit circle in the complex plane results in a filter with highly
nonlinear phase. Such a wavelet is said to have extremal phase, and has energy concentrated at small
abscissas. Let {hk} denote the set of scaling coefficients associated with an extremal phase wavelet,
where k = 1,…,M. Then for any other set of scaling coefficients {gk} resulting from a different choice
of roots, the following inequality will hold for all J = 1,…,M:

∑
k = 1

J
gk

2 ≤ ∑
k = 1

J
hk

2

The {hk} are sometimes called a minimal delay filter [2].

The polynomial equation mentioned above depends on the number of vanishing moments N for the
wavelet. To construct a wavelet basis involves choosing roots of the equation. In the case of least
asymmetric wavelets and extremal phase wavelets for orders 1, 2, and 3, there are effectively no
choices to make. For N = 1, 2, and 3, the dbN and symN filters are equal. The example “Symlet and
Daubechies Scaling Filters” on page 1-242 shows that two different scaling filters can satisfy the
same polynomial equation. For additional information, see Daubechies [1].
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Algorithms
The algorithm used is based on a result obtained by Shensa [3], showing a correspondence between
the “Lagrange à trous” filters and the convolutional squares of the Daubechies wavelet filters.

The computation of the order N Daubechies scaling filter w proceeds in two steps: compute a
“Lagrange à trous” filter P, and extract a square root. More precisely:

• P the associated “Lagrange à trous” filter is a symmetric filter of length 4N-1. P is defined by

P = [a(N) 0 a(N-1) 0 ... 0 a(1) 1 a(1) 0 a(2) 0 ... 0 a(N)]
• where

• Then, if w denotes dbN Daubechies scaling filter of sum , w is a square root of P:

    P = conv(wrev(w),w) where w is a filter of length 2N.

The corresponding polynomial has N zeros located at −1 and N−1 zeros less than 1 in modulus.

Note that other methods can be used; see various solutions of the spectral factorization problem in
Strang-Nguyen [4] (p. 157).

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: SIAM Ed, 1992.

[2] Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs,
NJ: Prentice Hall, 1989.

[3] Shensa, M.J. (1992), “The discrete wavelet transform: wedding the a trous and Mallat
Algorithms,” IEEE Trans. on Signal Processing, vol. 40, 10, pp. 2464-2482.

[4] Strang, G., and T. Nguyen.Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,
1996.

See Also
symaux | dbwavf | wfilters
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dbwavf
Daubechies wavelet filter

Syntax
f = dbwavf(wname)

Description
f = dbwavf(wname) returns the scaling filter associated with the Daubechies wavelet specified by
wname. f is a real-valued vector.

Examples

Scaling Filter Associated With Daubechies Wavelet

Specify the order 4 Daubechies wavelet.

wname = 'db4';

Compute the corresponding scaling filter.

f = dbwavf(wname);
f'

ans = 8×1

    0.1629
    0.5055
    0.4461
   -0.0198
   -0.1323
    0.0218
    0.0233
   -0.0075

Input Arguments
wname — Daubechies wavelet
'dbN'

Daubechies wavelet with N vanishing moments, where N is a positive integer in the closed interval
[1, 45].

Version History
Introduced before R2006a
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See Also
dbaux | waveinfo | wfilters
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ddencmp
Default values for denoising or compression

Syntax
[thr,sorh,keepapp] = ddencmp(in1,in2,x)
[ ___ ,crit] = ddencmp(in1,'wp',x)

Description
ddencmp returns default values for denoising or compression for the critically sampled discrete
wavelet or wavelet packet transform.

[thr,sorh,keepapp] = ddencmp(in1,in2,x) returns default values for denoising or
compression, using wavelets or wavelet packets, of the input data x. x is a real-valued vector or 2-D
matrix. thr is the threshold, and sorh indicates soft or hard thresholding. keepapp can be used as a
flag to set whether or not the approximation coefficients are thresholded.

• Set in1 to 'den' for denoising or 'cmp' for compression.
• Set in2 to 'wv' to use wavelets or 'wp' to use wavelet packets.

[ ___ ,crit] = ddencmp(in1,'wp',x) also returns the entropy type, crit. See wentropy for
more information.

Examples

Default Global Threshold for Wavelet Denoising

Determine the default global denoising threshold for an N(0,1) white noise input. Create an N(0,1)
white noise input. Change the DWT extension mode to periodic. Set the random number generator to
the default initial settings for reproducible results.

origmode = dwtmode('status','nodisplay');
dwtmode('per','nodisp')
rng default
x = randn(512,1);

Use ddencmp to obtain the default global threshold for wavelet denoising. Demonstrate that the
threshold is equal to the universal threshold of Donoho and Johnstone scaled by a robust estimate of
the variance.

[thr,sorh,keepapp] = ddencmp('den','wv',x);
[A,D] = dwt(x,'db1');
noiselev = median(abs(D))/0.6745;
thresh = sqrt(2*log(length(x)))*noiselev;

Compare the value of the variable thr to the value of thresh.

thr
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thr = 3.3639

thresh

thresh = 3.3639

Restore the original extension mode.

dwtmode(origmode,'nodisplay')

Default Global Threshold for Wavelet Packet Compression

Determine the default global compression threshold for an N(0,1) white noise input.

Create an N(0,1) white noise input. Set the DWT extension mode to periodic. Set the random number
generator to the default initial settings for reproducible results.

origmode = dwtmode('status','nodisplay');
dwtmode('per','nodisp')
rng default
x = randn(512,1);

Use ddencmp with the 'cmp' and 'wp' input arguments to return the default global compression
threshold for a wavelet packet transform.

[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr = 0.6424

sorh = 
'h'

keepapp = 1

crit = 
'threshold'

Compare with the default values returned for denoising.

[thr,sorh,keepapp,crit] = ddencmp('den','wp',x)

thr = 4.1074

sorh = 
'h'

keepapp = 1

crit = 
'sure'

Restore the original extension mode.

dwtmode(origmode,'nodisplay')
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Input Arguments
in1 — Purpose
'den' | 'cmp'

Purpose of ddencmp output, specified as:

• 'den' — Denoising
• 'cmp' — Compression

in2 — Transform type
'wv' | 'wp'

Transform type to be used for denoising or compression, specified as:

• 'wv' — Critically sampled discrete wavelet transform. This output can be used with wdencmp.
• 'wp' — Critically sampled wavelet packet transform. This output can be used with wpdencmp.

x — Input data
real-valued vector or matrix

Input data to be denoised or compressed, specified as a real-valued vector or 2-D matrix.
Data Types: double

Output Arguments
thr — Threshold
real number

Threshold for denoising or compression, returned as a real number. Use this output with wdencmp or
wpdencmp.

sorh — Thresholding type
character

Thresholding type for denoising or compression, returned as a character.

• 's' — Soft thresholding
• 'h' — Hard thresholding

Use this output with wdencmp or wpdencmp.

keepapp — Threshold approximation setting
1 (default)

Threshold approximation setting, returned as 1. Use this output with wdencmp or wpdencmp. If
keepapp = 1, the approximation coefficients are not thresholded.

crit — Entropy type
character vector

Entropy type when denoising or compressing with wavelet packets, returned as a character vector.
Use this output only with wpdencmp. See wentropy for more information.
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Version History
Introduced before R2006a

References
[1] Donoho, D. L. “De-noising by Soft-Thresholding.” IEEE Transactions on Information Theory, Vol.

42, Number 3, pp. 613–627, 1995.

[2] Donoho, D. L., and Johnstone, I. M. “Ideal Spatial Adaptation by Wavelet Shrinkage.” Biometrika,
Vol. 81, pp. 425–455, 1994.

[3] Donoho, D. L., and I. M. Johnstone. "Ideal denoising in an orthonormal basis chosen from a library
of bases." Comptes Rendus Acad. Sci. Paris, Ser. I, Vol. 319, pp. 1317–1322, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size data support must be enabled.

See Also
wdencmp | wenergy | wpdencmp | wdenoise
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dddtree
Dual-tree and double-density 1-D wavelet transform

Syntax
wt = dddtree(typetree,x,level,fdf,df)
wt = dddtree(typetree,x,level,fname)
wt = dddtree(typetree,x,level,fname1,fname2)

Description
wt = dddtree(typetree,x,level,fdf,df) returns the typetree discrete wavelet transform
(DWT) of the 1-D input signal, x, down to level, level. The wavelet transform uses the decomposition
(analysis) filters, fdf, for the first level and the analysis filters, df, for subsequent levels. Supported
wavelet transforms are the critically sampled DWT, double-density, dual-tree complex, and dual-tree
double-density complex wavelet transform. The critically sampled DWT is a filter bank decomposition
in an orthogonal or biorthogonal basis (nonredundant). The other wavelet transforms are
oversampled filter banks.

wt = dddtree(typetree,x,level,fname) uses the filters specified by fname to obtain the
wavelet transform. Valid filter specifications depend on the type of wavelet transform. See
dtfilters for details.

wt = dddtree(typetree,x,level,fname1,fname2) uses the filters specified in fname1 for the
first stage of the dual-tree wavelet transform and the filters specified in fname2 for subsequent
stages of the dual-tree wavelet transform. Specifying different filters for stage 1 is valid and
necessary only when typetree is 'cplxdt' or 'cplxdddt'.

Examples

Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of the noisy Doppler signal. The FIR filters in the first
and subsequent stages result in an approximately analytic wavelet as required.

Use dtfilters to create the first-stage Farras analysis filters and 6-tap Kingsbury Q-shift analysis
filters for the subsequent stages of the multiresolution analysis.

df = dtfilters('dtf1');

The Farras and Kingsbury filters are in df{1} and df{2}, respectively. Load the noisy Doppler signal
and obtain the complex dual-tree wavelet transform down to level 4.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,4,df{1},df{2});

Plot an approximation based on the level-four approximation coefficients.

xapp = dddtreecfs('r',wt,'scale',{5});
plot(noisdopp)
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hold on
plot(cell2mat(xapp),'r','linewidth',3)
axis tight

Using the output of dtfilters, or the filter name itself, in dddtree is preferable to manually
entering truncated filter coefficients. To demonstrate the negative impact on signal reconstruction,
create truncated versions of the Farras and Kingsbury analysis filters. Display the differences
between the truncated and original filters.

  Faf{1} = [0         0
   -0.0884   -0.0112
    0.0884    0.0112
    0.6959    0.0884
    0.6959    0.0884
    0.0884   -0.6959
   -0.0884    0.6959
    0.0112   -0.0884
    0.0112   -0.0884
         0         0];
Faf{2} = [ 0.0112  0
    0.0112         0
   -0.0884   -0.0884
    0.0884   -0.0884
    0.6959    0.6959
    0.6959   -0.6959
    0.0884    0.0884
   -0.0884    0.0884
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         0    0.0112
         0   -0.0112];

af{1} = [ 0.0352         0
         0         0
   -0.0883   -0.1143
    0.2339         0
    0.7603    0.5875
    0.5875   -0.7603
         0    0.2339
   -0.1143    0.0883
         0         0
         0   -0.0352];

af{2} = [0   -0.0352
         0         0
   -0.1143    0.0883
         0    0.2339
    0.5875   -0.7603
    0.7603    0.5875
    0.2339         0
   -0.0883   -0.1143
         0         0
    0.0352         0];

max(max(abs(df{1}{1}-Faf{1})))

ans = 2.6792e-05

max(max(abs(df{1}{2}-Faf{2})))

ans = 2.6792e-05

max(max(abs(df{2}{1}-af{1})))

ans = 3.6160e-05

max(max(abs(df{2}{2}-af{2})))

ans = 3.6160e-05

Obtain the complex dual-tree wavelet transform down to level 4 using the truncated filters. Take the
inverse transform and compare the reconstruction with the original signal.

wt = dddtree('cplxdt',noisdopp,4,Faf,af);
xrec = idddtree(wt);
max(abs(noisdopp-xrec))

ans = 0.0024

Do the same using the filter name. Confirm the difference is smaller.

wt = dddtree('cplxdt',noisdopp,4,'dtf1');
xrec = idddtree(wt);
max(abs(noisdopp-xrec))

ans = 2.1893e-07
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Double-Density Wavelet Transform

Obtain the double-density wavelet transform of a signal with two discontinuities. Use the level-one
detail coefficients to localize the discontinuities.

Create a signal consisting of a 2-Hz sine wave with a duration of 1 second. The sine wave has
discontinuities at 0.3 and 0.72 seconds.

N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x)
xlabel('Time (s)')
title('Original Signal')
grid on

Obtain the double-density wavelet transform of the signal. Reconstruct an approximation based on
the level-one detail coefficients by first setting the lowpass (scaling) coefficients equal to 0. Plot the
result. Observe features in the reconstruction align with the signal discontinuities.

wt = dddtree('ddt',x,1,'filters1');
wt.cfs{2} = zeros(1,512);
xrec = idddtree(wt);
plot(t,xrec,'linewidth',2)
set(gca,'xtick',[0 0.3 0.72 1])
set(gca,'xgrid','on')
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First-Level Detail Coefficients Approximation — Complex Dual-Tree

Obtain the complex dual-tree wavelet transform of a signal with two discontinuities. Use the first-
level detail coefficients to localize the discontinuities.

Create a signal consisting of a 2-Hz sine wave with a duration of 1 second. The sine wave has
discontinuities at 0.3 and 0.72 seconds.

N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x)
xlabel('Time (s)')
title('Original Signal')
grid on
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Obtain the dual-tree wavelet transform of the signal, reconstruct an approximation based on the
level-one detail coefficients, and plot the result.

wt = dddtree('cplxdt',x,1,'FSfarras','qshift06');
wt.cfs{2} = zeros(1,512,2);
xrec = idddtree(wt);
plot(t,xrec,'linewidth',2)
set(gca,'xtick',[0 0.3 0.72 1])
set(gca,'xgrid','on')
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Input Arguments
typetree — Type of wavelet decomposition
'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition, specified as one of 'dwt', 'ddt', 'cplxdt', or 'cplxdddt'. The
type, 'dwt', gives a critically sampled (nonredundant) discrete wavelet transform. The other
decomposition types produce oversampled wavelet transforms. 'ddt' produces a double-density
wavelet transform. 'cplxdt' produces a dual-tree complex wavelet transform. 'cplxdddt'
produces a double-density dual-tree complex wavelet transform.

x — Input signal
vector

Input signal, specified as an even-length row or column vector. If L is the value of the level of the
wavelet decomposition, 2L must divide the length of x. Additionally, the length of the signal must be
greater than or equal to the product of the maximum length of the decomposition (analysis) filters
and 2(L-1).

Data Types: double

level — Level of wavelet decomposition
positive integer
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Level of the wavelet decomposition, specified as an integer. If L is the value of level, 2L must divide
the length of x . Additionally, the length of the signal must be greater than or equal to the product of
the maximum length of the decomposition (analysis) filters and 2(L-1).

Data Types: double

fdf — Level-one analysis filters
matrix | cell array

The level-one analysis filters, specified as a matrix or cell array of matrices. Specify fdf as a matrix
when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree
input as follows:

• 'dwt' — This is the critically sampled discrete wavelet transform. In this case, fdf is a two-
column matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter
in the second column.

• 'ddt' — This is the double-density wavelet transform. The double-density DWT is a three-channel
perfect reconstruction filter bank. fdf is a three-column matrix with the lowpass (scaling) filter in
the first column and the two highpass (wavelet) filters in the second and third columns. In the
double-density wavelet transform, the single lowpass and two highpass filters constitute a three-
channel perfect reconstruction filter bank. This is equivalent to the three filters forming a tight
frame. You cannot arbitrarily choose the two wavelet filters in the double-density DWT. The three
filters together must form a tight frame.

Specify fdf as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'cplxdt' or
'cplxdddt'. The size and structure of the matrix elements depend on the typetree input as
follows:

• For the dual-tree complex wavelet transform, 'cplxdt', fdf{1} is a two-column matrix
containing the lowpass (scaling) filter and highpass (wavelet) filters for the first tree. The scaling
filter is the first column and the wavelet filter is the second column. fdf{2} is a two-column
matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second tree. The
scaling filter is the first column and the wavelet filter is the second column.

• For the double-density dual-tree complex wavelet transform, 'cplxdddt', fdf{1} is a three-
column matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the first tree
and fdf{2} is a three-column matrix containing the lowpass (scaling) and two highpass (wavelet)
filters for the second tree.

Data Types: double

df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as a matrix or cell array of matrices. Specify df as a matrix
when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree
input as follows:

• 'dwt' — This is the critically sampled discrete wavelet transform. In this case, df is a two-column
matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter in the
second column. For the critically sampled orthogonal or biorthogonal DWT, the filters in df and
fdf must be identical.

• 'ddt' — This is the double-density wavelet transform. The double-density DWT is a three-channel
perfect reconstruction filter bank. df is a three-column matrix with the lowpass (scaling) filter in
the first column and the two highpass (wavelet) filters in the second and third columns. In the
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double-density wavelet transform, the single lowpass and two highpass filters must constitute a
three-channel perfect reconstruction filter bank. This is equivalent to the three filters forming a
tight frame. For the double-density DWT, the filters in df and fdf must be identical.

Specify df as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'cplxdt' or
'cplxdddt'. For dual-tree transforms, the filters in fdf and df must be different. The size and
structure of the matrix elements in the cell array depend on the typetree input as follows:

• For the dual-tree complex wavelet transform, 'cplxdt', df{1} is a two-column matrix containing
the lowpass (scaling) and highpass (wavelet) filters for the first tree. The scaling filter is the first
column and the wavelet filter is the second column. df{2} is a two-column matrix containing the
lowpass (scaling) and highpass (wavelet) filters for the second tree. The scaling filter is the first
column and the wavelet filter is the second column.

• For the double-density dual-tree complex wavelet transform, 'cplxdddt', df{1} is a three-
column matrix containing the lowpass (scaling) and two highpass (wavelet) filters for the first tree
and df{2} is a three-column matrix containing the lowpass (scaling) and two highpass (wavelet)
filters for the second tree.

Data Types: double

fname — Filter name
character vector | string scalar

Filter name, specified as a character vector or string scalar. For the critically sampled DWT, specify
any valid orthogonal or biorthogonal wavelet filter. See wfilters for details. For the double-density
wavelet transform, 'ddt', valid choices are 'filters1', 'filters2', and 'doubledualfilt'.
For the complex dual-tree wavelet transform, valid choices are 'dtfP' with P = 1, 2, 3, 4. For the
double-density dual-tree wavelet transform, the only valid choice is 'dddtf1'. See dtfilters for
more details on valid filter names for the oversampled wavelet filter banks.
Data Types: char

fname1 — First-stage filter name
character vector | string scalar

First-stage filter name, specified as a character vector or string scalar. Specifying a different filter for
the first stage is valid and necessary only in the dual-tree transforms, 'cplxdt' and 'cplxdddt'. In
the complex dual-tree wavelet transform, you can use any valid wavelet filter for the first stage. In the
double-density dual-tree wavelet transform, the first-stage filters must form a three-channel perfect
reconstruction filter bank.
Data Types: char

fname2 — Filter name for stages > 1
character vector | string scalar

Filter name for stages > 1, specified as a character vector or string scalar. You must specify a first-
level filter that is different from the wavelet and scaling filters in subsequent levels when using the
dual-tree wavelet transforms, 'cplxdt' or 'cplxdddt'. See dtfilters for valid choices.
Data Types: char
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Output Arguments
wt — Wavelet transform
structure

Wavelet transform, returned as a structure with these fields:

type — Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition (filter bank) used in the analysis, returned as one of 'dwt', 'ddt',
'cplxdt', or 'cplxdddt'. The type, 'dwt', gives a critically sampled discrete wavelet transform.
The other types correspond to oversampled wavelet transforms. 'ddt' is a double-density wavelet
transform, 'cplxdt' is a dual-tree complex wavelet transform, and 'cplxdddt' is a double-density
dual-tree complex wavelet transform.

level — Level of the wavelet decomposition
positive integer

Level of wavelet decomposition, returned as a positive integer.

filters — Decomposition (analysis) and reconstruction (synthesis) filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, returned as a structure with these
fields:

FDf — First-stage analysis filters
matrix | cell array

First-stage analysis filters, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms,
or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-
by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is
the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns
are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array
contains the first-stage analysis filters for the corresponding tree.

Df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column
of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For
an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the analysis filters for the corresponding tree.

FRf — First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
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matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column
of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For
an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the first-stage synthesis filters for the corresponding tree.

Rf — Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column
of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For
an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the synthesis filters for the corresponding tree.

cfs — Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, returned as a 1-by-(level+1) cell array of matrices. The size and
structure of the matrix elements of the cell array depend on the type of wavelet transform,
typetree, as follows:

• 'dwt' — cfs{j}

• j = 1,2,... level is the level.
• cfs{level+1} are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,k)

• j = 1,2,... level is the level.
• k = 1,2 is the wavelet filter.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,m)

• j = 1,2,... level is the level.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:,m) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,k,m)

• j = 1,2,... level is the level.
• k = 1,2 is the wavelet filter.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:,m) are the lowpass, or scaling, coefficients.

Version History
Introduced in R2013b
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See Also
wfilters | dddtree2 | dddtreecfs | dtfilters | idddtree | dualtree | dualtree2

Topics
“Dual-Tree Complex Wavelet Transforms”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
“Critically Sampled and Oversampled Wavelet Filter Banks”
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dddtreecfs
Extract dual-tree/double-density wavelet coefficients or projections

Syntax
out = dddtreecfs(outputtype,wt,outputspec,outputindices)
out = dddtreecfs(outputtype,wt,outputspec,outputindices,'plot')

Description
out = dddtreecfs(outputtype,wt,outputspec,outputindices) extracts the coefficients or
subspace projections from the 1-D or 2-D wavelet decomposition, wt. If outputtype equals 'e', out
contains wavelet or scaling coefficients. If outputtype equals 'r', out contains wavelet or scaling
subspace projections (reconstructions).

out = dddtreecfs(outputtype,wt,outputspec,outputindices,'plot') plots the signal or
image reconstruction or specified analysis coefficients. You can include the 'plot' option anywhere
after the wt input.

Examples

Reconstruction from 1-D Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of the 1-D noisy Doppler signal. Reconstruct an
approximation based on the level-three detail coefficients in multiple ways.

Load the noisy Doppler signal. Obtain the complex dual-tree transform down to level 3.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1')

wt = struct with fields:
       type: 'cplxdt'
      level: 3
    filters: [1x1 struct]
        cfs: {[1x512x2 double]  [1x256x2 double]  [1x128x2 double]  [1x128x2 double]}

Plot a reconstruction of the original signal based on the level-three detail coefficients with
outputspec set to 'scale'.

xr = dddtreecfs('r',wt,'scale',{3},'plot');
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The output xr is a 1-by-1 cell array. Generate the same reconstruction by using 'cumind' and the
level-three tree nodes. The first element of each vector in the cell array denotes the level, and the
second element denotes the tree. Confirm the reconstructions are identical.

outputindices = {[3 1];[3 2]};
xr2 = dddtreecfs('r',wt,'cumind',outputindices);
max(abs(xr2-xr{1}))

ans = 0

The output xr2 is the same datatype as the original signal.

Coefficients from 1-D Complex Dual-Tree Wavelet Transform

Load the noisy Doppler signal. Obtain the complex dual-tree transform down to level 3.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1')

wt = struct with fields:
       type: 'cplxdt'
      level: 3
    filters: [1×1 struct]
        cfs: {[1×512×2 double]  [1×256×2 double]  [1×128×2 double]  [1×128×2 double]}
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Create a cell array of vectors to obtain the second- and third-level detail coefficients from each of the
wavelet filter bank trees.

outputindices = {[2 1]; [2 2]; [3 1]; [3 2]};

The first element of each vector in the cell array denotes the level, or stage. The second element
denotes the tree.

Extract the detail coefficients.

detailCoeffs = dddtreecfs('e',wt,'ind',outputindices,'plot');

The output detailCoeffs is a 1-by-4 cell array. The cell array elements contain the wavelet
coefficients corresponding to the elements in outputindices. For example, confirm
detailCoeffs{1} contains the level-two detail coefficients from the first tree.

max(abs(wt.cfs{2}(1,:,1)-detailCoeffs{1}))

ans = 0

1-D Complex Dual-Tree Wavelet Transform Structure

Load the noisy Doppler signal. Obtain the complex dual-tree transform down to level 3.
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load noisdopp;
wt = dddtree('cplxdt',noisdopp,3,'dtf1');

Create a cell array of vectors to obtain the second- and third-level detail coefficients from each of the
wavelet filter bank trees.

outputindices = {[2 1]; [2 2]; [3 1];[3 2]};

The first element of each vector in the cell array denotes the level, or stage. The second element
denotes the tree.

Create a structure array identical to the wt output of dddtree with all the coefficients equal to zero
except the second- and third-level detail coefficients.

out = dddtreecfs('e',wt,'cumind',outputindices,'plot');
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Generate a reconstruction based on the second- and third-level detail coefficients.

xr = idddtree(out);

Generate two reconstructions, based on the second- and third-level detail coefficients. Confirm the
sum of the two reconstructions is identical to xr.
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xr2 = dddtreecfs('r',wt,'scale',{2;3});
max(abs(xr-(xr2{1}+xr2{2})))

ans = 6.6613e-16

Extract Diagonal Features from Image

Use the complex dual-tree wavelet transform to isolate diagonal features in an image at +45 and –45
degrees.

Load and display the xbox image.

load xbox
imagesc(xbox)

Obtain the complex dual-tree wavelet transform down to level 3.

fdf = dtfilters('FSfarras');
df = dtfilters('qshift10');
wt = dddtree2('cplxdt',xbox,3,fdf,df);

Isolate the +45 and -45 diagonal image features in the level-one wavelet coefficients. Do this by
creating a cell array of vectors specifying the tree nodes containing the diagonal details. The first
element in the vector specifies the level. The three remaining elements specify the orientation,
wavelet tree, and real and imaginary parts, respectively (see dddtree2).
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outputindices = {[1 3 1 1];[1 3 1 2];[1 3 2 1];[1 3 2 2]};
out = dddtreecfs('e',wt,'ind',outputindices,'plot');

Distribution of Analysis Coefficients in Wavelet Tree Structure

This example shows how the analysis coefficients are distributed, depending on the transform, in the
tree output of dddtree and dddtree2.
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1-D Wavelet Transforms

Load in the noisy Doppler signal. Generate a four-level wavelet decomposition of the signal for each
type of transform. Depending on the transform, different dimensions of the coefficient arrays
correspond to orientation, wavelet tree, or real and imaginary parts.

Critically Sampled Discrete Wavelet Transform

load noisdopp
wt = dddtree('dwt',noisdopp,4,'sym4')

wt = struct with fields:
       type: 'dwt'
      level: 4
    filters: [1x1 struct]
        cfs: {1x5 cell}

This is the usual nonredundant discrete wavelet transform. The first four elements of wt.cfs are the
wavelet coefficients. The fifth element are the scaling coefficients.

Double-Density Wavelet Transform

wt = dddtree('ddt',noisdopp,4,'filters1')

wt = struct with fields:
       type: 'ddt'
      level: 4
    filters: [1x1 struct]
        cfs: {[1x512x2 double]  [1x256x2 double]  [1x128x2 double]  [1x64x2 double]  [-1.0010 0.2886 0.8391 0.4359 0.0623 -0.6158 2.5219 -4.7453 9.1360 -2.9925 -11.9090 16.3795 6.2880 -19.6369 -14.5684 13.1839 25.6615 14.6922 -5.2425 -21.2775 ... ]}

The third dimension of the 3-D wavelet coefficient arrays corresponds to the tree. The fifth element
are the scaling coefficients.

Dual-Tree Complex Wavelet Transform

wt = dddtree('cplxdt',noisdopp,4,'dtf1')

wt = struct with fields:
       type: 'cplxdt'
      level: 4
    filters: [1x1 struct]
        cfs: {[1x512x2 double]  [1x256x2 double]  [1x128x2 double]  [1x64x2 double]  [1x64x2 double]}

The third dimension of all the 3-D arrays in cfs corresponds to the real and imaginary parts. The first
four elements of cfs are the wavelet coefficients, and cfs{5} are the scaling coefficients.

Reconstruct signals from the coefficients at the tree nodes [1 1], [5 2], [3 1], and [4 2]. Plot
the signals. The output is a cell array containing the reconstructions. The reconstructions are the
same length as the original signal.

outputindices = {[1 1];[5 2];[3 1];[4 2]};
XR = dddtreecfs('r',wt,'plot','ind',outputindices);
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Extract and plot the coefficients used to reconstruct the signals. The output is a cell array containing
the coefficients of respective length: 512, 64, 128, and 64.

XR = dddtreecfs('e',wt,'plot','ind',outputindices);
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Now use 'cumind' instead of 'ind'. The output XR is a signal of length 1024 in the first case, and a
'cplxdt' dual-tree in the second one.

XR = dddtreecfs('r',wt,'plot','cumind',outputindices);
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XR = dddtreecfs('e',wt,'plot','cumind',outputindices);
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Double-Density Dual-Tree Complex Wavelet Transform

wt = dddtree('cplxdddt',noisdopp,4,'dddtf1')

wt = struct with fields:
       type: 'cplxdddt'
      level: 4
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    filters: [1x1 struct]
        cfs: {[1x512x2x2 double]  [1x256x2x2 double]  [1x128x2x2 double]  [1x64x2x2 double]  [1x64x2 double]}

The third dimension of the 4-D wavelet coefficient arrays corresponds to the tree. The fourth
dimension in the 4-D wavelet coefficient arrays and third dimension in the 3-D scaling coefficients
array corresponds to the real and imaginary parts.

2-D Wavelet Transforms

Load in the 256-by-256 mask image. Generate a two-level wavelet decomposition of the image for
each type of transform. Observe the dimensions of the output coefficients.

Critically Sampled Discrete Wavelet Transform

load mask
im = X;
wt = dddtree2('dwt',im,3,'sym4')

wt = struct with fields:
       type: 'dwt'
      level: 3
    filters: [1x1 struct]
        cfs: {[128x128x3 double]  [64x64x3 double]  [32x32x3 double]  [32x32 double]}
      sizes: [10x2 double]

This is the usual nonredundant 2-D discrete wavelet transform. The third dimension in the 3-D
wavelet coefficient arrays corresponds to the orientation. The scaling coefficients are the last element
of cfs.

Real Oriented Dual-Tree Wavelet Transform

wt = dddtree2('realdt',im,3,'dtf1')

wt = struct with fields:
       type: 'realdt'
      level: 3
    filters: [1x1 struct]
        cfs: {[128x128x3x2 double]  [64x64x3x2 double]  [32x32x3x2 double]  [32x32x2 double]}
      sizes: [11x2 double]

The fourth dimension in the 4-D wavelet coefficient arrays and third dimension in the 3-D scaling
coefficients array correspond to the tree. The third dimension in the 4-D wavelet coefficient arrays
corresponds to orientation.

Complex Oriented Dual-Tree Wavelet Transform

wt = dddtree2('cplxdt',im,3,'dtf1')

wt = struct with fields:
       type: 'cplxdt'
      level: 3
    filters: [1x1 struct]
        cfs: {[5-D double]  [5-D double]  [5-D double]  [32x32x2x2 double]}
      sizes: [11x2 double]
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[size(wt.cfs{1});size(wt.cfs{2});size(wt.cfs{3})]

ans = 3×5

   128   128     3     2     2
    64    64     3     2     2
    32    32     3     2     2

The third dimension of the 5-D wavelet coefficient arrays represents the orientation. The fourth
dimension in the 5-D arrays and third dimension in the 4-D scaling coefficients array represents the
tree. The fifth dimension in the 5-D arrays and fourth dimension in the 4-D array represents the real
and imaginary parts.

Double-Density Wavelet Transform
wt = dddtree2('ddt',im,3,'filters1')

wt = struct with fields:
       type: 'ddt'
      level: 3
    filters: [1x1 struct]
        cfs: {[128x128x8 double]  [64x64x8 double]  [32x32x8 double]  [32x32 double]}
      sizes: [26x2 double]

The third dimension in the 3-D wavelet coefficient arrays represents the orientation.

Real Oriented Double-Density Wavelet Transform
wt = dddtree2('realdddt',im,3,'self1')

wt = struct with fields:
       type: 'realdddt'
      level: 3
    filters: [1x1 struct]
        cfs: {[128x128x8x2 double]  [64x64x8x2 double]  [32x32x8x2 double]  [32x32x2 double]}
      sizes: [26x2 double]

The third dimension in the 4-D wavelet coefficient arrays represents the orientation. The fourth
dimension in the 4-D arrays and third dimension in the 3-D scaling coefficients array represent the
tree.

Complex Oriented Double-Density Wavelet Transform
wt = dddtree2('cplxdddt',im,3,'self1')

wt = struct with fields:
       type: 'cplxdddt'
      level: 3
    filters: [1x1 struct]
        cfs: {[5-D double]  [5-D double]  [5-D double]  [32x32x2x2 double]}
      sizes: [26x2 double]

[size(wt.cfs{1}) ; size(wt.cfs{2}) ; size(wt.cfs{3})]

ans = 3×5
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   128   128     8     2     2
    64    64     8     2     2
    32    32     8     2     2

The third dimension of the 5-D wavelet coefficient arrays represents the orientation. The fourth
dimension in the 5-D arrays and third dimension in the 4-D scaling coefficients array represents the
tree. The fifth dimension in the 5-D arrays and fourth dimension in the 4-D array represents the real
and imaginary parts.

Reconstruct and plot two images based on the second-level detail coefficients and scaling coefficients,
respectively.

XR = dddtreecfs('r',wt,'plot','scale',{2;4});
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The output XR is a cell array containing both 256-by-256 images.

Extract the coefficients used to produce the two images. The output is a cell array containing two
dual-tree structures, one for each specified scale.

XR = dddtreecfs('e',wt,'scale',{2;4});
XR{1}

ans = struct with fields:
       type: 'cplxdddt'
      level: 3
    filters: [1x1 struct]
        cfs: {[5-D double]  [5-D double]  [5-D double]  [32x32x2x2 double]}
      sizes: [26x2 double]

XR{2}

ans = struct with fields:
       type: 'cplxdddt'
      level: 3
    filters: [1x1 struct]
        cfs: {[5-D double]  [5-D double]  [5-D double]  [32x32x2x2 double]}
      sizes: [26x2 double]

Confirm the only nonzero coefficients in each structure contained in XR are the level-two wavelet
coefficients and scaling coefficients, respectively.

dtInd = 1;
[max(abs(XR{dtInd}.cfs{1}(:)));max(abs(XR{dtInd}.cfs{2}(:)));...
    max(abs(XR{dtInd}.cfs{3}(:)));max(abs(XR{dtInd}.cfs{4}(:)))]

ans = 4×1

         0
  143.9924
         0
         0

dtInd = 2;
[max(abs(XR{dtInd}.cfs{1}(:)));max(abs(XR{dtInd}.cfs{2}(:)));...
    max(abs(XR{dtInd}.cfs{3}(:)));max(abs(XR{dtInd}.cfs{4}(:)))]

ans = 4×1
103 ×

         0
         0
         0
    1.0545

Use 'ind' to reconstruct and display the four images based on the four lowpass components,
respectively.

outputindices = {[4 1 1];[4 2 1];[4 1 2];[4 2 2]};
XR = dddtreecfs('r',wt,'plot','ind',outputindices);
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The output XR is a cell array containing the four images. Each image is 256-by-256. Display the
coefficients used to reconstruct the images.

XR = dddtreecfs('e',wt,'plot','ind',outputindices);

1 Functions

1-282



The output XR is a cell array containing the four lowpass components. Each component is 32-by-32.

Input Arguments
outputtype — Output type
'e' | 'r'

Output type, specified as 'e' or 'r'. Use 'e' to obtain the scaling or wavelet coefficients. Use 'r'
to obtain a projection, or reconstruction, onto the appropriate scaling or wavelet subspace.

wt — Wavelet transform
structure
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Wavelet transform, specified as a structure. The structure array is the output of dddtree or
dddtree2.

outputspec — Output specification
'lowpass' | 'scale' | 'ind' | 'cumind'

Output specification, specified as one of 'lowpass', 'scale', 'ind', or 'cumind'. The output
specifications are defined as follows:

• 'lowpass' — Outputs the lowpass, or scaling, coefficients or a signal/image approximation based
on the scaling coefficients. If you set the output specification to 'lowpass', do not specify
outputindices. If the outputtype is 'e', out is a structure array with fields identical to the
input structure array wt except that all wavelet (detail) coefficients are equal to zero. If the
outputtype is 'r', out is a signal or image approximation based on the scaling coefficients. The
signal or image approximation is equal in size to the original input to dddtree or dddtree2.

• 'scale' — Outputs the coefficients or a signal/image approximation based on the scales specified
in outputindices. If the outputtype is 'e', out is a cell array of structure arrays. The fields
of the structure arrays in out are identical to the fields of the input structure array wt. The
coefficients in the cfs field are all equal to zero except the coefficients corresponding to the
scales in outputindices. If the outputtype is 'r', out is a signal or image approximation
based on the scales in outputindices. The signal or image approximation is equal in size to the
original input to dddtree or dddtree2.

• 'ind' — Outputs the coefficients or a signal/image approximation based on the tree-position
indices specified in outputindices. If the outputtype is 'e', out is a cell array of vectors or
matrices containing the coefficients specified by the tree-position indices in outputindices. If
the outputtype is 'r', out is a cell array of vectors or matrices containing signal or image
approximations based on the corresponding tree-position indices in outputindices.

• 'cumind' — Outputs the coefficients or a signal/image approximation based on the tree-position
indices specified in outputindices. If the outputtype is 'e', out is a structure array. The
fields of the structure array are identical to the fields of the input structure array wt. The
coefficients in the cfs field are all equal to zero except the coefficients corresponding to the tree
positions in outputindices. If the outputtype is 'r', out is a signal or image approximation
based on the coefficients corresponding to the tree-position indices in outputindices.

Example: 'ind',{[1 1]; [1 2]}

outputindices — Output indices
cell array

Output indices, specified as a cell array with scalar or vector elements. If outputspec equals
'scale', a scalar element selects the corresponding element in the cfs field of wt. If outputspec
equals 'ind' or 'cumind', the elements of outputspec are row vectors. The first element of the
row vector corresponds to the element in the cfs field of wt. Subsequent elements in the row vector
correspond to the indices of the array contained in the cell array element. For a description of the
subsequent elements, see “Distribution of Analysis Coefficients in Wavelet Tree Structure” on page 1-
272. For more information, see dddtree and dddtree2.
Example: 'scale',{1;2;3}

Output Arguments
out — Signal or image reconstruction or coefficients
cell array | structure | vector | matrix
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Signal or image reconstruction or coefficients, returned as a vector, matrix, structure array, cell array
of vectors or matrices, or cell array of structure arrays. The form of out depends on the value of
outputspec and outputindices.

Version History
Introduced in R2013b

See Also
dddtree | dddtree2 | plotdt | dualtree | dualtree2
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dddtree2
Dual-tree and double-density 2-D wavelet transform

Syntax
wt = dddtree2(typetree,x,level,fdf,df)
wt = dddtree2(typetree,x,level,fname)
wt = dddtree2(typetree,x,level,fname1,fname2)

Description
wt = dddtree2(typetree,x,level,fdf,df) returns the typetree discrete wavelet transform
of the 2-D input image, x, down to level, level. The wavelet transform uses the decomposition
(analysis) filters, fdf, for the first level and the analysis filters, df, for subsequent levels. Supported
wavelet transforms are the critically sampled DWT, double-density, real oriented dual-tree, complex
oriented dual-tree, real oriented dual-tree double-density, and complex oriented dual-tree double-
density wavelet transform. The critically sampled DWT is a filter bank decomposition in an orthogonal
or biorthogonal basis (nonredundant). The other wavelet transforms are oversampled filter banks
with differing degrees of directional selectivity.

wt = dddtree2(typetree,x,level,fname) uses the filters specified by fname to obtain the
wavelet transform. Valid filter specifications depend on the type of wavelet transform. See
dtfilters for details.

wt = dddtree2(typetree,x,level,fname1,fname2) uses the filters specified in fname1 for
the first stage of the dual-tree wavelet transform and the filters specified in fname2 for subsequent
stages of the dual-tree wavelet transform. Specifying different filters for stage 1 is valid and
necessary only when typetree is 'realdt', 'cplxdt', 'realdddt', or 'cplxdddt'.

Examples

Real Oriented Dual-Tree Wavelets

Visualize the six directional wavelets of the real oriented dual-tree wavelet transform.

Create the first-stage Farras analysis filters for the two trees.

  Faf{1} = [0      0
   -0.0884   -0.0112
    0.0884    0.0112
    0.6959    0.0884
    0.6959    0.0884
    0.0884   -0.6959
   -0.0884    0.6959
    0.0112   -0.0884
    0.0112   -0.0884
         0         0];
Faf{2} = [ 0.0112  0
    0.0112         0
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   -0.0884   -0.0884
    0.0884   -0.0884
    0.6959    0.6959
    0.6959   -0.6959
    0.0884    0.0884
   -0.0884    0.0884
         0    0.0112
         0   -0.0112];

Create the 6-tap Kingsbury Q-shift analysis filters for subsequent stages of the multiresolution
analysis.

af{1} = [ 0.0352   0
         0         0
   -0.0883   -0.1143
    0.2339         0
    0.7603    0.5875
    0.5875   -0.7603
         0    0.2339
   -0.1143    0.0883
         0         0
         0   -0.0352];

af{2} = [0   -0.0352
         0         0
   -0.1143    0.0883
         0    0.2339
    0.5875   -0.7603
    0.7603    0.5875
    0.2339         0
   -0.0883   -0.1143
         0         0
    0.0352         0];

To visualize the six directional wavelets, you will modify the wavelet coefficients of a four level real
oriented dual-tree wavelet transform of an image of zeros. Create an image of zeros whose size
satisfies the following constraints:

• The row and column dimensions are divisible by 24.
• The minimum of the row and column size must be greater than or equal to the product of the

maximum length of the analysis filters and 23.

J = 4;
L = 3*2^(J+1);
N = L/2^J;
x = zeros(2*L,3*L);
[numrows,numcols] = size(x)

numrows = 192

numcols = 288

Obtain the real oriented dual-tree wavelet transform of the image of zeros down to level 4.

wt = dddtree2('realdt',x,J,Faf,af)

wt = struct with fields:
       type: 'realdt'
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      level: 4
    filters: [1x1 struct]
        cfs: {[96x144x3x2 double]  [48x72x3x2 double]  [24x36x3x2 double]  [12x18x3x2 double]  [12x18x2 double]}
      sizes: [14x2 double]

The fourth element in wt.cfs are the level 4 wavelet coefficients. Insert a 1 in one position of the six
wavelet subbands (three orientations × two trees) at the coarsest scale, and invert the wavelet
transform.

wt.cfs{4}(N/2,N/2+0*N,1,1) = 1;
wt.cfs{4}(N/2,N/2+1*N,2,1) = 1;
wt.cfs{4}(N/2,N/2+2*N,3,1) = 1;
wt.cfs{4}(N/2+N,N/2+0*N,1,2) = 1;
wt.cfs{4}(N/2+N,N/2+1*N,2,2) = 1;
wt.cfs{4}(N/2+N,N/2+2*N,3,2) = 1;
xrec = idddtree2(wt);

Visualize the six directional wavelets.

imagesc(xrec);
colormap gray; axis off;
title('Real Oriented Dual-Tree Wavelets')
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Double-Density Wavelet Transform

Obtain the double-density wavelet transform of an image.

Load the image and obtain the double-density wavelet transform using 6-tap filters (see dtfilters).

load xbox
imagesc(xbox)
colormap gray

wt = dddtree2('ddt',xbox,1,'filters1')

wt = struct with fields:
       type: 'ddt'
      level: 1
    filters: [1x1 struct]
        cfs: {[64x64x8 double]  [64x64 double]}
      sizes: [10x2 double]

In the critically sampled 2-D discrete wavelet transform, there is one highpass filter. Filtering the
rows and columns of the image with the highpass filter corresponds to extracting details in the
diagonal orientation. In the double-density wavelet transform, there are two highpass filters, H1 and
H2. Diagonally oriented details are extracted by filtering the image rows and columns with four
combinations of the highpass filters. Visualize the diagonal details in the four wavelet highpass-
highpass subbands.
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H1H1 = wt.cfs{1}(:,:,4);
H1H2 = wt.cfs{1}(:,:,5);
H2H1 = wt.cfs{1}(:,:,7);
H2H2 = wt.cfs{1}(:,:,8);
subplot(2,2,1)
imagesc(H1H1);
title('H1 H1')
colormap gray;
subplot(2,2,2);
imagesc(H1H2);
title('H1 H2')
subplot(2,2,3)
imagesc(H2H1)
title('H2 H1')
subplot(2,2,4)
imagesc(H2H2)
title('H2 H2')

Complex Dual-Tree Wavelet Transform

Obtain the complex dual-tree wavelet transform of an image. Show that the complex dual-tree
wavelet transform can detect the two different diagonal directions.

Load the image and obtain the complex dual-tree wavelet transform.
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load xbox
imagesc(xbox)
colormap gray

wt = dddtree2('cplxdt',xbox,1,'FSfarras','qshift10')

wt = struct with fields:
       type: 'cplxdt'
      level: 1
    filters: [1x1 struct]
        cfs: {[5-D double]  [64x64x2x2 double]}
      sizes: [5x2 double]

Obtain and display the diagonally oriented details from the two trees.

waveletcfs = wt.cfs{1};
subplot(2,2,1)
imagesc(waveletcfs(:,:,3,1,1))
title('Diagonal - Tree 1 - Real')
colormap gray
subplot(2,2,2)
imagesc(waveletcfs(:,:,3,1,2))
title('Diagonal - Tree 1 - Imaginary')
subplot(2,2,3)
imagesc(waveletcfs(:,:,3,2,1))
title('Diagonal - Tree 2 - Real')
subplot(2,2,4)
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imagesc(waveletcfs(:,:,3,2,2))
title('Diagonal - Tree 2 - Imaginary')

Input Arguments
typetree — Type of wavelet decomposition
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition, specified as one of 'dwt', 'ddt', 'realdt', 'cplxdt',
'realdddt', or 'cplxdddt'. The type, 'dwt', produces a critically sampled (nonredundant)
discrete wavelet transform. The other decomposition types produce oversampled wavelet transforms.
'ddt' produces a double-density wavelet transform with one scaling and two wavelet filters for both
row and column filtering. The double-density wavelet transform uses the same filters at all stages.
'realdt' and 'cplxdt' produce oriented dual-tree wavelet transforms consisting of two and four
separable wavelet transforms. 'realdddt' and 'cplxdddt' produce double-density dual-tree
wavelet transforms. The dual-tree wavelet transforms use different filters for the first stage (level).

x — Input image
matrix

Input image, specified as a matrix with even-length row and column dimensions. Both the row and
column dimensions must be divisible by 2L, where L is the level of the wavelet transform. Additionally,
the minimum of the row and column dimensions of the image must be greater than or equal to the
product of the maximum length of the decomposition (analysis) filters and 2(L-1).
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Data Types: double

level — Level of wavelet decomposition
integer

Level of the wavelet decomposition, specified as a positive integer. If L is the value of level, 2L must
divide both the row and column dimensions of x. Additionally, the minimum of the row and column
dimensions of the image must be greater than or equal to the product of the maximum length of the
decomposition (analysis) filters and 2(L-1).

fdf — Level-one analysis filters
matrix | cell array

The level-one analysis filters, specified as a matrix or cell array of matrices. Specify fdf as a matrix
when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree
input as follows:

• 'dwt' — This is the critically sampled discrete wavelet transform. In this case, fdf is a two-
column matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter
in the second column.

• 'ddt' — This is the double-density wavelet transform. The double-density DWT is a three-channel
perfect reconstruction filter bank. fdf is a three-column matrix with the lowpass (scaling) filter in
the first column and the two highpass (wavelet) filters in the second and third columns. In the
double-density wavelet transform, the single lowpass and two highpass filters constitute a three-
channel perfect reconstruction filter bank. This is equivalent to the three filters forming a tight
frame. You cannot arbitrarily choose the two wavelet filters in the double-density DWT. The three
filters together must form a tight frame.

Specify fdf as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'realdt',
'cplxdt', 'realdddt', or 'cplxdddt'. The size and structure of the matrix elements in the cell
array depend on the typetree input as follows:

• For the dual-tree complex wavelet transforms, 'realdt' and 'cplxdt', fdf{1} is an N-by-2
matrix containing the lowpass (scaling) and highpass (wavelet) filters for the first tree and fdf{2}
is an N-by-2 matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second
tree.

• For the double-density dual-tree complex wavelet transforms, 'realdddt' and 'cplxdddt',
fdf{1} is an N-by-3 matrix containing the lowpass (scaling) and two highpass (wavelet) filters for
the first tree and fdf{2} is an N-by-3 matrix containing the lowpass (scaling) and two highpass
(wavelet) filters for the second tree.

df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as a matrix or cell array of matrices. Specify df as a matrix
when typetree is 'dwt' or 'ddt'. The size and structure of the matrix depend on the typetree
input as follows:

• 'dwt' — This is the critically sampled discrete wavelet transform. In this case, df is a two-column
matrix with the lowpass (scaling) filter in the first column and the highpass (wavelet) filter in the
second column. For the critically sampled orthogonal or biorthogonal DWT, the filters in df and
fdf must be identical.

• 'ddt' — This is the double-density wavelet transform. The double-density DWT is a three-channel
perfect reconstruction filter bank. df is a three-column matrix with the lowpass (scaling) filter in
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the first column and the two highpass (wavelet) filters in the second and third columns. In the
double-density wavelet transform, the single lowpass and two highpass filters constitute a three-
channel perfect reconstruction filter bank. This is equivalent to the three filters forming a tight
frame. For the double-density DWT, the filters in df and fdf must be identical.

Specify df as a 1-by-2 cell array of matrices when typetree is a dual-tree transform, 'realdt',
'cplxdt', 'realdddt', or 'cplxdddt'. For dual-tree transforms, the filters in fdf and df must be
different. The size and structure of the matrix elements in the cell array depend on the typetree
input as follows:

• For the dual-tree wavelet transforms, 'realdt' and 'cplxdt', df{1} is an N-by-2 matrix
containing the lowpass (scaling) and highpass (wavelet) filters for the first tree and df{2} is an N-
by-2 matrix containing the lowpass (scaling) and highpass (wavelet) filters for the second tree.

• For the double-density dual-tree complex wavelet transforms, 'realdddt' and 'cplxdddt',
df{1} is an N-by-3 matrix containing the lowpass (scaling) and two highpass (wavelet) filters for
the first tree and df{2} is an N-by-3 matrix containing the lowpass (scaling) and two highpass
(wavelet) filters for the second tree.

fname — Filter name
character vector | string scalar

Filter name, specified as a character vector or string scalar. For the critically sampled DWT, specify
any valid orthogonal or biorthogonal wavelet filter. See wfilters for details. For the redundant
wavelet transforms, see dtfilters for valid filter names.

fname1 — First-stage filter name
character vector | string scalar

First-stage filter name, specified as a character vector or string scalar. Specifying a first-level filter
that is different from the wavelet and scaling filters in subsequent levels is valid and necessary only
with the dual-tree wavelet transforms, 'realdt', 'cplxdt', 'realdddt', and 'cplxdddt'.

fname2 — Filter name for stages > 1
character vector | string scalar

Filter name for stages > 1, specified as a character vector or string scalar. Specifying a different filter
for stages > 1 is valid and necessary only with the dual-tree wavelet transforms, 'realdt',
'cplxdt', 'realdddt', and 'cplxdddt'.

Output Arguments
wt — Wavelet transform
structure

Wavelet transform, returned as a structure with these fields:

type — Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition used in the analysis returned as one of 'dwt', 'ddt', 'realdt',
'cplxdt', 'realdddt', or 'cplxdddt'. 'dwt' is the critically sampled DWT. 'ddt' produces a
double-density wavelet transform with one scaling and two wavelet filters for both row and column
filtering. 'realdt' and 'cplxdt' produce oriented dual-tree wavelet transforms consisting of 2 and
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4 separable wavelet transforms. 'realdddt' and 'cplxdddt' produce double-density dual-tree
wavelet transforms consisting of two and four separable wavelet transforms.

level — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, returned as a positive integer.

filters — Decomposition (analysis) and reconstruction (synthesis) filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, returned as a structure with these
fields:

FDf — First-stage analysis filters
matrix | cell array

First-stage analysis filters, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms,
or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the
matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-
by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third
columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the first-stage analysis filters for the corresponding tree.

Df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the analysis filters for the corresponding tree.

FRf — First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf — Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, returned as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
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filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage analysis filters for the corresponding tree.

cfs — Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and
structure of the matrix elements of the cell array depend on the type of wavelet transform, typetree
as follows:

• 'dwt' — cfs{j}(:,:,d)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,d)

• j = 1,2,... level is the level.
• d = 1,2,3,4,5,6,7,8 is the orientation.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realdt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:,k) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:,k,m) are the lowpass, or scaling, coefficients.

• 'realdddt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3,4,5,6,7,8 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:,k) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• d = 1,2,3,4,5,6,7,8 is the orientation.
• k = 1,2 is the wavelet transform tree.
• m = 1,2 are the real and imaginary parts.
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• cfs{level+1}(:,:,k,m) are the lowpass, or scaling, coefficients.

Each orientation corresponds to a particular subband. The double-density transforms 'ddt',
'realdddt', and 'cplxdddt' generate wavelet coefficients of eight orientations. The other
transforms, 'dwt', 'realdt', and 'cplxdt' generate wavelet coefficients of three orientations.
The correspondence to subbands is as follows.

typetree Orientations
'dwt', 'realdt', 'cplxdt' 'L' and 'H', denote the lowpass and highpass filters,

respectively.

• d=1: 'LH' subband
• d=2: 'HL' subband
• d=3: 'HH' subband

'ddt', 'realdddt', 'cplxdddt' 'Lo', 'H1', and 'H2' denote the lowpass and two
highpass filters, respectively.

• d=1: 'Lo H1' subband
• d=2: 'Lo H2' subband
• d=3: 'H1 Lo' subband
• d=4: 'H1 H1' subband
• d=5: 'H1 H2' subband
• d=6: 'H2 Lo' subband
• d=7: 'H2 H1' subband
• d=8: 'H2 H2' subband

sizes — Sizes of components
integer-valued matrix

Sizes of components in cfs, returned as an N-by-2 integer-valued matrix. The value of N depends on
the level of wavelet decomposition and the type of wavelet decomposition: N = 2 + level × (number
of orientations).

• cfs(1,:) = dimensions of input image.
• cfs(2+level,:) = dimensions of scaling coefficients.
• cfs(1+no×(i–1)+(1:no),:) = dimensions of level i detail coefficients, where no is the

number of orientations.

Version History
Introduced in R2013b

See Also
dddtree | dddtreecfs | dtfilters | idddtree2 | dualtree | dualtree2

Topics
“Dual-Tree Complex Wavelet Transforms”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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“Critically Sampled and Oversampled Wavelet Filter Banks”
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deletelift
Delete elementary lifting steps

Syntax
lsn = deletelift(lscheme)
lsn = deletelift(lscheme,loc)

Description
lsn = deletelift(lscheme) deletes the last elementary lifting step from the lifting scheme lsc.

lsn = deletelift(lscheme,loc) deletes the elementary lifting steps at the positions specified
by loc.

Examples

Delete Elementary Lifting Steps

Create a lifting scheme associated with the db3 wavelet.

lsc = liftingScheme('Wavelet','db3')

lsc = 
      Wavelet               : 'db3' 
     LiftingSteps          : [4 × 1] liftingStep 
     NormalizationFactors  : [2.3155 0.4319] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -2.4255
        MaxOrder: 0

            Type: 'update'
    Coefficients: [-0.0793 0.3524]
        MaxOrder: 1

            Type: 'predict'
    Coefficients: [2.8953 -0.5614]
        MaxOrder: -1

            Type: 'update'
    Coefficients: 0.0198
        MaxOrder: 2

The lifting scheme has four elementary lifting steps. Delete the second step.

lsc2 = deletelift(lsc,2)
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lsc2 = 
      Wavelet               : 'custom' 
     LiftingSteps          : [3 × 1] liftingStep 
     NormalizationFactors  : [2.3155 0.4319] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -2.4255
        MaxOrder: 0

            Type: 'predict'
    Coefficients: [2.8953 -0.5614]
        MaxOrder: -1

            Type: 'update'
    Coefficients: 0.0198
        MaxOrder: 2

Input Arguments
lscheme — Lifting scheme
liftingScheme object

Lifting scheme, specified as a liftingScheme object.

loc — Positions
positive integer | vector

Positions of the elementary lifting steps, specified as a positive integer or vector of positive integers
specified in the range [1,N], where N is the number of steps in the lifting scheme.
Example: lschemeB = deletelift(lschemeA,[2 4]) deletes the second and fourth steps from
the lifting scheme lschemeA.
Data Types: double

Output Arguments
lsn — Lifting scheme
liftingScheme object

Lifting scheme, returned as a liftingScheme object.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
liftingStep | liftingScheme | addlift
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degree
Degree of Laurent polynomial

Syntax
deg = degree(P)

Description
deg = degree(P) returns the degree of the Laurent polynomial P.

If P(z) is a Laurent polynomial P(z) = ∑
k = m

n
Ckzk, where m and n are integers, the degree of P(z) is n-

m.

Examples

Degree of Laurent Polynomials

Create two Laurent polynomials:

• a(z) = z − 1
• b(z) = − 2z3 + 6z2− 7z + 2

a = laurentPolynomial(Coefficients=[1 -1],MaxOrder=1);
b = laurentPolynomial(Coefficients=[-2 6 -7 2],MaxOrder=3);

Multiply a(z) and b(z). Confirm the degree of the product is equal to the sum of the degrees of a(z)
and b(z).

ab = a*b;
degree(ab)

ans = 4

degree(a)+degree(b)

ans = 4

Input Arguments
P — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.
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Output Arguments
deg — Degree
nonnegative integer

Degree of Laurent polynomial, returned as a nonnegative integer.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
laurentMatrix | laurentPolynomial
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depo2ind
Node depth-position to node index

Syntax
N = depo2ind(ORD,[D P])

Description
depo2ind is a tree-management utility.

For a tree of order ORD, N = depo2ind(ORD,[D P]) computes the indices N of the nodes whose
depths and positions are encoded within [D,P].

The nodes are numbered from left to right and from top to bottom. The root index is 0.

D and P are column vectors. The values of depths D and positions P must be such that D ≥0 and 0≤ P
≤ ORDD-1.

Output indices N are such that 0 ≤ N < (ORDmax(D)-1)/ORD–1.

Note that for a column vector X, we have depo2ind(O,X) = X.

Examples

Convert Depth-Position to Node Index

Create a binary tree of depth 3. Plot the tree.

ord = 2;
t = ntree(ord,3);
plot(t)
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Merge the nodes of indices 4 and 5. Plot the new tree.

t = nodejoin(t,5);
t = nodejoin(t,4);
figure
plot(t)
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List the depth-position of the tree nodes.

aln_depo = allnodes(t,'deppos')

aln_depo = 11×2

     0     0
     1     0
     1     1
     2     0
     2     1
     2     2
     2     3
     3     0
     3     1
     3     6
      ⋮

Convert the depth-position to index.

aln_ind = depo2ind(ord,aln_depo)
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aln_ind = 11×1

     0
     1
     2
     3
     4
     5
     6
     7
     8
    13
      ⋮

Version History
Introduced before R2006a

See Also
ind2depo
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det
Laurent matrix determinant

Syntax
d = det(A)

Description
d = det(A) returns the determinant of the Laurent matrix A.

Examples

Laurent Matrix Determinant

Create two Laurent polynomials:

• a(z) = 6z−2

• b(z) = z3/6

lpA = laurentPolynomial(Coefficients=[6],MaxOrder=-2);
lpB = laurentPolynomial(Coefficients=[1/6],MaxOrder=3);

Create the Laurent matrix 
a z 1

1 b z
.

lmat = laurentMatrix(Elements={lpA 1; 1 lpB});

Obtain the determinant of lmat. Confirm the determinant is z − 1.

d = det(lmat)

d = 
  laurentPolynomial with properties:

    Coefficients: [1 -1]
        MaxOrder: 1

Input Arguments
A — Laurent matrix
laurentMatrix object

Laurent matrix, specified as a laurentMatrix object.
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Output Arguments
d — Determinant
laurentPolynomial object

Determinant of the Laurent matrix, returned as a laurentPolynomial object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
inverse

Objects
laurentMatrix | laurentPolynomial
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detcoef
1-D detail coefficients

Syntax
D = detcoef(C,L)
D = detcoef(C,L,N)
D = detcoef(C,L,N,'cells')

[D1,…,Dp] = detcoef(C,L,N)

Description
D = detcoef(C,L) extracts the detail coefficients at the coarsest scale from the wavelet
decomposition structure [C, L]. See wavedec for more information on C and L.

D = detcoef(C,L,N) extracts the detail coefficients at the level or levels specified by N.

D = detcoef(C,L,N,'cells') returns a cell array containing the detail coefficients. A minimum
of two levels must be specified. The ith element of D contains the detail coefficients at the ith specified
level.

• If length(N)>1, the D = detcoef(C,L,N) is equivalent to D = detcoef(C,L,N,'cells').
• D = detcoef(C,L,'cells') is equivalent to D = detcoef(C,L,[1:NMAX]), where NMAX =

length(L)-2.

[D1,…,Dp] = detcoef(C,L,N) extracts the detail coefficients at the levels specified by N. The
length of N must equal the number of output arguments.

Examples

Detail Coefficients for 1-D Signal

This example shows how to obtain and plot the detail coefficients for an electrical current signal. This
example uses zero-padding (see dwtmode).

Load the signal and select the first 3920 samples.

origmode = dwtmode('status','nodisplay');
dwtmode('zpd','nodisplay')

load leleccum; 
s = leleccum(1:3920);

Perform the decomposition at level 3 using db1. Extract the detail coefficients at levels 1, 2, and 3
from the decomposition structure.

[c,l] = wavedec(s,3,'db1');
[cd1,cd2,cd3] = detcoef(c,l,[1 2 3]);
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Plot the original signal.

plot(s)
title('Original signal')
ylim([0 1000])

Plot the level 3 detail coefficients.

plot(cd3)
title('Level 3 detail coefficients (cd3)')
ylim([-60 60])
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Plot the level 2 detail coefficients.

plot (cd2)
title('Level 2 detail coefficients (cd2)')
ylim([-60 60])
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Plot the level 1 detail coefficients.

plot (cd1)
title('Level 1 detail coefficients (cd1)')
ylim([-60 60])
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Restore the original extension mode.

dwtmode(origmode,'nodisplay')

Input Arguments
C — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector, specified as a real-valued vector. The vector C is the output of
wavedec.
Data Types: single | double

L — Bookkeeping vector
vector of positive integers

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector L contains the
number of coefficients by level. The bookkeeping vector is used to parse the coefficients in the
wavelet decomposition vector C. The vectors C and L are the outputs of wavedec.
Data Types: single | double

N — Detail level
positive integer | vector of positive integers
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Detail level to extract from the wavelet decomposition, specified as a positive integer or a vector of
positive integers.

• If N is an integer, then N must be an integer such that 1 ≤ N ≤ NMAX, where NMAX =
length(L)-2.

• If N is a vector of integers, then N(j) must be an integer such that 1 ≤ N(j) ≤ NMAX, where j
= 1,…,length(N).

Output Arguments
D — Detail coefficients
real-valued vector | cell array

Detail coefficients, returned as a real-valued vector or a cell array. If D is a cell array, the ith element
of D are the detail coefficients at the level specified by the ith element of N.

D1,…,Dp — Detail coefficients
real-valued vectors

Detail coefficients, returned as set of real-valued vectors. The ith output argument are the detail
coefficients at the level specified by the corresponding element of N.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.
• For gpuArray inputs, detcoef supports only these syntaxes:

• D = detcoef(C,L)
• D = detcoef(C,L,N)

See Also
appcoef | wavedec
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detcoef2
2-D detail coefficients

Syntax
y = detcoef2(o,c,s,n)
[h,v,d] = detcoef2('all',c,s,n)
y = detcoef2('compact',c,s,n)

Description
y = detcoef2(o,c,s,n) extracts from the wavelet decomposition structure [c,s] the detail
coefficients of orientation o at level n. For more information on c and s, see wavedec2.

[h,v,d] = detcoef2('all',c,s,n) returns the horizontal h, vertical v, and diagonal d detail
coefficients at level n.

detcoef2('a',c,s,n) is equivalent to detcoef2('all',c,s,n).

y = detcoef2('compact',c,s,n) returns all the detail coefficients stored row-wise.

detcoef2('c',c,s,n) is equivalent to detcoef2('compact',c,s,n).

If [H,V,D] = detcoef2('all',c,s,N) and Y = detcoef2('compact',c,s,N), then Y =
[H(:)' V(:)' D(:)'].

Examples

Extract Detail Coefficients From Image

This example shows how to extract detail coefficients from a discrete wavelet analysis of an image.
This example uses zero-padding.

Set the extension mode to zero-padding. Load and display an image.

origmode = dwtmode('status','nodisplay');
dwtmode('zpd','nodisplay');

load woman
imagesc(X)
colormap(gray)
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Obtain the wavelet decomposition of the image down to level two using the Haar wavelet.

[c,s] = wavedec2(X,2,'haar');
size(X)

ans = 1×2

   256   256

size(c)

ans = 1×2

           1       65536

s

s = 4×2

    64    64
    64    64
   128   128
   256   256

Extract the detail coefficients at level 2 in each orientation from the wavelet decomposition structure
[c,s]. Display the diagonal detail coefficients.
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[chd2,cvd2,cdd2] = detcoef2('all',c,s,2);
size(cdd2)

ans = 1×2

    64    64

imagesc(cdd2)
colormap(gray)

Extract the detail coefficients at level 1 in each orientation. Display the vertical detail coefficients.

[chd1,cvd1,cdd1] = detcoef2('all',c,s,1);
size(cvd1)

ans = 1×2

   128   128

imagesc(cvd1)
colormap(gray)

1 Functions

1-318



Restore the original extension mode.

dwtmode(origmode,'nodisplay')

Input Arguments
o — Orientation
'h' | 'v' | 'd'

Orientation of detail coefficients, specified as:

• 'h' — Horizontal
• 'v' — Vertical
• 'd' — Diagonal

c — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector, specified as a real-valued vector. The vector c contains the
approximation and detail coefficients organized by level. The bookkeeping matrix s is used to parse c.
See wavedec2.
Data Types: double
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s — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix, specified as an integer-valued matrix. The matrix s contains the dimensions of
the wavelet coefficients by level and is used to parse the wavelet decomposition vector c. See
wavedec2.
Data Types: double

n — Detail level
integer

Detail level to extract from the wavelet decomposition, specified as an integer. The integer n must be
in the interval [1,size(s,1)-2].

Output Arguments
y — Detail coefficients
vector | matrix

Detail coefficients, returned as a vector or matrix.
Data Types: double

h — Horizontal detail coefficients
matrix

Horizontal detail coefficients, returned as a matrix.
Data Types: double

v — Vertical detail coefficients
matrix

Vertical detail coefficients, returned as a matrix.
Data Types: double

d — Diagonal detail coefficients
matrix

Diagonal detail coefficients, returned as a matrix.
Data Types: double

Tips
• If c and s are obtained from an indexed image analysis or a truecolor image analysis, y is an m-by-

n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.
• For gpuArray inputs, detcoef2 supports only these syntaxes:

• y = detcoef2(o,c,s,n)
• [h,v,d] = detcoef2('all',c,s,n)

See Also
appcoef2 | wavedec2 | waverec2
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disp
WPTREE information

Syntax
disp(T)

Description
disp(T) displays the content of the WPTREE object T.

Examples
% Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
disp(t)

 Wavelet Packet Object Structure 
=================================
 Size of initial data       : [1 1000]
 Order                      : 2
 Depth                      : 2
 Terminal nodes             : [3  4  5  6]
--------------------------------------------------
 Wavelet Name               : db2
 Low Decomposition filter   : [-0.1294  0.2241  0.8365  0.483]
 High Decomposition filter  : [ -0.483  0.8365 -0.2241 -0.1294]
 Low Reconstruction filter  : [  0.483  0.8365  0.2241 -0.1294]
 High Reconstruction filter : [-0.1294 -0.2241  0.8365 -0.483]
--------------------------------------------------
 Entropy Name               : shannon
 Entropy Parameter          : 0
--------------------------------------------------

Version History
Introduced before R2006a

See Also
get | read | set | write
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disp
Display lifting scheme

Syntax
disp(lscheme)

Description
disp(lscheme) displays the properties of the lifting scheme lscheme:

• Wavelet name
• Lifting steps
• Lowpass filter coefficients
• Normalization factors

The function also displays the properties of each lifting:

• Type of step
• Laurent polynomial coefficients
• Maximum order of the corresponding Laurent polynomial

Note To display a lifting scheme created using liftwave, see displs.

Examples

Display Lifting Scheme Properties

Create a lifting scheme associated with the db3 wavelet.

lsc = liftingScheme('Wavelet','db3');

Display the lifting scheme properties.

disp(lsc)

      Wavelet               : 'db3' 
     LiftingSteps          : [4 × 1] liftingStep 
     NormalizationFactors  : [2.3155 0.4319] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -2.4255
        MaxOrder: 0

            Type: 'update'
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    Coefficients: [-0.0793 0.3524]
        MaxOrder: 1

            Type: 'predict'
    Coefficients: [2.8953 -0.5614]
        MaxOrder: -1

            Type: 'update'
    Coefficients: 0.0198
        MaxOrder: 2

Input Arguments
lscheme — Lifting scheme
liftingScheme object

Lifting scheme, specified as a liftingScheme object.

Version History
Introduced in R2021a

See Also
liftingScheme
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displs
(To be removed) Display lifting scheme

Note displs will be removed in a future release. Use disp and liftingScheme. For more
information, see “Compatibility Considerations”.

Syntax
S = displs(LS,FRM)

Description
S = displs(LS,FRM) returns the character array describing the lifting scheme LS. The formatting
operator FRM (see sprintf) builds S.

displs(LS) is equivalent to displs(LS,'%12.8f').

Examples

Display Lifting Scheme

Start with the Haar wavelet and get the corresponding lifting scheme.

lshaar = liftwave('haar');

Visualized the lifting scheme.

displs(lshaar);

lshaar = {...                        
'd'             [ -1.00000000]  [0]  
'p'             [  0.50000000]  [0]  
[  1.41421356]  [  0.70710678]  []   
};                                   

Add a primal elementary lifting step to the lifting scheme. Display the resulting scheme.

els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...                                     
'd'             [ -1.00000000]              [0]  
'p'             [  0.50000000]              [0]  
'p'             [ -0.12500000  0.12500000]  [0]  
[  1.41421356]  [  0.70710678]              []   
};                                               
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Input Arguments
LS — Lifting scheme
lifting scheme

Lifting scheme associated with a wavelet. See liftwave.
Example: LS = liftwave('db4') returns the lifting scheme associated with the Daubechies
wavelet db4.

FRM — Formatting operator
formatting operator

Formatting operator used to build LS. See sprintf.
Example: '%12.3f'

Version History
Introduced before R2006a

R2021a: displs will be removed
Not recommended starting in R2021a

displs will be removed in a future release. Use disp and liftingScheme. To update your code,
follow these steps:

1 Create a lifting scheme using liftingScheme.
2 Display the lifting scheme using disp.

See Also
disp | liftingScheme
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dispMat
Display Laurent matrix

Syntax
dispMat(A)

Description
dispMat(A) displays the Laurent matrix A.

Examples

Display Laurent Matrix

Create two Laurent polynomials:

• a(z) = z2

• b(z) = z−3

lpA = laurentPolynomial(MaxOrder=2);
lpB = laurentPolynomial(MaxOrder=-3);

Create the Laurent matrix 
a z 5

3 b z
.

lmat = laurentMatrix(Elements={lpA,5;3,lpB});

Display the matrix.

dispMat(lmat)

| z^( 2 )    5.00e+00 |
|                                        | 
| 3.00e+00   z^( -3 ) |

Input Arguments
A — Laurent matrix
laurentMatrix object

Laurent matrix, specified as a laurentMatrix object.

Version History
Introduced in R2021b
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See Also
Objects
laurentMatrix | laurentPolynomial
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dlcwt
Deep learning continuous wavelet transform

Syntax
cfs = dlcwt(x,psifvec,filteridx)
cfs = dlcwt(x,psifvec,filteridx,DataFormat=fmt)

Description
cfs = dlcwt(x,psifvec,filteridx) returns the deep learning continuous wavelet transform
(CWT) of x. psifvec is a real-valued CWT filter bank, and filteridx is a bookkeeping matrix.
dlcwt requires Deep Learning Toolbox.

cfs = dlcwt(x,psifvec,filteridx,DataFormat=fmt) specifies the data format of x.

Examples

Deep Learning Continuous Wavelet Transform of ECG Signal

Load the ECG signal. The sampling frequency of the data is 180 hertz. Save the signal as a dlarray
in "CBT" format.

load wecg
Fs = 180;
sig = dlarray(reshape(wecg,1,1,[]),"CBT");

Create a CWT filter bank that is compatible with the signal. Specify periodic boundary conditions.

fb = cwtfilterbank(SignalLength=length(sig),Boundary="periodic");

Use the wt object function to obtain the CWT coefficients of wecg. Also obtain the scaling
coefficients. Concatenate the coefficients.

[cfsFB,~,~,scalcfs] = wt(fb,wecg);
allCFS = [cfsFB ; scalcfs];
whos allCFS

  Name         Size                Bytes  Class     Attributes

  allCFS      82x2048            2686976  double    complex   

Use the cwtfilters2array function to convert the filter bank to a reduced-weight tensor suitable
for deep learning. Include the lowpass (scaling) filter in the tensor.

[psifvec,filteridx] = cwtfilters2array(fb,IncludeLowpass=true);

Obtain the deep learning CWT of the signal.

cfsD = dlcwt(sig,psifvec,filteridx);
dims(cfsD)
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ans = 
'SCBT'

By default, the output is a dlarray object in "SCBT" format. The spatial dimension corresponds to
frequency. Convert the output to a numeric array. Permute the dimensions of the output to
correspond with "STCB" format. The result will be a 2-D matrix because there is only one channel
and one batch.

cfs = extractdata(cfsD);
cfs = permute(cfs,[1 4 2 3]);
whos cfs

  Name       Size                Bytes  Class     Attributes

  cfs       82x2048            2686976  double    complex   

Confirm the CWT and deep learning CWT of the signal are equal.

max(abs(cfs(:)-allCFS(:)))

ans = 1.0235e-09

Deep Learning Continuous Wavelet Transform of Multisignal

Load the Espiga3 EEG dataset. The data consists of 23 channels of EEG sampled at 200 Hz. There are
995 samples in each channel. Save the multisignal as a dlarray, specifying the dimensions in order.
dlarray permutes the array dimensions to the "CBT" shape expected by a deep learning network.

load Espiga3
Fs = 200;
[N,nch] = size(Espiga3);
x = dlarray(Espiga3,"TCB");
whos Espiga3 x

  Name           Size                Bytes  Class      Attributes

  Espiga3      995x23               183080  double               
  x             23x1x995            183110  dlarray              

Create a CWT filter bank that is compatible with the signal. Specify periodic boundary conditions.
Then use the cwtfilters2array function to convert the filter bank to a reduced-weight tensor
suitable for deep learning.

fb = cwtfilterbank(SignalLength=N,Boundary="periodic");
[psifvec,filteridx] = cwtfilters2array(fb);

Obtain the deep learning CWT of the multisignal.

cfsD = dlcwt(x,psifvec,filteridx);
dims(cfsD)

ans = 
'SCBT'
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By default, the output is a dlarray object in "SCBT" format. The spatial dimension corresponds to
frequency. Convert the output to a numeric array. Permute the dimensions of the output to
correspond with "STCB" format. The result will be a 3-D array because there is only one batch.

cfs = extractdata(cfsD);
cfs = permute(cfs,[1 4 2 3]);
whos cfs

  Name       Size                   Bytes  Class     Attributes

  cfs       71x995x23            25997360  double    complex   

Obtain the center frequencies from the original filter bank. Display the scalogram of a channel.

frq = centerFrequencies(fb);
channel = 4;
cfsChannel = cfs(:,:,channel);
tms = (0:N-1)/Fs;
surface(tms,frq,abs(cfsChannel))
set(gca,"yscale","log")
axis tight
shading flat
title("Scalogram")
xlabel("Time (s)")
ylabel("Frequency (Hz)")
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Input Arguments
x — Input data
dlarray object | numeric array

Input data, specified as a real-valued unformatted dlarray object, a formatted dlarray in "CBT"
format, or a numeric array. If x is an unformatted dlarray or a numeric array, you must specify the
'DataFormat' as some permutation of "CBT".
Data Types: single | double

psifvec — CWT filter bank
array

CWT filter bank, specified as a 1-by-1-by-Nr tensor, where Nr is the number of weights in the
reduced-weight CWT filter bank. Use cwtfilters2array to obtain psifvec.

You can use array2cwtfilters to reconstruct the 2-D CWT filter bank from the outputs of
cwtfilters2array.
Data Types: double

filteridx — Bookkeeping matrix
matrix

Bookkeeping matrix, specified as a matrix. The dlcwt function uses filteridx to index into the
data x and filter bank psifvec in order to compute the CWT. Use cwtfilters2array to obtain
filteridx.
Data Types: uint32

fmt — Input data format
character vector | string scalar

Input data format of x, specified as some permutation of "CBT". This argument is invalid if x is a
formatted dlarray.

Each character in this argument must be one of these labels:

• C — Channel
• B — Batch
• T — Time

The dlcwt function accepts any permutation of "CBT". Each element of the argument labels the
matching dimension of x.
Example: w = dlcwt(x,psifvec,filteridx,DataFormat="BCT") specifies the data format of
the unformatted dlarray object as "BCT".
Data Types: char | string

Output Arguments
cfs — Continuous wavelet transform
formatted dlarray object | unformatted dlarray object
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Continuous wavelet transform of x, returned as a dlarray object.

• If x is a formatted dlarray object, cfs is in "SCBT" format. The spatial dimension corresponds
to scale, or equivalently the center frequency of the wavelet bandpass filters. The channel, batch,
and time dimensions correspond to the channel, batch, and time dimensions of x.

• If x is an unformatted dlarray object or numeric array, cfs is an unformatted dlarray object.
The dimension order in cfs is "SCBT".

Version History
Introduced in R2022b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
cwt | cwtfilters2array | array2cwtfilters | dlmodwt | dlstft

Objects
cwtLayer | cwtfilterbank | modwtLayer | stftLayer
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dlmodwt
Deep learning maximal overlap discrete wavelet transform and multiresolution analysis

Syntax
w = dlmodwt(x)
w = dlmodwt(x,Lo,Hi)
w = dlmodwt(x,Lo,Hi,level)
[w,mra] = dlmodwt( ___ )
[ ___ ] = dlmodwt( ___ ,Name=Value)

Description
w = dlmodwt(x) returns the maximal overlap discrete wavelet transform (MODWT) of x using the
lowpass (scaling) and highpass (wavelet) filters associated with the Daubechies least-asymmetric
wavelet with four vanishing moments ("sym4") . By default, dlmodwt uses periodic boundary
extension and computes the MODWT to the maximum level. dlmodwt requires Deep Learning
Toolbox.

w = dlmodwt(x,Lo,Hi) uses the scaling filter Lo and wavelet filter Hi in the MODWT computation.

w = dlmodwt(x,Lo,Hi,level) computes the MODWT down to the level specified in level.

[w,mra] = dlmodwt( ___ ) returns the multiresolution analysis (MRA) of the MODWT of x.

[ ___ ] = dlmodwt( ___ ,Name=Value) specifies options using one or more name-value arguments
in addition to the input arguments in previous syntaxes. For example, BOUNDARY="periodic"
specifies periodic extension at the boundary.

Examples

Deep Learning Maximal Overlap Discrete Wavelet Transform

Load the 23 channel Espiga3 EEG data set. The data is sampled at 200 Hz. There are 995 samples in
each channel. The data set is arranged as a 995-by-23(-by-1) array.

load Espiga3

Store the signal in an unformatted deep learning array.

x = dlarray(Espiga3);

Obtain the MODWT and MRA of the data. Specify the data format as 'TCB'.

[wt,mra] = dlmodwt(x,DataFormat='TCB');

Confirm that both wt and mra are unformatted dlarray objects.

whos wt mra
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  Name       Size                    Bytes  Class      Attributes

  mra       10x23x1x995            1830800  dlarray              
  wt        10x23x1x995            1830800  dlarray              

dims(wt)

ans =

  0x0 empty char array

dims(mra)

ans =

  0x0 empty char array

Plot the reconstruction based on the MRA. Compare with the original data set.

xrec = sum(mra);
subplot(2,1,1)
plot(Espiga3)
title("Original EEG Dataset")
subplot(2,1,2)
plot(extractdata(squeeze(xrec))')
title("MODWT MRA Reconstruction")
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Input Arguments
x — Input array
dlarray object | numeric array

Input array, specified as an unformatted dlarray, a formatted dlarray in 'CBT' format, or a
numeric array.

If x is a numeric array or an unformatted dlarray, x must be compatible with the 'CBT' format. You
must specify the 'DataFormat' as some permutation of 'CBT'. x must have at least two samples
along the time dimension.
Example: dlarray(cos(pi./[4;2]*(0:159)),'CTB') and dlarray(cos(pi./
[4;2]*(0:159))','TCB') both specify one batch observation of a two-channel sinusoid in the
'CBT' format.
Data Types: single | double
Complex Number Support: Yes

Lo,Hi — Filters
numeric vectors | dlarray objects

Filters used in the MODWT computation, specified as a pair of even-length real-valued numeric
vectors or unformatted dlarray objects. Lo is the scaling (lowpass) filter, and Hi is the wavelet
(highpass) filter.

In order to satisfy the MODWT requirements, Lo and Hi must be the lowpass and highpass filters
corresponding to an orthogonal wavelet. The wavelet manager wavemngr designates orthogonal
wavelets as type 1 wavelets.

Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin ("beyl"),
Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han linear-phase
moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and Vaidyanathan ("vaid").
For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1). For example, wavemngr("type","db6") returns 1.

If you have Lo and Hi as numeric vectors, you can use isorthwfb to determine orthogonality:
[tf,checks] = isorthwfb(Lo,Hi).

If unspecified, Lo and Hi default to: [~,~,Lo,Hi] = wfilters("sym4").

Note You can specify a pair of empty inputs for Lo and Hi. In this case, the dlmodwt function uses
the default filters. For example, dlmodwt(x,[],[]) is equivalent to dlmodwt(x). For more
information, see Version History on page 1-338.

Data Types: single | double

level — Transform level
floor(log2(T)), where T is the size of x along the time dimension (default) | positive integer

Transform level of the MODWT, specified as a positive integer less than or equal to
floor(log2(T)), where T is the size of x along the time dimension. If unspecified, dlmodwt
computes the MODWT down to level floor(log2(T)).
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Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: w = dlmodwt(x,DataFormat='TCB') specifies the data format as 'TCB'.

BOUNDARY — Extension method
"periodic" (default) | "reflection"

Extension method to apply at the boundary in the computation of the MODWT, specified as one of
these:

• "periodic" — Extend signal periodically
• "reflection" — Extend signal by reflection. The function computes the MODWT using a
reflected signal along the T dimension twice the original length of x. The MODWT transform
coefficients are also twice the length of the input.

Example: w = dlmodwt(x,DataFormat="TCB",BOUNDARY="reflection") extends the signal by
reflection.

DataFormat — Data format of input
character vector | string scalar

Data format of input x, specified as some permutation of 'CBT'. This argument is valid only if x is
unformatted.

Each character in this argument must be one of these labels:

• C — Channel
• B — Batch
• T — Time

The dlmodwt function accepts any permutation of 'CBT'. Each element of the argument labels the
matching dimension of x.
Example: w = dlmodwt(x,DataFormat="BCT") specifies the data format of the unformatted
dlarray object as "BCT".
Data Types: char | string

Output Arguments
w — Maximal overlap discrete wavelet transform
formatted dlarray object | unformatted dlarray object

Maximal overlap discrete wavelet transform of x, returned as a 'SCBT' formatted dlarray. w
contains the wavelet coefficients and final-level scaling coefficients of x. The MODWT partitions the
energy of the signal across the various scales and scaling coefficients. For more information, see
modwt.

The size of w depends on the boundary extension method used in the computation of the MODWT.
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• If the signal is extended periodically, then w is level+1-by-C-by-B-by-T.
• If the signal is extended by reflection, then w is level+1-by-C-by-B-by-2×T.

level is the transform level of the MODWT. C and B correspond to the channel and batch
dimensions, respectively. The kth row of w contains the wavelet coefficients for the kth level. The
(level+1)th row of w contains the approximation coefficients.

If you specify 'DataFormat', w is an unformatted dlarray.

mra — Multiresolution analysis
formatted dlarray object | unformatted dlarray object

Multiresolution analysis of the MODWT of x, returned as a 'SCBT' formatted dlarray. mra contains
the projections of x onto wavelet subspaces and a scaling space. For more information, see
modwtmra.

mra is level+1-by-C-by-B-by-T, where level is the transform level of the MODWT. The kth row of
mra contains the details for the kth level. The (level+1)th row of mra contains the levelth level
smooth.

If you specify 'DataFormat', mra is an unformatted dlarray compatible with 'SCBT' format.

To learn more about the differences between the MODWT and the MRA, see “Comparing MODWT
and MODWTMRA” on page 1-1035.

Version History
Introduced in R2022a

R2022b: dlmodwt behavior change
Behavior changed in R2022b

You can now specify a pair of empty inputs for the lowpass and highpass filters. The dlmodwt
function continues to generate an error if one filter input is empty and the other filter input is
nonempty.

Functionality Previous Behavior New Behavior
w = dlmodwt(x,[],[]) Errors w = dlmodwt(x,[],[])

is equivalent to
w = dlmodwt(x)

w = dlmodwt(x,[],
[],level)

Errors w = dlmodwt(x,[],
[],level)
is equivalent to
w =
dlmodwt(x,Lo,Hi,level),
where [~,~,Lo,Hi] =
wfilters('sym4')

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
modwt | modwtmra

Objects
modwtLayer | dlarray
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drawtree
(To be removed) Draw wavelet packet decomposition tree (GUI)

Note Wavelet Analyzer will be removed in a future release. drawtree is part of Wavelet Analyzer.
For recommended alternatives, see Version History.

Syntax
drawtree(T)
F = drawtree(T)
drawtree(T,F)

Description
drawtree(T) draws the wavelet packet tree T, and F = drawtree(T) also returns the figure's
handle.

For an existing figure F produced by a previous call to the drawtree function, drawtree(T,F) draws
the wavelet packet tree T in the figure whose handle is F.

Examples
x   = sin(8*pi*[0:0.005:1]);
t   = wpdec(x,3,'db2');
fig = drawtree(t);

%---------------------------------------
% Use command line function to modify t.
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%---------------------------------------
t   = wpjoin(t,2);
drawtree(t,fig);

Version History
Introduced before R2006a

R2022b: To be removed
Warns starting in R2022b

The Wavelet Analyzer app is no longer recommended and will be removed in a future release.
drawtree is part of Wavelet Analyzer.

• For time-frequency analysis, use the Wavelet Time-Frequency Analyzer app.
• For wavelet signal denoising, use the Wavelet Signal Denoiser app.
• For signal multiresolution analysis, use the Signal Multiresolution Analyzer app.
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dtfilters
Analysis and synthesis filters for oversampled wavelet filter banks

Syntax
df = dtfilters(name)
[df,rf] = dtfilters(name)

Description
df = dtfilters(name) returns the decomposition (analysis) filters corresponding to name. These
filters are used most often as input arguments to dddtree and dddtree2.

[df,rf] = dtfilters(name) returns the reconstruction (synthesis) filters corresponding to name.

Examples

Filters for Complex Dual-Tree Wavelet Transform

Obtain valid filters for the complex dual-tree wavelet transform. The transform uses Farras nearly
symmetric filters for the first stage and Kingsbury Q-shift filters with 10 taps for subsequent stages.

Load the noisy Doppler signal. Obtain the filters for the first and subsequent stages of the complex
dual-tree wavelet transform. Demonstrate perfect reconstruction using the complex dual-tree wavelet
transform.

load noisdopp;
df = dtfilters("dtf2");
dt = dddtree("cplxdt",noisdopp,5,df{1},df{2});
xrec = idddtree(dt);
max(abs(noisdopp-xrec))

ans = 1.3323e-13

Filters for Double-Density Wavelet Transform

Obtain valid filters for the double-density wavelet transform.

Load the noisy Doppler signal. Obtain the filters for the double-density wavelet transform. The
double-density wavelet transform uses the same filters at all stages. Demonstrate perfect
reconstruction using the double-density wavelet transform.

df = dtfilters("filters1");
load noisdopp;
dt = dddtree("ddt",noisdopp,5,df,df);
xrec = idddtree(dt);
max(abs(noisdopp-xrec))

1 Functions

1-342



ans = 2.3803e-13

Dual-Tree and Double-Density Wavelet Transforms Using Filter Names and Filters

Load a 1-D signal.

load noisdopp
x = noisdopp;

"dwt" - Critically sampled discrete wavelet transform

The critically sampled discrete wavelet transform can be applied to 1-D and 2-D data. The filter can
be any valid orthogonal or biorthogonal wavelet name, or "farras".

Specify a valid filter name. Use dtfilters to obtain the corresponding decomposition filters.
Confirm the decomposition filters are returned as a two-column matrix.

fname = "db4";
df = dtfilters(fname);
df

df = 8×2

   -0.0106   -0.2304
    0.0329    0.7148
    0.0308   -0.6309
   -0.1870   -0.0280
   -0.0280    0.1870
    0.6309    0.0308
    0.7148   -0.0329
    0.2304   -0.0106

Use dddtree to obtain two wavelet decompositions of the 1-D signal. Use the filter name for the first
decomposition, and the filters for the second decomposition.

wtA = dddtree("dwt",x,3,fname);
wtB = dddtree("dwt",x,3,df,df);

Confirm the wavelet coefficients in the decompositions are equal.

for k=1:length(wtA.cfs)
    t = max(abs(wtA.cfs{k}(:)-wtB.cfs{k}(:)));
    fprintf("level %d maximum difference: %f\n",k,t)
end

level 1 maximum difference: 0.000000
level 2 maximum difference: 0.000000
level 3 maximum difference: 0.000000
level 4 maximum difference: 0.000000

Confirm the filters in both decompositions are equal.

max(abs(wtA.filters.FDf(:)-wtB.filters.FDf(:)))

ans = 0
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max(abs(wtA.filters.Df(:)-wtB.filters.Df(:)))

ans = 0

max(abs(wtA.filters.FRf(:)-wtB.filters.FRf(:)))

ans = 0

max(abs(wtA.filters.Rf(:)-wtB.filters.Rf(:)))

ans = 0

"ddt" - Double-density wavelet transform

The double-density wavelet transform can be applied to 1-D and 2-D data. Valid filter names for the
double-density wavelet transform are "filters1", "filters2", and "doubledualfilt".

Use dtfilters to obtain the filters corresponding to "filters1". Inspect the filters. Confirm the
decomposition filters are returned as a three-column matrix.

fname = "filters1";
df = dtfilters(fname);
df

df = 6×3

    0.1430   -0.0185   -0.0460
    0.5174   -0.0669   -0.1666
    0.6396   -0.0739    0.0031
    0.2443    0.0004    0.6776
   -0.0755    0.5811   -0.4681
   -0.0546   -0.4222         0

Use dddtree to obtain two wavelet decompositions of the 1-D signal. Use the filter name for the first
decomposition, and the filters for the second decomposition.

wtA = dddtree("ddt",x,3,fname);
wtB = dddtree("ddt",x,3,df,df);

Confirm the filters in both decompositions are equal.

max(abs(wtA.filters.FDf(:)-wtB.filters.FDf(:)))

ans = 0

max(abs(wtA.filters.Df(:)-wtB.filters.Df(:)))

ans = 0

max(abs(wtA.filters.FRf(:)-wtB.filters.FRf(:)))

ans = 0

max(abs(wtA.filters.Rf(:)-wtB.filters.Rf(:)))

ans = 0

Use dtfilters to obtain the filters corresponding to "doubledualfilt". Inspect the filters.
Confirm the decomposition filters are returned as 1-by-2 cell array consisting of three-column
matrices.
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fname = "doubledualfilt";
df = dtfilters(fname);
df

df=1×2 cell array
    {10x3 double}    {10x3 double}

Use dddtree to obtain two wavelet decompositions of the 1-D signal. Use the filter name for the first
decomposition, and the filters for the second decomposition.

wtA = dddtree("ddt",x,3,fname);
wtB = dddtree("ddt",x,3,df{1},df{2});

Confirm the filters in both decompositions are equal.

max(abs(wtA.filters.FDf(:)-wtB.filters.FDf(:)))

ans = 0

max(abs(wtA.filters.Df(:)-wtB.filters.Df(:)))

ans = 0

max(abs(wtA.filters.FRf(:)-wtB.filters.FRf(:)))

ans = 0

max(abs(wtA.filters.Rf(:)-wtB.filters.Rf(:)))

ans = 0

"realdt" - Real oriented dual-tree wavelet transform

The real oriented dual-tree wavelet transform can only be applied to 2-D data. Valid filter names are:

• Any orthogonal or biorthogonal wavelet name, but only as a first-stage filter.
• "dtfP", where P can equal 1, 2, 3, 4, or 5.
• "FSfarras", but only as a first-stage filter.
• "qshiftN", where N can equal 6, 10, 14, 16, or 18, for stages > 1.

Obtain a 2-D image.

x2 = x'*x;

Use dtfilters to obtain the decomposition filters corresponding to "dtf1". Confirm the filters are
returned as 1-by-2 cell array consisting of 1-by-2 cell arrays.

dtf = dtfilters("dtf1")

dtf=1×2 cell array
    {1x2 cell}    {1x2 cell}

Obtain the filters corresponding to "FSfarras" and "qshift6". Confirm the filters are returned as
1-by-2 cell array consisting of two-column matrices.

fs = dtfilters("FSfarras")
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fs=1×2 cell array
    {10x2 double}    {10x2 double}

qs = dtfilters("qshift6")

qs=1×2 cell array
    {10x2 double}    {10x2 double}

Confirm the dtf filters are equal to the fs and qs filters.

max(abs(dtf{1}{1}(:) - fs{1}(:)))

ans = 0

max(abs(dtf{1}{2}(:) - fs{2}(:)))

ans = 0

max(abs(dtf{2}{1}(:) - qs{1}(:)))

ans = 0

max(abs(dtf{2}{2}(:) - qs{2}(:)))

ans = 0

Use dddtree2 to obtain two realdt decompositions of the image. Use the filter name "dtf1" for
the first decomposition, and the filters fs and qs for the second decomposition. Confirm the wavelet
coefficients in both decompositions are equal.

wtA = dddtree2("realdt",x2,4,"dtf1");
wtB = dddtree2("realdt",x2,4,fs,qs);
for k=1:length(wtA.cfs)
    t = max(abs(wtB.cfs{k}(:)-wtA.cfs{k}(:)))
end

t = 0

t = 0

t = 0

t = 0

t = 0

"cplxdt" - Complex oriented dual-tree wavelet transform

The complex oriented dual-tree wavelet transform can be applied to 1-D and 2-D data. Valid filter
names are:

• Any orthogonal or biorthogonal wavelet name, but only as a first-stage filter.
• "dtfP", where P can equal 1, 2, 3, 4, or 5.
• "FSfarras", but only as a first-stage filter.
• "qshiftN", where N can equal 6, 10, 14, 16, or 18, for stages > 1.
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Use dtfilters to obtain the decompositions filters corresponding to the db4 orthogonal wavelet
and the Kingsbury Q-shift filter with 14 taps.

wf = dtfilters("db2")

wf = 4×2

   -0.1294   -0.4830
    0.2241    0.8365
    0.8365   -0.2241
    0.4830   -0.1294

qf = dtfilters("qshift14")

qf=1×2 cell array
    {14x2 double}    {14x2 double}

Use dddtree and the filters to obtain the complex oriented dual-tree wavelet decomposition of the 1-
D signal.

wtA = dddtree("cplxdt",x,4,{wf,wf},qf);

Demonstrate perfect reconstruction.

xrec = idddtree(wtA);
max(abs(xrec(:)-x(:)))

ans = 3.4159e-12

"realdddt" - Real double-density dual-tree wavelet transform

The real double-density dual-tree wavelet transform can only be applied to 2-D data. Valid filter
names are:

• "dddtf1"
• "self1"
• "self2"

Use dtfilters to obtain the decomposition filters corresponding to "dddtf1". Confirm the filters
are returned as 1-by-2 cell array consisting of 1-by-2 cell arrays.

fname = "dddtf1";
df = dtfilters(fname)

df=1×2 cell array
    {1x2 cell}    {1x2 cell}

Use dddtree2 to obtain two wavelet decompositions of the image. Use the filter name for the first
decomposition, and the filters for the second decomposition. Confirm the decompositions are equal.

wtA = dddtree2("realdddt",x2,4,fname);
wtB = dddtree2("realdddt",x2,4,df{1},df{2});
for k=1:length(wtA.cfs)
    t = max(abs(wtB.cfs{k}(:)-wtA.cfs{k}(:)))
end
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t = 0

t = 0

t = 0

t = 0

t = 0

"cplxdddt" - Complex double-density dual-tree wavelet transform

The complex double-density dual-tree wavelet transform can be applied to 1-D and 2-D data. Valid
filter names are:

• "dddtf1"
• "self1"
• "self2"

Use dtfilters to obtain the decomposition filters corresponding to "self1". Confirm the filters
are returned as 1-by-2 cell array consisting of 1-by-2 cell arrays.

fname = "self1";
df = dtfilters(fname)

df=1×2 cell array
    {1x2 cell}    {1x2 cell}

Use dddtree to obtain two wavelet decompositions of the 1-D signal. Use the filter name for the first
decomposition, and the filters for the second decomposition. Confirm the decompositions are equal.

wtA = dddtree("cplxdddt",x,4,fname);
wtB = dddtree("cplxdddt",x,4,df{1},df{2});
for k=1:length(wtA.cfs)
    t = max(abs(wtB.cfs{k}(:)-wtA.cfs{k}(:)))
end

t = 0

t = 0

t = 0

t = 0

t = 0

Input Arguments
name — Filter name
"dtf1" | "dddtf1" | "self1" | "self2" | ...

Filter name, specified as a character vector or string scalar. Valid entries for name are:

• Any valid orthogonal or biorthogonal wavelet name. See wfilters for details. An orthogonal or
biorthogonal wavelet is only valid when the filter bank type is "dwt", or when you use the filter as
the first stage in a complex dual-tree transform, "realdt" or "cplxdt".
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Note An orthogonal or biorthogonal wavelet filter is not a valid filter if you have a double-density,
"ddt" or dual-tree double-density, "realdddt" or "cplxdddt", filter bank. An orthogonal or
biorthogonal wavelet filter is not a valid filter for complex dual-tree filter banks for stages greater
than 1.

• "dtfP" — With P equal to 1, 2, 3, 4, or 5 returns the first-stage Farras filters ("FSfarras") and
Kingsbury Q-shift filters ("qshiftN") for subsequent stages. This input is only valid for a dual-
tree transform, "realdt" or "cplxdt". Setting P = 1, 2, 3, 4, or 5 specifies the Kingsbury Q-shift
filters with N = 6, 10, 14, 16, or 18 taps, respectively.

• "dddtf1" — Returns the filters for the first and subsequent stages of the double-density dual-tree
transform. This input is only valid for the double-density dual-tree transforms, "realdddt" and
"cplxdddt".

• "self1" — Returns 10-tap filters for the double-density wavelet transform. This option is only
valid for double-density wavelet transforms, "realdddt", and "cplxdddt".

• "self2" — Returns 16-tap filters for the double-density wavelet transform. This option is only
valid for double-density wavelet transforms, "realdddt", and "cplxdddt".

• "filters1" — Returns 6-tap filters for the double-density wavelet transform, "ddt".
• "filters2" — Returns 12-tap filters for the double-density wavelet transform, "ddt".
• "farras" — Farras nearly symmetric filters for a two-channel perfect reconstruction filter bank.

This option is meant to be used for one-tree transforms and is valid only for an orthogonal
critically sampled wavelet transform, "dwt". The output of dtfilters is a two-column matrix.
The first column of the matrix is a scaling (lowpass) filter, and the second column is a wavelet
(highpass) filter.

• "FSfarras" — Farras nearly symmetric first-stage filters intended for a dual-tree wavelet
transform. With this option, the output of dtfilters is a cell array with two elements, one for
each tree. Each element is a two-column matrix. The first column of the matrix is a scaling
(lowpass) filter, and the second column is a wavelet (highpass) filter.

• "qshiftN" — Kingsbury Q-shift N-tap filters with N = 6, 10, 14, 16, or 18. The Kingsbury Q-shift
filters are used most commonly in dual-tree wavelet transforms for stages greater than 1.

• "doubledualfilt" — Filters for one stage of the double-density dual-tree wavelet transforms,
"realdddt" or "cplxdddt". This option can also be used in the double-density wavelet
transform, "ddt".

This table can help you decide which filter to choose:

Type of Wavelet Decomposition Valid Filters
"dwt" — Critically sampled (nonredundant)
discrete wavelet transform (1-D and 2-D)

• Any valid orthogonal or biorthogonal wavelet
name

• "farras"
"ddt" — Double-density wavelet transform (1-D
and 2-D)

• "filters1"
• "filters2"
• "doubledualfilt"
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Type of Wavelet Decomposition Valid Filters
• "realdt" — Real oriented dual-tree wavelet

transform (2-D only)
• "cplxdt" — Complex oriented dual-tree

wavelet transform (1-D and 2-D)

• Any valid orthogonal or biorthogonal wavelet
name (only as first stage)

• "dtfP"
• "FSfarras" (only as first stage)
• "qshiftN" (only for stages > 1)

• "realdddt" — Real double-density dual-tree
wavelet transform (2-D only)

• "cplxdddt" — Complex double-density dual-
tree wavelet transform (1-D and 2-D)

• "dddtf1"
• "self1"
• "self2"
• "doubledualfilt" (for one stage of the

double-density dual-tree wavelet transform)

Output Arguments
df — Decomposition (analysis) filters
matrix | cell array

Decomposition (analysis) filters, returned as a matrix or cell array of matrices.

rf — Reconstruction (synthesis) filters
matrix | cell array

Reconstruction (synthesis) filters, returned as a matrix or cell array of matrices.

Version History
Introduced in R2013b

References
[1] Abdelnour, A. F., and I. W. Selesnick. “Design of 2-Band Orthogonal near-Symmetric CQF.” In 2001

IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No.01CH37221), 6:3693–96. Salt Lake City, UT, USA: IEEE, 2001. https://doi.org/
10.1109/ICASSP.2001.940644.

[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Selesnick, Ivan W., and A. Farras Abdelnour. “Symmetric Wavelet Tight Frames with Two
Generators.” Applied and Computational Harmonic Analysis 17, no. 2 (September 2004): 211–
25. https://doi.org/10.1016/j.acha.2004.05.003.

[4] Selesnick, I.W. “The Double-Density Dual-Tree DWT.” IEEE Transactions on Signal Processing 52,
no. 5 (May 2004): 1304–14. https://doi.org/10.1109/TSP.2004.826174.

See Also
dddtree | dddtree2
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dtree
DTREE constructor

Syntax
T = dtree(ORD,D,X)
T = dtree(ORD,D,X,U)
[T,NB] = dtree(...)
[T,NB] = dtree('PropName1',PropValue1,'PropName2',PropValue2,...)

Description
T = dtree(ORD,D,X) returns a complete data tree (DTREE) object of order ORD and depth D. The
data associated with the tree T is X.

With T = dtree(ORD,D,X,U) you can set a user data field.

[T,NB] = dtree(...) returns also the number of terminal nodes (leaves) of T.

[T,NB] = dtree('PropName1',PropValue1,'PropName2',PropValue2,...) is the most
general syntax to construct a DTREE object.

The valid choices for 'PropName' are

'order' Order of the tree
'depth' Depth of the tree
'data' Data associated to the tree
'spsch' Split scheme for nodes
'ud' User data field

The split scheme field is an order ORD by 1 logical array. The root of the tree can be split and it has
ORD children. If spsch(j) = 1, you can split the j-th child. Each node that you can split has the
same property as the root node.

For more information on object fields, type help dtree/get.

Class DTREE (Parent class: NTREE)

Fields
dtree Parent object
allNI All nodes information
terNI Terminal nodes information

Examples
% Create a data tree.
x = [1:10];
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t = dtree(3,2,x);
t = nodejoin(t,2);

Version History
Introduced before R2006a

See Also
ntree | wtbo
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dualtree
Kingsbury Q-shift 1-D dual-tree complex wavelet transform

Syntax
[A,D] = dualtree(X)
[ ___ ,Ascale] = dualtree(X)
[ ___ ] = dualtree(X,Name,Value)

Description
[A,D] = dualtree(X) returns the 1-D dual-tree complex wavelet transform (DTCWT) of X. The
output A is the matrix of real-valued final-level scaling (lowpass) coefficients. The output D is an L-
by-1 cell array of complex-valued wavelet coefficients, where L is the level of the transform.

The input X must have at least two samples. The DTCWT is obtained by default down to level
floor(log2N), where N is the length of X if X is a vector and the row dimension of X if X is a matrix.
If N is odd, X is extended by one sample by reflecting the last element of X.

By default, dualtree uses the near-symmetric biorthogonal filter pair with lengths 5 (scaling filter)
and 7 (wavelet filter) for level 1 and the orthogonal Q-shift Hilbert wavelet filter pair of length 10 for
levels greater than or equal to 2.

[ ___ ,Ascale] = dualtree(X) returns the scaling (lowpass) coefficients at each level.

[ ___ ] = dualtree(X,Name,Value) specifies additional options using name-value pair
arguments. For example, 'Level',10 specifies a decomposition down to level 10.

Examples

Plot Dual-Tree Complex Wavelet Transform Coefficients

Load an ECG signal.

load wecg
plot(wecg)
axis tight
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Obtain the 4-level dual-tree transform. Return the approximation (lowpass) coefficients at all levels.

[a,d,as] = dualtree(wecg,'Level',4);

Plot the final-level wavelet coefficients from tree A and tree B.

figure
subplot(2,1,1)
plot(real(d{4}))
axis tight
title('Tree A')
subplot(2,1,2)
plot(imag(d{4}))
axis tight
title('Tree B')
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Plot the lowpass coefficients at each level of the transform.

figure
for k=1:4
    subplot(2,2,k)
    plot(as{k})
    axis tight
    title(['Level: ',num2str(k)])
end
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Distribution of Energy Across Scales

This example shows that small signal shifts do not significantly change the distribution of energy
among the DTCWT coefficients at different scales.

Load an ECG signal. The signal has 2048 samples.

load wecg
len = numel(wecg);
plot(wecg)
axis tight
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Create two 1-by-3000 zero vectors. Insert the ECG signal into different segments of each zero vector.

shift1 = 328;
shift2 = 368;
vec1 = zeros(1,3000);
vec2 = zeros(1,3000);
vec1(shift1+[1:len]) = wecg;
vec2(shift2+[1:len]) = wecg;

Obtain the dual-tree transform of both vectors. Use default settings.

[a1,d1] = dualtree(vec1);
[a2,d2] = dualtree(vec2);

Compute the energy at each scale for both decompositions. Note that the energy distribution of the
shifted signals across all scales remains approximately the same.

energy1 = cell2mat(cellfun(@(x)(sum(abs(x).^2)),d1,'uni',0));
energy2 = cell2mat(cellfun(@(x)(sum(abs(x).^2)),d2,'uni',0));
levels =cell(numel(energy1),1);
for k=1:numel(energy1)
    levels{k} = sprintf('Level %d',k);
end
energies = table(levels,energy1,energy2)

energies=11×3 table
       levels       energy1    energy2
    ____________    _______    _______
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    {'Level 1' }    16.014     16.014 
    {'Level 2' }    19.095     19.095 
    {'Level 3' }     35.99      35.99 
    {'Level 4' }    25.141     25.065 
    {'Level 5' }     16.81     17.452 
    {'Level 6' }    9.7078      9.161 
    {'Level 7' }    2.3201     2.0513 
    {'Level 8' }    8.3808     8.4197 
    {'Level 9' }    23.006      22.56 
    {'Level 10'}    70.764     73.964 
    {'Level 11'}    64.097     59.022 

Input Arguments
X — Input data
vector | matrix | timetable

Input data, specified as a real-valued vector, matrix, or timetable. The input X must have at least two
samples. If X is a timetable, it can contain a single vector or matrix variable, or it can contain multiple
variables, each containing a column vector. If X is a matrix, dualtree operates on the columns of X.
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LevelOneFilter','antonini','Level',4

Level — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer less than or equal to floor(log2N), where N
is the length of X if X is a vector and the row dimension of X if X is a matrix. If unspecified, Level
defaults to floor(log2N).

LevelOneFilter — Biorthogonal filter
'nearsym5_7' (default) | 'nearsym13_19' | 'antonini' | 'legall'

Biorthogonal filter to use in the first-level analysis, specified as:

• 'legall' — LeGall 5/3 filter [3]
• 'nearsym13_19' — (13,19)-tap near-orthogonal filter [2]
• 'nearsym5_7' — (5,7)-tap near-orthogonal filter [1]
• 'antonini' — (9,7)-tap Antonini filter [1]

By default, dualtree uses 'nearsym5_7', the near-symmetric biorthogonal filter pair with lengths
5 (scaling filter) and 7 (wavelet filter).
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FilterLength — Orthogonal Hilbert Q-shift analysis filter pair length
10 (default) | 6 | 14 | 16 | 18

Orthogonal Hilbert Q-shift analysis filter pair length to use for levels 2 and higher, specified as one of
the listed values [2]. By default, dualtree uses the orthogonal Q-shift Hilbert wavelet filter pair of
length 10.

Output Arguments
A — Final-level approximation coefficients
real-valued vector | real-valued matrix

Final-level approximation coefficients, returned as a real-valued vector if X is a vector, or a matrix if X
is a multisignal. The approximation coefficients are the final-level scaling (lowpass) coefficients. If X is
a matrix, the column dimensions of X and A are equal.

D — Wavelet coefficients
cell array

Wavelet coefficients, returned as an L-by-1 cell array of complex-valued wavelet coefficients, where L
is the level of the transform. The real parts of the coefficients are from tree A, and the imaginary
parts are from tree B. If X is a matrix, each element of D is a matrix whose column dimension equals
the column dimension of X.

Ascale — Approximation coefficients
cell array

Approximation coefficients at each level of the transform, returned as an L-by-1 cell array of real-
valued scaling (lowpass) coefficients, where L is the level of the transform. If X is a matrix, each
element of D is a matrix whose column dimension equals the column dimension of X.

Version History
Introduced in R2020a

References
[1] Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies. “Image Coding Using Wavelet

Transform.” IEEE Transactions on Image Processing 1, no. 2 (April 1992): 205–20. https://
doi.org/10.1109/83.136597.

[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Le Gall, D., and A. Tabatabai. “Sub-Band Coding of Digital Images Using Symmetric Short Kernel
Filters and Arithmetic Coding Techniques.” In ICASSP-88., International Conference on
Acoustics, Speech, and Signal Processing, 761–64. New York, NY, USA: IEEE, 1988. https://
doi.org/10.1109/ICASSP.1988.196696.

 dualtree

1-359



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Timetable input data is not supported.

See Also
idualtree | dualtree2 | dualtree3 | qbiorthfilt | qorthwavf

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”

1 Functions
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dualtree2
Kingsbury Q-shift 2-D dual-tree complex wavelet transform

Syntax
[A,D] = dualtree2(X)
[ ___ ,Ascale] = dualtree2(X)
[ ___ ] = dualtree2(X,Name,Value)

Description
[A,D] = dualtree2(X) returns the 2-D dual-tree complex wavelet transform (DTCWT) of X using
Kingsbury Q-shift filters. The output A is the matrix of real-valued final-level scaling (lowpass)
coefficients. The output D is a L-by-1 cell array of complex-valued wavelet coefficients, where L is the
level of the transform. For each element of D there are six wavelet subbands.

The DTCWT is obtained by default down to level floor(log2(min([H W]))), where H and W refer
to the height (row dimension) and width (column dimension) of X, respectively. If any of the row or
column dimensions of X are odd, X is extended along that dimension by reflecting around the last row
or column.

By default, dualtree2 uses the near-symmetric biorthogonal wavelet filter pair with lengths 5
(scaling filter) and 7 (wavelet filter) for level 1 and the orthogonal Q-shift Hilbert wavelet filter pair of
length 10 for levels greater than or equal to 2.

[ ___ ,Ascale] = dualtree2(X) returns the scaling (lowpass) coefficients at each level.

[ ___ ] = dualtree2(X,Name,Value) specifies additional options using name-value pair
arguments. For example, 'LevelOneFilter','antonini' specifies the (9,7)-tap Antonini filter as
the biorthogonal filter to use in the first-level analysis.

Examples

2-D Dual-Tree Complex Wavelet Transform

Load a grayscale image.

load mask
imagesc(X)
colormap gray
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Obtain the dual-tree complex wavelet transform of the image down to four levels of resolution.

[a,d] = dualtree2(X,'Level',4);

Display the final-level scaling (lowpass) coefficients.

imagesc(a)
colormap gray
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Display the tree B wavelet coefficients at the finest scale. Each subplot title denotes the particular
subband ("H" for highpass, "L" for lowpass).

orientation = ["HL","HH","LH","LH","HH","HL"];
for k=1:6
    subplot(3,2,k)
    imagesc(imag(d{1}(:,:,k)))
    title(['Orientation: ' orientation(k)])
    set(gca,'xtick',[])
    set(gca,'ytick',[])
end
colormap gray
set(gcf,'Position',[0 0 560 800])
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Input Arguments
X — Input data
real-valued matrix (default) | real-valued 3-D array | real-valued 4-D array

Input data, specified as a real-valued matrix, 3-D array, or 4-D array. X is a real-valued H-by-W-by-C-
by-N array, where H is the height or row dimension, W is the width or column dimension, C is the
number of channels, and N is the number of images. X must have at least two samples in each of the
row and column dimensions.
Example: If X is a 256-by-256-by-3-by-2 array, X contains two 256-by-256 RGB images.
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LevelOneFilter','antonini','Level',4

Level — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer less than or equal to floor(log2(min([H
W]))), where H and W refer to the height (row dimension) and width (column dimension) of X,
respectively. If unspecified, Level defaults to floor(log2(min([H W]))).

LevelOneFilter — Biorthogonal filter
'nearsym5_7' (default) | 'nearsym13_19' | 'antonini' | 'legall'

Biorthogonal filter to use in the first-level analysis, specified as:

• 'legall' — LeGall 5/3 filter [3]
• 'nearsym13_19' — (13,19)-tap near-orthogonal filter [2]
• 'nearsym5_7' — (5,7)-tap near-orthogonal filter [1]
• 'antonini' — (9,7)-tap Antonini filter [1]

By default, dualtree2 uses 'nearsym5_7', the near-symmetric biorthogonal filter pair with lengths
5 (scaling filter) and 7 (wavelet filter).

FilterLength — Orthogonal Hilbert Q-shift analysis filter pair length
10 (default) | 6 | 14 | 16 | 18

Orthogonal Hilbert Q-shift analysis filter pair length to use for levels 2 and higher, specified as one of
the listed values [2]. By default, dualtree2 uses the orthogonal Q-shift Hilbert wavelet filter pair of
length 10.

Output Arguments
A — Final-level approximation coefficients
real-valued matrix
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Final-level approximation coefficients, returned as a real-valued matrix.

D — Wavelet coefficients
cell array

Wavelet coefficients, returned as an L-by-1 cell array of complex-valued wavelet coefficients, where L
is the level of the transform. The real parts of the coefficients are from tree A, and the imaginary
parts are from tree B. For each element of D there are six wavelet subbands.

Ascale — Approximation coefficients
cell array

Approximation coefficients at each level of the transform, returned as an L-by-1 cell array of real-
valued scaling (lowpass) coefficients, where L is the level of the transform. If X is a matrix, each
element of D is a matrix whose column dimension equals the column dimension of X.

Version History
Introduced in R2020a

References
[1] Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies. “Image Coding Using Wavelet

Transform.” IEEE Transactions on Image Processing 1, no. 2 (April 1992): 205–20. https://
doi.org/10.1109/83.136597.

[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Le Gall, D., and A. Tabatabai. “Sub-Band Coding of Digital Images Using Symmetric Short Kernel
Filters and Arithmetic Coding Techniques.” In ICASSP-88., International Conference on
Acoustics, Speech, and Signal Processing, 761–64. New York, NY, USA: IEEE, 1988. https://
doi.org/10.1109/ICASSP.1988.196696.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dualtree | idualtree2 | dualtree3 | qbiorthfilt | qorthwavf

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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dualtree3
3-D dual-tree complex wavelet transform

Syntax
[a,d] = dualtree3(x)
[a,d] = dualtree3(x,level)

[a,d] = dualtree3( ___ ,Name,Value)

[a,d] = dualtree3( ___ ,'excludeL1')

Description
[a,d] = dualtree3(x) returns the 3-D dual-tree complex wavelet transform of x at the maximum
level, floor(log2(min(size(x)))).

[a,d] = dualtree3(x,level) returns the 3-D dual-tree wavelet transform down to level.

[a,d] = dualtree3( ___ ,Name,Value) specifies options using name-value pair arguments in
addition to any of the input arguments in previous syntaxes.

[a,d] = dualtree3( ___ ,'excludeL1') excludes the first-level wavelet (detail) coefficients.
Excluding the first-level wavelet coefficients can speed up the algorithm and saves memory. The first
level does not exhibit the directional selectivity of levels 2 and higher. The perfect reconstruction
property of the dual-tree wavelet transform holds only if the first-level wavelet coefficients are
included. If you do not specify this option, or append 'includeL1', then the function includes the
first-level coefficients.

Examples

Three-Dimensional Dual-Tree Transform of Volumetric Data

Generate a volumetric data set. Plot several cross-sections of the data seen from above. The data are
not symmetric about the x-axis or the y-axis.

xl = 64;

xx = linspace(-5,5,xl);

[x,y,z] = meshgrid(xx);

G = (x+3*y)./(1+exp((x.^2+2*y.^2+z.^2)-10));

for k = 1:16
    subplot(4,4,k)
    surf(xx,xx,G(:,:,4*k))
    view(2)
    shading interp
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    title(['z = ' num2str(xx(4*k),2)])
end

Compute the 3-D dual-tree transform of the data down to level 4. Specify a Hilbert Q-shift filter-pair
length of 14.

[a,d] = dualtree3(G,4,'FilterLength',14);

Plot the real and imaginary parts of the first-level wavelet coefficients for selected subbands. The
coefficients have the same directionality as the data. The imaginary parts are shifted versions of the
real parts.

m = 1;

for k = 1:8
    subplot(4,4,2*k-1)
    surf(real(d{m}(:,:,3*k)))

    view(2)
    shading interp
    axis tight
    title(['Re d\{1\}, n = ' int2str(3*k)])

    subplot(4,4,2*k)
    surf(imag(d{m}(:,:,3*k)))

    view(2)
    shading interp
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    axis tight
    title(['Im d\{1\}, n = ' int2str(3*k)])
end

Repeat the procedure for the second-level coefficients. When the level number increases by one, the
array of wavelet coefficients decreases by half along the first two dimensions.

m = 2;

for k = 1:8
    subplot(4,4,2*k-1)
    surf(real(d{m}(:,:,3*k)))

    view(2)
    shading interp
    axis tight
    title(['Re d\{2\}, n = ' int2str(3*k)])

    subplot(4,4,2*k)
    surf(imag(d{m}(:,:,3*k)))

    view(2)
    shading interp
    axis tight
    title(['Im d\{2\}, n = ' int2str(3*k)])
end
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Invert the transform, specifying the same filter-pair length. Check for perfect reconstruction.

xrec = idualtree3(a,d,'FilterLength',14);
max(abs(xrec(:)-G(:)))

ans = 1.3767e-14

3-D Dual-Tree Transform of MRI Data

Load a set of MRI measurements of a human head. Truncate the data so that it is even along the third
dimension. Compute the 3-D dual-tree transform, excluding the first-level wavelet coefficients.

load wmri

[A,D] = dualtree3(X(:,:,1:26),2,'excludeL1');

Reconstruct the data by inverting the transform. Set the final-level scaling coefficients explicitly to 0.
Display an evenly spaced selection of reconstructed images.

imrec = idualtree3(A*0,D);

colormap bone
for kj = 1:9
    subplot(3,3,kj)
    surf(imrec(:,:,3*kj-2))
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    shading interp
    view(2)
    axis tight off
end

Input Arguments
x — Input data
real 3-D array

Input data, specified as a real 3-D array. All three dimensions of x must be even and greater than or
equal to 4.
Data Types: double | single

level — Transform level
floor(log2(min(size(x)))) (default) | positive integer

Transform level, specified as a positive integer greater than or equal to 2 and less than or equal to
floor(log2(min(size(x)))).
Data Types: double | single
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LevelOneFilter','legall','FilterLength',6 computes a transform using LeGall
analysis filters with scaling length 5 and wavelet length 3 at level 1, and length-6 Q-shift filters at
levels 2 and greater.

FilterLength — Hilbert Q-shift filter-pair length
10 (default) | 6 | 14 | 16 | 18

Hilbert Q-shift filter-pair length, specified as the comma-separated pair consisting of
'FilterLength' and one of 6, 10, 14, 16, or 18. dualtree3 uses the orthogonal Hilbert Q-shift
filter pair of length 'FilterLength' for levels 2 and greater.
Data Types: double | single

LevelOneFilter — First-level biorthogonal analysis filter
'nearsym5_7' (default) | 'nearsym13_19' | 'antonini' | 'legall'

First-level biorthogonal analysis filter, specified as the comma-separated pair consisting of
'LevelOneFilter' and a character vector or string. By default, dualtree3 uses for level 1 the
near-symmetric biorthogonal wavelet filter with lengths 5 (scaling filter) and 7 (wavelet filter).
Data Types: char | string

Output Arguments
a — Final-level scaling coefficients
real-valued matrix

Final-level scaling (lowpass) coefficients, returned as a real-valued matrix.
Data Types: double

d — Wavelet coefficients
1-by-level cell array

Wavelet coefficients, returned as a 1-by-level cell array. There are 28 wavelet subbands in the 3-D
dual-tree transform at each level.
Data Types: double

Version History
Introduced in R2017a

References
[1] Chen, H., and N. G. Kingsbury. “Efficient Registration of Nonrigid 3-D Bodies.” IEEE®

Transactions on Image Processing. Vol 21, January 2012, pp. 262–272.
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[2] Kingsbury, N. G. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Journal
of Applied and Computational Harmonic Analysis, Vol. 10, Number 3, May 2001, pp. 234–253.

See Also
idualtree3 | wavedec3 | waverec3 | dddtree2 | qbiorthfilt | dualtree2 | dualtree |
qorthwavf

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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dwpt
Multisignal 1-D wavelet packet transform

Syntax
wpt = dwpt(X)
wpt = dwpt(X,wname)
wpt = dwpt(X,LoD,HiD)
[wpt,l] = dwpt( ___ )
[wpt,l,packetlevels] = dwpt( ___ )
[wpt,l,packetlevels,f] = dwpt( ___ )
[wpt,l,packetlevels,f,re] = dwpt( ___ )
[ ___ ] = dwpt( ___ ,Name,Value)

Description
wpt = dwpt(X) returns the terminal (final-level) nodes of the discrete wavelet packet transform
(DWPT) of X. The input X is a real-valued vector, matrix, or timetable. By default, the fk18 wavelet is
used, and the decomposition level is floor(log2(Ns)), where Ns is the number of data samples.
The wavelet packet transform wpt is a 1-by-N cell array, where N = 2^floor(log2(Ns)).

wpt = dwpt(X,wname) uses the wavelet specified by wname for the DWPT. wname must be
recognized by wavemngr.

wpt = dwpt(X,LoD,HiD) uses the scaling (lowpass) filter, LoD, and wavelet (highpass) filter, HiD.

[wpt,l] = dwpt( ___ ) also returns the bookkeeping vector using any of the previous syntaxes.
The vector l contains the length of the input signal and the number of coefficients by level. The
bookkeeping vector is required for perfect reconstruction.

[wpt,l,packetlevels] = dwpt( ___ ) also returns the transform levels of the nodes of wpt
using any of the previous syntaxes.

[wpt,l,packetlevels,f] = dwpt( ___ ) also returns the center frequencies of the approximate
passbands in cycles per sample using any of the previous syntaxes.

[wpt,l,packetlevels,f,re] = dwpt( ___ ) also returns the relative energy for the wavelet
packets in wpt using any of the previous syntaxes. The relative energy is the proportion of energy
contained in each wavelet packet by level.

[ ___ ] = dwpt( ___ ,Name,Value) specifies options using name-value pair arguments in addition
to the input arguments in the previous syntaxes. For example, 'Level',4 specifies the
decomposition level.

Examples

Multichannel Discrete Wavelet Packet Transform

Load the 23-channel EEG data Espiga3 [3]. The data is sampled at 200 Hz.
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load Espiga3

Compute the 1-D DWPT of the data using the sym3 wavelet down to level 4. Obtain the terminal
wavelet packet nodes, bookkeeping vector, and center frequencies of the approximate passbands.

[wpt,bk,~,f] = dwpt(Espiga3,'sym3','Level',4);

The output wpt is a 1-by-24 cell array. Every element of wpt is a matrix. Choose any terminal node,
and confirm the size of the matrix is 23-by-M, where M is the last element of the bookkeeping vector
bk.

nd = 13;
size(wpt{nd})

ans = 1×2

    23    66

bk(end)

ans = 66

Extract the final-level coefficients of the fifth channel.

p5 = cell2mat(cellfun(@(x) x(5,:).',wpt,'UniformOutput',false));
size(p5)

ans = 1×2

    66    16

The terminal nodes are sequency-ordered. Plot the center frequencies of the approximate passbands
in hertz, and confirm they are in order of increasing frequency.

plot(200*f,'x')
title('Center Frequencies')
ylabel('Hz')
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Input Arguments
X — Input data
real-valued vector | real-valued matrix | timetable

Input data, specified as a real-valued vector, matrix, or timetable. If X is a matrix, the transform is
applied to each column of X. If X is a timetable, X must either contain a matrix in a single variable or
column vectors in separate variables. X must be uniformly sampled.
Data Types: single | double

wname — Wavelet
'fk18' (default) | character vector | string scalar

Wavelet to use in the DWPT, specified as a character vector or string scalar. wname must be
recognized by wavemngr.

You cannot specify both wname and a filter pair, LoD and HiD.
Example: wpt = dwpt(data,"sym4") specifies the sym4 wavelet.

LoD,HiD — Wavelet analysis filters
real-valued vectors
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Wavelet analysis (decomposition) filters to use in the DWPT, specified as a pair of real-valued vectors.
LoD is the scaling (lowpass) analysis filter, and HiD is the wavelet (highpass) analysis filter. You
cannot specify both wname and a filter pair, LoD and HiD. See wfilters for additional information.

Note dwpt does not check that LoD and HiD satisfy the requirements for a perfect reconstruction
wavelet packet filter bank. To confirm your filter pair satisfies the requirements, use isorthwfb or
isbiorthwfb.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: wpt = dwpt(x,'sym4','Level',4) specifies a level 4 decomposition using the sym4
wavelet.

Level — Wavelet decomposition level
floor(log2(Ns)) (default) | positive integer

Wavelet decomposition level, specified as a positive integer less than or equal to floor(log2(Ns)),
where Ns is the number of samples in the data. If unspecified, Level defaults to floor(log2(Ns)).

FullTree — Wavelet packet tree handling
false or 0 (default) | true or 1

Wavelet packet tree handling, specified as a numeric or logical 1 (true) or 0 (false). When set to
true, wpt contains the full packet tree. When set to false, wpt contains only the terminal nodes. If
unspecified, FullTree defaults to false.

Boundary — Wavelet packet transform boundary handling
'reflection' (default) | 'periodic'

Wavelet packet transform boundary handling, specified as 'reflection' or 'periodic'. Setting to
'reflection' or 'periodic', the wavelet packet coefficients are extended at each level based on
the 'sym' or 'per' mode in dwtmode, respectively. If unspecified, Boundary defaults to
'reflection'.

Output Arguments
wpt — Wavelet packet transform
cell array

Wavelet packet transform, returned as a 1-by-M cell array. If taking the DWPT of one signal, each
element of wpt is a vector. Otherwise, each element is a matrix. The coefficients in the jth row of the
matrix correspond to the signal in the jth column of X. The packets are sequency-ordered.

If returning the terminal nodes of a level N decomposition, wpt is a 1-by-2N cell array. If returning the
full wavelet packet tree, wpt is a 1-by-(2N+1−2) cell array.
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l — Bookkeeping vector
vector of positive integers

Bookkeeping vector, returned as a vector of positive integers. The vector l contains the length of the
input signal and the number of coefficients by level, and is required for perfect reconstruction.

packetlevels — Transform levels
vector of positive integers

Transform levels, returned as a vector of positive integers. The ith element of packetlevels
corresponds to the ith element of wpt. If wpt contains only the terminal nodes, packetlevels is a
vector with each element equal to the terminal level. If wpt contains the full wavelet packet tree,
then packetlevels is a vector with 2j elements for each level j.

f — Center frequencies
real-valued vector

Center frequencies of the approximate passbands in cycles per sample, returned as a real-valued
vector. The jthe element of f corresponds to the jth wavelet packet node of wpt. You can multiply the
elements in f by a sampling frequency to convert to cycles per unit time.

re — Relative energy
cell array

Relative energy for the wavelet packets in wpt, returned as a cell array. The relative energy is the
proportion of energy contained in each wavelet packet by level. The jth element of re corresponds to
the jth wavelet packet node of wpt.

Each element of re is a scalar when taking the DWPT of one signal. Otherwise, when taking the
DWPT of M signals, each element of re is a M-by-1 vector, where the ith element is the relative
energy of the ith signal channel. For each channel, the sum of relative energies in the wavelet
packets at a given level is equal to 1.

More About
Wavelet Packet Decomposition

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal
analysis. Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters:
position and scale as in wavelet decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets bases is generated. Each of
these bases offers a particular way of coding signals, preserving global energy and reconstructing
exact features. The wavelet packets can then be used for numerous expansions of a given signal.

Simple and efficient algorithms exist for both wavelet packets decomposition and optimal
decomposition selection. Adaptive filtering algorithms with direct applications in optimal signal
coding and data compression can then be produced.

In the orthogonal wavelet decomposition procedure, the generic step splits the approximation
coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a
vector of detail coefficients, both at a coarser scale. The information lost between two successive
approximations is captured in the detail coefficients. The next step consists in splitting the new
approximation coefficient vector; successive details are never re-analyzed.
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In the corresponding wavelet packets situation, each detail coefficient vector is also decomposed into
two parts using the same approach as in approximation vector splitting. This offers the richest
analysis: the complete binary tree is produced in the one-dimensional case or a quaternary tree in the
two-dimensional case.

Algorithms
The dwpt function performs a discrete wavelet packet transform and produces a sequency-ordered
wavelet packet tree. Compare the sequency-ordered and normal (Paley)-ordered trees. G(f ) is the
scaling (lowpass) analysis filter, and H(f ) represents the wavelet (highpass) analysis filter. The labels
at the bottom show the partition of the frequency axis [0, ½].

 dwpt

1-379



Version History
Introduced in R2020a

References
[1] Wickerhauser, Mladen Victor. Adapted Wavelet Analysis from Theory to Software. Wellesley, MA:

A.K. Peters, 1994.

[2] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK:
Cambridge University Press, 2000.

[3] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Timetable input data is not supported.
• The input wname must be constant.

See Also
modwpt | idwpt

Topics
“Wavelet Packets: Decomposing the Details”
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dwt
Single-level 1-D discrete wavelet transform

Syntax
[cA,cD] = dwt(x,wname)
[cA,cD] = dwt(x,LoD,HiD)
[cA,cD] = dwt( ___ ,'mode',extmode)

Description
[cA,cD] = dwt(x,wname) returns the single-level discrete wavelet transform (DWT) of the vector
x using the wavelet specified by wname. The wavelet must be recognized by wavemngr. dwt returns
the approximation coefficients vector cA and detail coefficients vector cD of the DWT.

Note If your application requires a multilevel wavelet decomposition, consider using wavedec.

[cA,cD] = dwt(x,LoD,HiD) returns the single-level DWT using the specified lowpass and
highpass wavelet decomposition filters LoD and HiD, respectively.

[cA,cD] = dwt( ___ ,'mode',extmode) returns the single-level DWT with the specified extension
mode extmode. For more information, see dwtmode. This argument can be added to any of the
previous input syntaxes.

Note For gpuArray inputs, the supported modes are 'symh' ('sym') and 'per'. All 'mode'
options except 'per' are converted to 'symh'. See the example “Single-Level Discrete Wavelet
Transform on a GPU” on page 1-385.

Examples

DWT Using Wavelet Name

Obtain the single-level DWT of the noisy Doppler signal using a wavelet name.

load noisdopp;
[cA,cD] = dwt(noisdopp,'sym4');

Reconstruct a smoothed version of the signal using the approximation coefficients. Plot and compare
with the original signal.

xrec = idwt(cA,zeros(size(cA)),'sym4');
plot(noisdopp)
hold on
grid on
plot(xrec)
legend('Original','Reconstruction')
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DWT Using Wavelet and Scaling Filters

Obtain the single-level DWT of a noisy Doppler signal using the wavelet (highpass) and scaling
(lowpass) filters.

load noisdopp;
[LoD,HiD] = wfilters('bior3.5','d');
[cA,cD] = dwt(noisdopp,LoD,HiD);

Create a DWT filter bank that can be applied to the noisy Doppler signal using the same wavelet.
Obtain the highpass and lowpass filters from the filter bank.

len = length(noisdopp);
fb = dwtfilterbank('SignalLength',len,'Wavelet','bior3.5');
[lo,hi] = filters(fb);

For the bior3.5 wavelet, lo and hi are 12-by-2 matrices. lo are the lowpass filters, and hi are the
highpass filters. The first columns of lo and hi are used for analysis and the second columns are
used for synthesis. Compare the first column of lo and hi with LoD and HiD respectively. Confirm
they are equal.

disp('Lowpass Analysis Filters')

Lowpass Analysis Filters
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[lo(:,1) LoD']

ans = 12×2

   -0.0138   -0.0138
    0.0414    0.0414
    0.0525    0.0525
   -0.2679   -0.2679
   -0.0718   -0.0718
    0.9667    0.9667
    0.9667    0.9667
   -0.0718   -0.0718
   -0.2679   -0.2679
    0.0525    0.0525
      ⋮

disp('Highpass Analysis Filters')

Highpass Analysis Filters

[hi(:,1) HiD']

ans = 12×2

         0         0
         0         0
         0         0
         0         0
   -0.1768   -0.1768
    0.5303    0.5303
   -0.5303   -0.5303
    0.1768    0.1768
         0         0
         0         0
      ⋮

Plot the one-sided magnitude frequency responses of the first-level wavelet and scaling filters.

[psidft,f,phidft] = freqz(fb);
level = 1;
plot(f(len/2+1:end),abs(phidft(level,len/2+1:end)))
hold on
plot(f(len/2+1:end),abs(psidft(level,len/2+1:end)))
grid on
legend('Scaling Filter','Wavelet Filter')
title('First-Level One-sided Frequency Responses')
xlabel('Normalized Frequency (cycles/sample)')
ylabel('Magnitude')
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Single-Level Discrete Wavelet Transform on a GPU

Refer to “GPU Computing Requirements” (Parallel Computing Toolbox) to see what GPUs are
supported.

Load the noisy Doppler signal. Put the signal on the GPU using gpuArray. Save the current
extension mode.

load noisdopp
noisdoppg = gpuArray(noisdopp);
origMode = dwtmode('status','nodisp');

Use dwtmode to change the extension mode to zero-padding. Obtain the single-level discrete wavelet
transform of the signal on the GPU using the db2 wavelet.

dwtmode('zpd','nodisp')
[cA,cD] = dwt(noisdoppg,'db2');

The current extension mode zpd is not supported for gpuArray input. Therefore, the DWT is instead
performed using the sym extension mode. Confirm this by taking the DWT of noisdoppg with the
extension mode set to sym and compare with the previous result.

[cAsym,cDsym] = dwt(noisdoppg,'db2','mode','sym');
[max(abs(cA-cAsym)) max(abs(cD-cDsym))]
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ans =

     0     0

An unsupported extension mode specified as an input argument is converted to 'sym'. Confirm that
taking the DWT of noisdoppg with 'mode' set to an unsupported mode also defaults to the sym
extension mode.

[cA,cD] = dwt(noisdoppg,'db2','mode','spd');
[max(abs(cA-cAsym)) max(abs(cD-cDsym))]

ans =

     0     0

Change the current extension mode to periodic. Obtain the single-level discrete wavelet transform of
the signal on the GPU using the db2 wavelet.

dwtmode('per','nodisp')
[cA,cD] = dwt(noisdoppg,'db2');

Confirm the current extension mode per is supported for gpuArray input.

[cAper,cDper] = dwt(noisdopp,'db2','mode','per');
[max(abs(cA-cAper)) max(abs(cD-cDper))]

ans =

     0     0

Restore the extension mode to the original setting.

dwtmode(origMode,'nodisp')

Input Arguments
x — Input data
vector

Input data, specified as a vector.
Data Types: single | double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet used to compute the single-level DWT, specified as a character vector or string
scalar. The wavelet must be recognized by wavemngr. The analyzing wavelet is from one of the
following wavelet families: Best-localized Daubechies, Beylkin, Coiflets, Daubechies, Fejér-Korovkin,
Haar, Han linear-phase moments, Morris minimum-bandwidth, Symlets, Vaidyanathan, Discrete
Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for the wavelets available in each
family.
Example: 'db4'

LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors
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Wavelet decomposition filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. The lengths of LoD and
HiD must be equal. See wfilters for additional information.
Data Types: single | double

extmode — Extension mode
'zpd' | 'sp0' | 'spd' | ...

Extension mode used when performing the DWT, specified as one of the following:

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
'symw' Symmetric extension (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd' Periodized extension (1)
'per' Periodized extension (2)

If the signal length is odd, wextend adds to the right an extra
sample that is equal to the last value, and performs the extension
using the 'ppd' mode. Otherwise, 'per' reduces to 'ppd'.
This rule also applies to images.

The global variable managed by dwtmode specifies the default extension mode. See dwtmode for
extension mode descriptions.
Example: [cA,cD] = dwt(x,'db4','mode','symw') returns the single-level DWT of x using the
order 4 Daubechies extremal phase wavelet and whole point symmetric extension.

Output Arguments
cA — Approximation coefficients
vector

Approximation coefficients obtained from the wavelet decomposition, returned as a vector.
Convolving the input signal x with the scaling filter LoD, followed by dyadic decimation, yields the
approximation coefficients. Let sx = size(x) and lf = the length of the decomposition filters.

• If the DWT extension mode is set to periodization, cA is a vector of length ceil(sx/2).
• For the other extension modes, cA is a vector of length floor((sx+lf-1)/2).

Data Types: single | double
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cD — Detail coefficients
vector

Detail coefficients obtained from the wavelet decomposition, returned as a vector. Convolving the
input signal x with the wavelet filter HiD, followed by dyadic decimation, yields the detail
coefficients. Let sx = size(x) and lf = the length of the decomposition filters.

• If the DWT extension mode is set to periodization, cD is a vector of length ceil(sx/2).
• For the other extension modes, cD is a vector of length floor((sx+lf-1)/2).

Data Types: single | double

Algorithms
Starting from a signal s of length N, two sets of coefficients are computed: approximation coefficients
cA1, and detail coefficients cD1. Convolving s with the scaling filter LoD, followed by dyadic
decimation, yields the approximation coefficients. Similarly, convolving s with the wavelet filter HiD,
followed by dyadic decimation, yields the detail coefficients.

where

•
 — Convolve with filter X

• 2  — Downsample (keep the even-indexed elements)

The length of each filter is equal to 2n. If N = length(s), the signals F and G are of length N + 2n −1
and the coefficients cA1 and cD1 are of length floor N − 1

2 + n.

To deal with signal-end effects resulting from a convolution-based algorithm, a global variable
managed by dwtmode defines the kind of signal extension mode used. The possible options include
zero-padding and symmetric extension, which is the default mode.

Note For the same input, the dwt function and the DWT block in the DSP System Toolbox™ do not
produce the same results. The DWT block is designed for real-time implementation while Wavelet
Toolbox software is designed for analysis, so the products handle boundary conditions and filter
states differently.
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To make the dwt function output match the DWT block output, set the function boundary condition to
zero-padding by typing dwtmode('zpd') at the MATLAB command prompt. To match the latency of
the DWT block, which is implemented using FIR filters, add zeros to the input of the dwt function.
The number of zeros you add must be equal to half the filter length.

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
wavedec | idwt | dwtmode | waveinfo | dwtfilterbank
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dwt2
Single-level 2-D discrete wavelet transform

Syntax
[cA,cH,cV,cD] = dwt2(X,wname)
[cA,cH,cV,cD] = dwt2(X,LoD,HiD)
[cA,cH,cV,cD] = dwt2( ___ ,'mode',extmode)

Description
dwt2 computes the single-level 2-D wavelet decomposition. Compare dwt2 with wavedec2 which
may be more useful for your application. The decomposition is done with respect to either a
particular wavelet (see wfilters for more information) or particular wavelet decomposition filters.

[cA,cH,cV,cD] = dwt2(X,wname) computes the single-level 2-D discrete wavelet transform
(DWT) of the input data X using the wname wavelet. dwt2 returns the approximation coefficients
matrix cA and detail coefficients matrices cH, cV, and cD (horizontal, vertical, and diagonal,
respectively).

[cA,cH,cV,cD] = dwt2(X,LoD,HiD) computes the single-level 2-D DWT using the wavelet
decomposition lowpass filter LoD and highpass filter HiD. The decomposition filters must have the
same length and an even number of samples.

[cA,cH,cV,cD] = dwt2( ___ ,'mode',extmode) computes the single-level 2-D DWT with the
extension mode extmode. Include this argument after all other arguments.

Note For gpuArray inputs, the supported modes are 'symh' ('sym') and 'per'. All 'mode'
options except 'per' are converted to 'symh'. See the example “Single-Level 2-D Discrete Wavelet
Transform on a GPU” on page 1-395.

Examples

Single-Level 2-D Discrete Wavelet Transform of an Image

Load and display an image.

load woman
imagesc(X)
colormap(map)
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Obtain the single-level 2-D discrete wavelet transform of the image using the order 4 symlet and
periodic extension.

[cA,cH,cV,cD] = dwt2(X,'sym4','mode','per');

Display the vertical detail coefficients and the approximation coefficients.

imagesc(cV)
title('Vertical Detail Coefficients')
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imagesc(cA)
title('Approximation Coefficients')
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Single-Level 2-D Discrete Wavelet Transform Using Filters

Load and display an image.

load sculpture
imagesc(X)
colormap gray
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Generate the lowpass and highpass decomposition filters for the Haar wavelet.

[LoD,HiD] = wfilters('haar','d');

Use the filters to perform a single-level 2-D wavelet decomposition. Use half-point symmetric
extension. Display the approximation and detail coefficients.

[cA,cH,cV,cD] = dwt2(X,LoD,HiD,'mode','symh');
subplot(2,2,1)
imagesc(cA)
colormap gray
title('Approximation')
subplot(2,2,2)
imagesc(cH)
colormap gray
title('Horizontal')
subplot(2,2,3)
imagesc(cV)
colormap gray
title('Vertical')
subplot(2,2,4)
imagesc(cD)
colormap gray
title('Diagonal')
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Single-Level 2-D Discrete Wavelet Transform on a GPU

Refer to “GPU Computing Requirements” (Parallel Computing Toolbox) to see what GPUs are
supported.

Load an image. Put the image on the GPU using gpuArray. Save the current extension mode.

load mask
imgg = gpuArray(X);
origMode = dwtmode('status','nodisp');

Use dwtmode to change the extension mode to zero-padding. Obtain the single-level 2-D DWT of the
image on the GPU using the db2 wavelet.

dwtmode('zpd','nodisp')
[cA,cH,cV,cD] = dwt2(imgg,'db2');

The current extension mode zpd is not supported for gpuArray input. Therefore, the DWT is instead
performed using the sym extension mode. Confirm this by taking the DWT of imgg with the extension
mode set to sym and compare with the previous result.

[cAsym,cHsym,cVsym,cDsym] = dwt2(imgg,'db2','mode','sym');
[max(abs(cA(:)-cAsym(:))) max(abs(cH(:)-cHsym(:))) ...
    max(abs(cV(:)-cVsym(:))) max(abs(cD(:)-cDsym(:)))]
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ans =

     0     0     0     0

An unsupported extension mode specified as an input argument is converted to 'sym'. Confirm that
taking the DWT of imgg with 'mode' set to an unsupported mode also defaults to the sym extension
mode.

[cA,cH,cV,cD] = dwt2(imgg,'db2','mode','spd');
[max(abs(cA(:)-cAsym(:))) max(abs(cH(:)-cHsym(:))) ...
    max(abs(cV(:)-cVsym(:))) max(abs(cD(:)-cDsym(:)))]

ans =

     0     0     0     0

Change the current extension mode to periodic. Obtain the single-level DWT of the image on the GPU
using the db2 wavelet.

dwtmode('per','nodisp')
[cA,cH,cV,cD] = dwt2(imgg,'db2');

Confirm the current extension mode per is supported for gpuArray input.

[cAper,cHper,cVper,cDper] = dwt2(imgg,'db2','mode','per');
[max(abs(cA(:)-cAper(:))) max(abs(cH(:)-cHper(:))) ...
    max(abs(cV(:)-cVper(:))) max(abs(cD(:)-cDper(:)))]

ans =

     0     0     0     0

Restore the extension mode to the original setting.

dwtmode(origMode,'nodisp')

Input Arguments
X — Input data
numeric array | logical array

Input data, specified as a numeric or logical array. X can be an m-by-n array representing an indexed
image or an m-by-n-by-3 array representing a truecolor image. For more information on truecolor
images, see “RGB (Truecolor) Images”.
Data Types: double | single | uint8

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet used to compute the 2-D DWT, specified as a character vector or string scalar. The
analyzing wavelet is from one of the following wavelet families: Best-localized Daubechies, Beylkin,
Coiflets, Daubechies, Fejér-Korovkin, Haar, Han linear-phase moments, Morris minimum-bandwidth,
Symlets, Vaidyanathan, Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for
the wavelets available in each family.
Data Types: char | string

1 Functions

1-396



LoD — Wavelet decomposition lowpass filter
even-length real-valued vector

Wavelet decomposition lowpass filter, specified as an even-length real-valued vector. LoD must be of
the same length as HiD.
Data Types: double | single

HiD — Wavelet decomposition highpass filter
even-length real-valued vector

Wavelet decomposition highpass filter, specified as an even-length real-valued vector. HiD must be of
the same length as LoD.
Data Types: double | single

extmode — Extension mode
'zpd' | 'sp0' | 'spd' | ...

Extension mode used when performing the DWT, specified as one of the following:

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
'symw' Symmetric extension (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd' Periodized extension (1)
'per' Periodized extension (2)

If the signal length is odd, wextend adds to the right an extra
sample that is equal to the last value, and performs the extension
using the 'ppd' mode. Otherwise, 'per' reduces to 'ppd'.
This rule also applies to images.

The global variable managed by dwtmode specifies the default extension mode.
Example: [cA,cH,cV,cD] = dwt2(x,'db4','mode','symw');

Output Arguments
cA — Approximation coefficients
array

Approximation coefficients, returned as an array whose size depends on X. Let sx = size(X) and
lf = the length of the decomposition filters.
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• If the DWT extension mode is set to periodization, then this output is of size ceil(sx/2).
• For the other extension modes, this output is of size floor((sx+lf-1)/2).

Data Types: double

cH — Horizontal detail coefficients
array

Horizontal detail coefficients, returned as an array whose size depends on X. Let sx = size(X) and
lf = the length of the decomposition filters.

• If the DWT extension mode is set to periodization, then this output is of size ceil(sx/2).
• For the other extension modes, this output is of size floor((sx+lf-1)/2).

Data Types: double

cV — Vertical detail coefficients
array

Vertical detail coefficients, returned as an array whose size depends on X. Let sx = size(X) and lf
= the length of the decomposition filters.

• If the DWT extension mode is set to periodization, then this output is of size ceil(sx/2).
• For the other extension modes, this output is of size floor((sx+lf-1)/2).

Data Types: double

cD — Diagonal detail coefficients
array

Diagonal detail coefficients, returned as an array whose size depends on X. Let sx = size(X) and
lf = the length of the decomposition filters.

• If the DWT extension mode is set to periodization, then this output is of size ceil(sx/2).
• For the other extension modes, this output is of size floor((sx+lf-1)/2).

Data Types: double

Algorithms
The 2-D wavelet decomposition algorithm for images is similar to the one-dimensional case. The two-
dimensional wavelet and scaling functions are obtained by taking the tensor products of the one-
dimensional wavelet and scaling functions. This kind of two-dimensional DWT leads to a
decomposition of approximation coefficients at level j in four components: the approximation at level j
+ 1, and the details in three orientations (horizontal, vertical, and diagonal). The following chart
describes the basic decomposition steps for images.
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where

•

 — Downsample columns: keep the even-indexed columns
•

 — Downsample rows: keep the even-indexed rows
•

 — Convolve with filter X the rows of the entry
•

 — Convolve with filter X the columns of the entry

The decomposition is initialized by setting the approximation coefficients equal to the image s: cA0 =
s.

Note To deal with signal-end effects introduced by a convolution-based algorithm, the 1-D and 2-D
DWT use a global variable managed by dwtmode. This variable defines the kind of signal extension
mode used. The possible options include zero-padding and symmetric extension, which is the default
mode.

Version History
Introduced before R2006a

References
[1] Daubechies, Ingrid. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics 61. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1992.
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[2] Mallat, S.G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence 11, no. 7 (July 1989): 674–
93. https://doi.org/10.1109/34.192463.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
dwtmode | idwt2 | haart2 | ihaart2 | wavedec2 | waverec2 | waveinfo | wfilters
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dwt3
Single-level 3-D discrete wavelet transform

Syntax
wt = dwt3(x,wname)
wt = dwt3(x,wname,'mode',extM)
wt = dwt3(x,w, ___ )
wt = dwt3(x,wf, ___ )

Description
wt = dwt3(x,wname) returns the single-level three-dimensional wavelet decomposition wt of the
input data x using the wname wavelet. The default extension mode of the 3-D discrete wavelet
transform (DWT) is 'sym' (see dwtmode).

wt = dwt3(x,wname,'mode',extM) uses the extension mode extM (see dwtmode).

wt = dwt3(x,w, ___ ) specifies three wavelets, one for each direction. w is a cell array, string array,
or structure, and can be followed by 'mode',extM.

wt = dwt3(x,wf, ___ ) specifies four filters, two for decomposition and two for reconstruction, or
3 × 4 filters (one quadruplet by direction). wf is a cell array or structure, and can be followed by
'mode',extM..

Examples

Single-Level Three-Dimensional Wavelet Decomposition

Define the original 3-D data.

X = reshape(1:64,4,4,4)

X = 
X(:,:,1) =

     1     5     9    13
     2     6    10    14
     3     7    11    15
     4     8    12    16

X(:,:,2) =

    17    21    25    29
    18    22    26    30
    19    23    27    31
    20    24    28    32
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X(:,:,3) =

    33    37    41    45
    34    38    42    46
    35    39    43    47
    36    40    44    48

X(:,:,4) =

    49    53    57    61
    50    54    58    62
    51    55    59    63
    52    56    60    64

Perform single-level decomposition of X using 'db1'.

wt = dwt3(X,'db1')

wt = struct with fields:
    sizeINI: [4 4 4]
    filters: [1x1 struct]
       mode: 'sym'
        dec: {2x2x2 cell}

Decompose X using 'db2'.

[LoD,HiD,LoR,HiR] = wfilters('db2');
wt = dwt3(X,{LoD,HiD,LoR,HiR})

wt = struct with fields:
    sizeINI: [4 4 4]
    filters: [1x1 struct]
       mode: 'sym'
        dec: {2x2x2 cell}

Decompose X using different wavelets, one for each orientation: 'db1', 'db2', and again 'db1'.

WS = struct('w1','db1','w2','db2','w3','db1');
wt = dwt3(X,WS,'mode','per')

wt = struct with fields:
    sizeINI: [4 4 4]
    filters: [1x1 struct]
       mode: 'per'
        dec: {2x2x2 cell}

Decompose X using the filters given by WF and set the extension mode to symmetric.

WF = wt.filters;
wtBIS = dwt3(X,WF,'mode','sym')

wtBIS = struct with fields:
    sizeINI: [4 4 4]
    filters: [1x1 struct]

1 Functions

1-402



       mode: 'sym'
        dec: {2x2x2 cell}

Input Arguments
x — Input data
3-D array

Input data, specified as a 3-D array.
Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet used to compute the 3-D DWT, specified as a character vector or string scalar. The
analyzing wavelet is from one of the following wavelet families: Best-localized Daubechies, Beylkin,
Coiflets, Daubechies, Fejér-Korovkin, Haar, Han linear-phase moments, Morris minimum-bandwidth,
Symlets, Vaidyanathan, Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for
the wavelets available in each family.

w — Analyzing wavelets
cell array of character vectors | string array | structure

Analyzing wavelets to use in the 3-D wavelet decomposition, one for each direction, specified as a cell
array of character vectors, a string array, or a structure. w = {'wname1','wname2','wname3'},
or w = ["wname1","wname2","wname3"], or w is a structure with 3 fields 'w1', 'w2', 'w3'
containing character vectors or string scalars that are the names of wavelets.
Example: wt = dwt3(x,["db2","db4","db6"]);

wf — Wavelet filters
cell array | structure

Wavelet filters to use in the 3-D wavelet decomposition, specified as either a cell array or structure.
wf specifies four filters, two for decomposition and two for reconstruction, or 3 × 4 filters (one
quadruplet by direction). wf is either a cell array (1 × 4) or (3 × 4) : {LoD,HiD,LoR,HiR} or a
structure with the four fields 'LoD','HiD','LoR','HiR'.

extM — Extension mode
'zpd' | 'sp0' | 'spd' | ...

Extension mode used when performing the 3-D DWT, specified as one of the following:

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
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mode DWT Extension Mode
'symw' Symmetric extension (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd' Periodized extension (1)
'per' Periodized extension (2)

If the signal length is odd, wextend adds to the right an extra
sample that is equal to the last value, and performs the extension
using the 'ppd' mode. Otherwise, 'per' reduces to 'ppd'.
This rule also applies to images.

The global variable managed by dwtmode specifies the default extension mode.

Output Arguments
wt — Single-level 3-D wavelet decomposition
structure

Single-level 3-D wavelet decomposition, returned as a structure with the following fields:

sizeINI Size of the three-dimensional array X.
mode Name of the wavelet transform extension mode.
filters Structure with four fields: LoD, HiD, LoR, HiR, which are the filters used

for DWT.
dec 2 × 2 × 2 cell array containing the coefficients of the decomposition.

dec{i,j,k}, i,j,k = 1 or 2 contains the coefficients obtained by
lowpass filtering (for i or j or k = 1) or highpass filtering (for i or j or k
= 2).

The i element filters along the rows of X, the j element filters along the
columns, and the k element filters along the third dimension. For
example, dec{1,2,1} is obtained by filtering X along the rows with the
lowpass (scaling) filter, along the columns with the highpass (wavelet)
filter, and along the third dimension with the lowpass (scaling) filter.

Version History
Introduced in R2010a

See Also
dwtmode | idwt3 | wavedec3 | waverec3 | waveinfo | wfilters
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dwtfilterbank
Discrete wavelet transform filter bank

Description
Use dwtfilterbank to create a discrete wavelet transform (DWT) filter bank

• Visualize wavelets and scaling functions in time and frequency.
• Measure the 3-dB bandwidths of the wavelet and scaling functions. You can also measure energy

concentration of the wavelet and scaling functions in the theoretical DWT passbands.
• Create a DWT filter bank using your own custom filters. You can determine whether the filter bank

is orthogonal or biorthogonal.
• Determine the frame bounds of the filter bank.

Creation
Syntax
fb = dwtfilterbank
fb = dwtfilterbank(Name,Value)

Description

fb = dwtfilterbank create a discrete wavelet transform (DWT) filter bank. The default filter bank
is designed for a signal with 1024 samples. The default filter bank uses the analysis (decomposition)
sym4 wavelet and scaling filter with seven resolution levels.

fb = dwtfilterbank(Name,Value) creates a DWT filter bank fb with properties specified by one
or more Name,Value pair arguments. Properties can be specified in any order as
Name1,Value1,...,NameN,ValueN. Enclose each property name in quotes.

For example, fb = dwtfilterbank('SignalLength',1000,'Wavelet','bior4.4') creates a
DWT filter bank for signals of length 1000 using the biorthogonal bior4.4 wavelet.

Note You cannot change a property value of an existing filter bank. For example, if you have a filter
bank fb for the sym4 wavelet, you must create a second filter bank fb2 for the coif5 wavelet. You
cannot assign a different Wavelet to fb.

Properties
SignalLength — Signal length
1024 (default) | positive integer greater than or equal to 2

Signal length, specified as a positive integer greater than or equal to 2.
Example: 'SignalLength',768
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Data Types: double

Wavelet — Name of wavelet
'sym4' (default) | 'Custom' | character vector | string scalar

Name of wavelet used to construct the filter bank, specified as a character vector or string scalar.
Wavelet is an orthogonal or biorthogonal wavelet recognized by wavemngr or 'Custom'.

To use a wavelet filter not recognized by wavemngr, set the Wavelet property to 'Custom' and
specify the “CustomWaveletFilter” on page 1-0  and “CustomScalingFilter” on page 1-0
properties.
Example: 'Wavelet','bior4.4'
Data Types: char | string

FilterType — Wavelet filter type
'Analysis' (default) | 'Synthesis'

Wavelet filter type, specified as one of 'Analysis' or 'Synthesis'. 'Analysis' uses the
decomposition filters returned by wfilters. 'Synthesis' uses the reconstruction filters.

Level — Wavelet transform level
7 (default) | positive integer

Wavelet transform level, specified as a positive integer less than or equal to
floor(log2(SignalLength)). For a signal of length 1024 and the sym4 wavelet, the default level
is 7.

By default the level is equal to floor(log2(SignalLength/(L-1))) where L is the length of the
wavelet filter associated with Wavelet. For wavelets recognized by wavemngr, the transform level is
equal to wmaxlev(SignalLength,Wavelet). If floor(log2(SignalLength/(L-1))) is less
than or equal to 0, Level defaults to floor(log2(SignalLength)).

SamplingFrequency — Sampling frequency in hertz
1 (default) | positive scalar

Sampling frequency in hertz, specified as a positive scalar. If unspecified, frequencies are in cycles/
sample and the Nyquist frequency is ½.
Example: 'SamplingFrequency',5
Data Types: double

CustomWaveletFilter — Custom wavelet filter coefficients
even-length column vector | two-column matrix with even number of rows

Custom wavelet filter coefficients, specified as a real-valued column vector or matrix.
CustomWaveletFilter must be an even-length column vector for an orthogonal wavelet or a two-
column matrix with an even number of rows for a biorthogonal wavelet.

This property applies only when Wavelet is set to 'Custom'.

CustomScalingFilter — Custom scaling filter coefficients
even-length column vector | two-column matrix with even number of rows
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Custom scaling filter coefficients, specified as a real-valued column vector or matrix.
CustomScalingFilter must be an even-length column vector for an orthogonal wavelet or a two-
column matrix with an even number of rows for a biorthogonal wavelet.

This property applies only when Wavelet is set to 'Custom'.

Object Functions
dwtpassbands DWT filter bank passbands
filters DWT filter bank filters
framebounds DWT filter bank frame bounds
freqz DWT filter bank frequency responses
isBiorthogonal Determine if DWT filter bank is biorthogonal
isOrthogonal Determine if DWT filter bank is orthogonal
powerbw DWT filter bank power bandwidth
qfactor DWT filter bank quality factor
scalingfunctions DWT filter bank time-domain scaling functions
wavelets DWT filter bank time-domain wavelets
waveletsupport DWT filter bank time supports

Examples

Discrete Wavelet Transform Filter Bank with Default Values

Create a DWT filter bank using default values.

fb = dwtfilterbank

fb = 
  dwtfilterbank with properties:

                Wavelet: 'sym4'
           SignalLength: 1024
                  Level: 7
      SamplingFrequency: 1
             FilterType: 'Analysis'
    CustomWaveletFilter: []
    CustomScalingFilter: []

Plot the magnitude frequency responses of the wavelets and coarsest-scale scaling function. Open the
plot in a separate figure window. The plot legend in the window is interactive. To hide a particular
frequency response, click on its name.

freqz(fb)

Obtain and plot the time-centered wavelets corresponding to the wavelet bandpass filters.

[psi,t] = wavelets(fb);
plot(t,psi')
grid on
title('Time-Centered Wavelets')
xlabel('Time')
ylabel('Magnitude')
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Create DWT Filter Bank Using Custom Filters

This example shows how to create a DWT filter bank using custom biorthogonal wavelet filters.

Two pairs of analysis (decomposition) and synthesis (reconstruction) filters are associated with a
biorthogonal wavelet. Each pair consists of a lowpass and highpass filter. Specify the analysis and
synthesis filters for the nearly-orthogonal biorthogonal wavelets based on the Laplacian pyramid
scheme of Burt and Adelson (Table 8.4 on page 283 in [1]). Because the toolbox requires that all
filters associated with a biorthogonal wavelet or an orthogonal wavelet have the same even length,
the filters are prepended and appended with 0s.

Hd = [0 -1 5 12 5 -1 0 0]/20*sqrt(2);
Gd = [0 3 -15 -73 170 -73 -15 3]/280*sqrt(2);
Hr = [0 -3 -15 73 170 73 -15 -3]/280*sqrt(2);
Gr = [0 -1 -5 12 -5 -1 0 0]/20*sqrt(2);

Hd and Gd are the lowpass and highpass decomposition filters, respectively. Hr and Gr are the
lowpass and highpass reconstruction filters, respectively.

Construct analysis and synthesis DWT filter banks using the biorthogonal filters. Confirm the filter
banks are biorthogonal and not orthogonal.

fbAna = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',[Hd' Hr'],'CustomWaveletFilter',[Gd' Gr']);
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fbSyn = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',[Hd' Hr'],'CustomWaveletFilter',[Gd' Gr'],...
    'FilterType','Synthesis');
fprintf('fbAna: isOrthogonal = %d\tisBiorthogonal = %d\n',...
    isOrthogonal(fbAna),isBiorthogonal(fbAna));

fbAna: isOrthogonal = 0    isBiorthogonal = 1

fprintf('fbSyn: isOrthogonal = %d\tisBiorthogonal = %d\n',...
    isOrthogonal(fbSyn),isBiorthogonal(fbSyn ));

fbSyn: isOrthogonal = 0    isBiorthogonal = 1

Obtain the wavelet and scaling functions of both filter banks. Plot the wavelet and scaling functions at
the coarsest scales.

[fbAna_phi,t] = scalingfunctions(fbAna);
[fbAna_psi,~] = wavelets(fbAna);
[fbSyn_phi,~] = scalingfunctions(fbSyn);
[fbSyn_psi,~] = wavelets(fbSyn);
subplot(2,2,1)
plot(t,fbAna_phi(end,:))
grid on
title('Analysis - Scaling')
subplot(2,2,2)
plot(t,fbAna_psi(end,:))
grid on
title('Analysis - Wavelet')
subplot(2,2,3)
plot(t,fbSyn_phi(end,:))
grid on
title('Synthesis - Scaling')
subplot(2,2,4)
plot(t,fbSyn_psi(end,:))
grid on
title('Synthesis - Wavelet')
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Compute the framebounds of the two filter banks. Since the filters are associated with biorthogonal
wavelets, the framebounds will not equal 1.

[a1,a2] = framebounds(fbAna)

a1 = 0.9505

a2 = 1.0211

[b1,b2] = framebounds(fbSyn)

b1 = 0.9800

b2 = 1.0528

Obtain the frequency responses of the scaling and wavelets filters in the analysis filter bank. Plot up
to Nyquist the magnitude frequency responses of the scaling and wavelet filters at the finest scale.

[psidft,f,phidft] = freqz(fbAna);
flen = length(f);
figure
plot(f(flen/2+1:end),abs(phidft(1,flen/2+1:end)))
hold on
plot(f(flen/2+1:end),abs(psidft(1,flen/2+1:end)))
grid on
legend('Scaling','Wavelet')
title('Frequency Responses')
xlabel('Normalized Frequency')
ylabel('Magnitude')
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Zoom in and confirm the magnitude frequency responses at the point of intersection are not
magnitude equal to 1. Plot the sum of the squared magnitudes of the frequency responses. Because
the scaling (lowpass) and wavelet (highpass) filters do not form an orthogonal quadrature mirror
filter pair, the sum does not equal to 2 at all frequencies.

figure
plot(f(flen/2+1:end),abs(phidft(1,flen/2+1:end)).^2 + abs(psidft(1,flen/2+1:end)).^2)
grid on
title('Sum of Squared Frequency Responses')
xlabel('Normalized Frequency')
ylabel('Sum of Magnitudes')
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Version History
Introduced in R2018a

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

See Also
wavemngr | dwt | wavedec | modwt

Topics
“Add Quadrature Mirror and Biorthogonal Wavelet Filters”
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dwtleader
Multifractal 1-D wavelet leader estimates

Syntax
[dh,h] = dwtleader(x)
[dh,h,cp] = dwtleader(x)
[dh,h,cp,tauq] = dwtleader(x)
[dh,h,cp,tauq,leaders] = dwtleader( ___ )
[dh,h,cp,tauq,leaders,structfunc] = dwtleader( ___ )

[ ___ ]= dwtleader(x,wname)
[ ___ ] = dwtleader( ___ ,Name,Value)

Description
[dh,h] = dwtleader(x) returns the singularity spectrum, dh, and the Hölder exponents, h, for
the 1-D real-valued data, x. The singularity spectrum and Hölder exponents are estimated for the
linearly-spaced moments of the structure functions from –5 to +5.

[dh,h,cp] = dwtleader(x) also returns the first three log cumulants, cp of the scaling
exponents.

[dh,h,cp,tauq] = dwtleader(x) also returns the scaling exponents for the linearly spaced
moments from –5 to 5. Wavelet leaders are not defined for the finest scale.

[dh,h,cp,tauq,leaders] = dwtleader( ___ ) also returns the wavelet leaders by scale.

[dh,h,cp,tauq,leaders,structfunc] = dwtleader( ___ ) also returns the multiresolution
structure functions.

[ ___ ]= dwtleader(x,wname) uses the orthogonal or biorthogonal wavelet specified by wname to
compute the wavelet leaders and the fractal estimates.

[ ___ ] = dwtleader( ___ ,Name,Value) returns the wavelet leaders and other specified outputs
with additional options specified by one or more Name,Value pair arguments.

Examples

Multifractal Spectrum of Heart-Rate Variability

Compare the multifractal spectrum of heart-rate variability data before and after application of a
drug that reduces heart dynamics.

load hrvDrug
predrug = hrvDrug(1:4642);
postdrug = hrvDrug(4643:end);
[dhpre,hpre] = dwtleader(predrug);
[dhpost,hpost] = dwtleader(postdrug);
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plot(hpre,dhpre,hpost,dhpost)
xlabel('h')
ylabel('D(h)')
grid on
legend('Predrug','Postdrug')

The spread of the Hölder exponent values before drug administration (approximately 0.08 to 0.55) is
much larger than the spread of the values afterward (approximately 0.08 to 0.31). This indicates that
the heart rate has become more monofractal.

Brownian Noise Singularity Spectrum

Compute the singularity spectrum and cumulants for a Brownian noise process.

Create the Brownian noise signal.

rng(100);
x = cumsum(randn(2^15,1));

Obtain and plot the singularity spectrum.

[dh,h,cp] = dwtleader(x);
plot(h,dh,'o-','MarkerFaceColor','b') 
grid on
title({'Singularity Spectrum'; ['First Cumulant ' num2str(cp(1))]})
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The small spread in the Hölder exponents (approximately 0.472 to 0.512) indicates that this Brownian
noise signal can be characterized by a global Hölder exponent of 0.49875. The theoretical Hölder
exponent for Brownian motion is 0.5.

Obtain the cumulants.

cp

cp = 1×3

    0.4554   -0.0121   -0.0000

The first cumulant value is the slope of scaling exponents versus the moments. The second and third
cumulants indicate the deviation from linearity. The first cumulant value and near-zero values of the
second and third cumulants indicate that the scaling exponents are a linear function of the moments.
Therefore, this Brownian motion signal is monofractal.

Multifractal Random Walk Cumulants

Compute the cumulants for a multifractal random walk. The multifractal random walk is a realization
of a random process with a theoretical first cumulant of 0.75 and a second cumulant –0.05. The
second cumulant value of –0.05 indicates that the scaling exponents deviate from a linear function
with slope 0.75.
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Load a random walk signal.

load mrw07505 

Obtain and display the first and second cumulants.

[~,~,cp,tauq] = dwtleader(mrw07505);
cp([1 2])

ans = 1×2

    0.7504   -0.0554

For monofractal processes, the scaling exponents are a linear function of the moments. Linearity is
indicated by the second and third cumulants being close to zero. In this case, the nonzero second
cumulant indicates that the process is multifractal.

Plot the scaling exponents for the q th moments.

plot(-5:5,tauq,'bo--')
title('Estimated Scaling Exponents')
grid on
xlabel('qth Moments')
ylabel('\tau(q)')

The scaling exponents are a nonlinear function of the moments.
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Input Arguments
x — Input signal
vector of real values

Input signal, specified as a 1-D vector of real values. For the default wavelet and minimum regression
level, the time series must have at least 248 samples. For nondefault values, the minimum-required
data length depends on the wavelet filter and the levels used in the regression model. The wavelet
leaders technique works best for data with 8000 or more samples.
Data Types: single | double

wname — Wavelet name
'bior1.5' (default) | character vector | string scalar

Wavelet name, specified as a character vector or string scalar. wname is a wavelet family short name
and filter number recognized by the wavelet manager, wavemngr.

To query valid wavelet family short names, use wavemngr('read'). To determine whether a
particular wavelet is orthogonal or biorthogonal, use waveinfo with the wavelet family short name,
for example, waveinfo('db'). Alternatively, use wavemngr with the 'type' option, for example,
wavemngr('type','fk4'). A returned value of 1 indicates an orthogonal wavelet. A returned value
of 2 indicates a biorthogonal wavelet.
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MinRegressionLevel',5 sets the minimum regression level to 5.

RegressionWeight — Weight option
'uniform' (default) | 'scale'

Weight option to use in the weighted least-squares regression model to determine the singularity
spectrum, Hölder exponents, cumulants, and scaling exponents, specified as the comma-separated
pair consisting of 'RegressionWeight' and either 'uniform' or 'scale'. The 'uniform' option
applies equal weight to each scale. The 'scale' option uses the number of wavelet leaders by scale
as weights.

Note To duplicate the behavior of dwtleader found in releases prior to R2018a, update all instances
of dwtleader to include the name-value pair argument 'RegressionWeight' set to 'scale'.

MinRegressionLevel — Minimum regression level
3 (default) | positive integer

Minimum regression level, minlev, specified as the comma-separated pair consisting of
'MinRegressionLevel' and a positive integer greater than or equal to 2. Only levels greater than
or equal to the specified minimum level are used in the multifractal estimates. dwtleader requires
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at least 6 wavelet leaders at the maximum level and two levels to be used in the multifractal
estimates. The scale in the discrete wavelet transform corresponding to the minimum level is
twominlev. The smoother the data (that is, the closer the Hölder exponents are to 1), the less likely that
reducing the minimum regression level will degrade the results.

MaxRegressionLevel — Maximum regression level
positive integer

Maximum regression level, maxlev, specified as a positive integer greater than or equal to minlev +
1. The maximum level uses only levels less than or equal to maxlev in the multifractal estimates. The
scale in the discrete wavelet transform corresponding to the maximum level is 2maxlev. Specify a
maximum regression level when you want to restrict the levels used in the regression to a value less
than the default level. To determine the number of wavelet leaders by level, use the leaders output
argument, or the weights field of the structfunc output argument. The default value is the largest
level with at least six wavelet leaders

Output Arguments
dh — Singularity spectrum
vector

Singularity spectrum, returned as a vector. The singularity spectrum is estimated using structure
functions determined for the linearly-spaced moments from –5 to 5. The structure functions are
computed based on the wavelet leaders obtained using the biorthogonal spline wavelet filter. The
biorthogonal spline wavelet filter that is used has one vanishing moment in the synthesis wavelet and
five vanishing moments in the analysis wavelet ('bior1.5'). By default, multifractal estimates are
derived from wavelet leaders at a minimum level of 3 and maximum level where there are at least six
wavelet leaders.
Data Types: single | double

h — Hölder exponent estimates
1-by-11 vector of real scalars

Hölder exponent estimates, returned as a 1-by-11 vector of scalars. Hölder exponents characterize
signal regularity. The closer a Hölder exponent is to 1, the closer the function is to differentiable.
Conversely, the closer the Hölder exponent is to zero, the closer the function is to discontinuous.
Data Types: single | double

cp — Cumulants
vector

Cumulants, returned as a 1–by-3 vector of scalars. The vector contains the first three log cumulants of
the scaling exponents. The first cumulant characterizes the linear behavior in the scaling exponents.
The second and third cumulants characterize the departure from linearity.
Data Types: single | double

tauq — Scaling exponents
column vector

Scaling exponents, returned as a column vector. The exponents are for the linearly-spaced moments
from –5 to +5.
Data Types: single | double
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leaders — Wavelet leaders
cell array

leaders is a cell array with the ith element containing the wavelet leaders at level i+1, or scale 2(i
+1). Wavelet leaders are not defined at level 1.

structfunc — Multiresolution structure functions
struct

Multiresolution structure functions for the global Hölder exponent estimates, returned as a struct.
The structure function for data x is defined as

S(q, a) = 1
na
∑

k = 1

na
Tx(a, k) q ≃ aζ(q),

where a is the scale, q is the moment, Tx are the wavelet leaders by scale, na is the number of wavelet
leaders at each scale, and ζ(q) is the scaling exponent. Expanding ζ(q) to a polynomial produces

ζ q = c1q + c2q2/2 + c3q3/6 + ...

The scaling exponents can be estimated from the log-cumulants of the wavelet leader coefficients.
When ζ(q) is a linear function, the signal is monofractal. When it deviates from linear, the signal is
multifractal.

structfunc is a structure array containing the following fields:

• Tq — Measurements of the input, x, at various scales. Tq is a matrix of multiresolution quantities
that depend jointly on time and scale. Scaling phenomena in x imply a power-law relationship
between the moments of Tq and the scale. For dwtleader, the Tq field is an Ns-by-36 matrix,
where Ns is the number of scales used in the multifractal estimates. The first 11 columns of Tq are
the scaling exponent estimates by scale for each of the qth moments from –5 to 5. The next 11
columns contain the singularity spectrum estimates, dh, for each of the qth moments. Columns
23–33 contain the Hölder exponent estimates, h. The last three columns contain the estimates for
the first-order, second-order, and third-order cumulants, respectively.

• weights — Weights used in the regression. The weights are the number of wavelet leaders by
scale. weights is an Ns-by-1 vector.

• logscales — Scales used as predictors in the regression. logscales is an Ns-by-1 vector with
the base-2 logarithm of the scales.

Algorithms
Wavelet leaders are derived from the critically sampled discrete wavelet transform (DWT)
coefficients. Wavelet leaders offer significant theoretical advantages over wavelet coefficients in the
multifractal formalism. Wavelet leaders are time- or space-localized suprema of the absolute value of
the discrete wavelet coefficients. The time localization of the suprema requires that the wavelet
coefficients are obtained using a compactly supported wavelet. The Hölder exponents, which quantify
the local regularity, are determined from these suprema. The singularity spectrum indicates the size
of the set of Hölder exponents in the data.

1-D wavelet leaders are defined as

Lx j, k = supλ′ ⊂ 3λj, k dx j, k

 dwtleader

1-419



where the scales are 2j, translated to time positions 2jk. The time neighborhood is
3λ j, k = λ j, k− 1∪ λ j, k∪ λ j, k + 1, where λ j, k = k2 j, k + 1 2 j . The time neighborhood is taken over the
scale and all finer scales. dx(j,k) are the wavelet coefficients.

To calculate the wavelet leaders, Lx(j,k):

1 Compute the wavelet coefficients, dx(j,k), using the discrete wavelet transform and save the
absolute value of each coefficient for each scale. Each finer scale has twice the number of
coefficients than the next coarser scale. Each dyadic interval at scale 2j can be written as a union
of two intervals at a finer scale.

[2 jk, 2 j(k + 1)) = [2 j− 1(2k), 2 j− 1(2k + 2))

[2 j− 1(2k), 2 j− 1(2k + 2)) = [2 j− 1(2k), 2 j− 1(2k + 1))∪ [2 j− 1(2k + 1), 2 j− 1(2k + 2))
2 Start at the scale that is one level coarser than the finest obtained scale.
3 Compare the first value to all its finer dyadic intervals and obtain the maximum value.
4 Go to the next value and compare its value to all of its finer scale values.
5 Continue comparing the values with their nested values and obtaining the maxima.
6 From the maximum values obtained for that scale, examine the first three values and obtain the

maximum of those neighbors. That maximum value is a leader for that scale.
7 Continue comparing the maximum values to obtain the other leaders for that scale.
8 Move to the next coarser scale and repeat the process.

For example, assume that you have these absolute values of the coefficients at these scales:

Starting with the top row, which is the next coarsest level from the finest scale (bottom row), compare
each value to its dyadic intervals and obtain the maxima.
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Then, look at the three neighboring values and obtain the maximum. Repeat for the next three
neighbors. These maxima, 7 and 7, are the wavelet leaders for this level.

Version History
Introduced in R2016b

R2023a: Analyze single-precision data and generate C/C++ code

The dwtleader function:

• Supports single-precision data.
• Supports C/C++ code generation.

You must have MATLAB Coder™ to generate C/C++ code.

References
[1] Wendt, Herwig, and Patrice Abry. “Multifractality Tests Using Bootstrapped Wavelet Leaders.”

IEEE Transactions on Signal Processing 55, no. 10 (October 2007): 4811–20. https://doi.org/
10.1109/TSP.2007.896269.

[2] Jaffard, Stéphane, Bruno Lashermes, and Patrice Abry. “Wavelet Leaders in Multifractal Analysis.”
In Wavelet Analysis and Applications, edited by Tao Qian, Mang I Vai, and Yuesheng Xu, 201–
46. Basel: Birkhäuser Basel, 2007. https://doi.org/10.1007/978-3-7643-7778-6_17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.
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See Also
wtmm | wfbm

Topics
“Multifractal Analysis”
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dwtmode
Discrete wavelet transform extension mode

Syntax
dwtmode(mode)

dwtmode
dwtmode('status')
st = dwtmode
st = dwtmode('status')
st = dwtmode('status','nodisp')

dwtmode('save',mode)
dwtmode('save')
dwtmode('save',CURRENTMODE)

Description
dwtmode(mode) sets the signal or image extension mode for both discrete wavelet and wavelet
packet transforms to mode. All functions involving either the discrete wavelet transform (1-D and 2-D)
or wavelet packet transform (1-D and 2-D), use the specified DWT extension mode.

The extension modes provide options for dealing with the problem of border distortion in signal or
image analysis. For more information, see “Border Effects”.

Note Functions involving the discrete wavelet transform may not use the current extension mode for
gpuArray input. Such cases are documented on the function reference page.

dwtmode or dwtmode('status') display the current mode. If DWTMODE.DEF exists in the current
path, the default mode is loaded from DWTMODE.DEF at the start of the MATLAB session. Otherwise,
the file DWTMODE.CFG is used.

st = dwtmode or st = dwtmode('status') display and return the current mode in st.

st = dwtmode('status','nodisp') returns the current mode st and no status or warning text
is displayed in the MATLAB command window.

dwtmode('save',mode) saves mode as the new default mode to the file DWTMODE.DEF in the
current folder. If DWTMODE.DEF already exists in the current folder, the file is overwritten. The new
default mode will be active as the default mode in the next MATLAB session.

Note To execute in parallel any functionality that depends on the extension mode, either save the
extension mode using dwtmode('save',mode) before running your parfor loop, or call
dwtmode(mode) inside your parfor loop.

Changing the extension mode in a MATLAB session does not have the desired effect if anything
dependent on that mode is called in parallel. In a parallel environment, each worker has its own

 dwtmode

1-423



MATLAB execution engine, and each worker respects the DWTMODE.CFG file, but not an override in
the current session. Therefore, to run in parallel, the extension mode must either be saved to the
current folder, or the extension mode must be set for each worker.

Executing for-loop iterations in parallel requires Parallel Computing Toolbox™. For more
information, see parfor.

dwtmode('save') is equivalent to dwtmode('save',CURRENTMODE), where CURRENTMODE
represents the current extension mode.

Examples

Display and Change Signal Extension Mode

Display the current DWT signal extension mode. If the DWT extension mode global variable does not
exist, the default is half-point symmetrization.

dwtmode

                                                       
*******************************************************
**  DWT Extension Mode: Symmetrization (half-point)  **
*******************************************************
                                                       

Save the current extension mode. Change the extension mode to periodized extension.

origmode = dwtmode('status','nodisplay');
dwtmode('per','nodisplay')

Display the current DWT signal extension mode.

dwtmode

                                         
*****************************************
**  DWT Extension Mode: Periodization  **
*****************************************
                                         

Restore the original extension mode.

dwtmode(origmode,'nodisplay')
dwtmode

                                                       
*******************************************************
**  DWT Extension Mode: Symmetrization (half-point)  **
*******************************************************
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Input Arguments
mode — Discrete wavelet transform extension mode
'zpd' | 'sp0' | 'spd' | ...

DWT extension mode used to extend the input, specified as one of the following values.

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
'symw' Symmetric extension (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd', 'per' Periodized extension

If the signal length is odd and mode is 'per', an extra sample
equal to the last value is added to the right and the extension is
performed in 'ppd' mode. If the signal length is even, 'per' is
equivalent to 'ppd'. This rule also applies to images.

The DWT associated with the symmetric, smooth, zero, and periodic extension modes are slightly
redundant. But the inverse DWT ensures a perfect reconstruction for the extensions mentioned.

Note dwtmode updates a global variable. Only use dwtmode to change the extension mode. Avoid
changing the global variable directly.

Output Arguments
st — DWT extension mode
character array

DWT extension mode, returned as a character array.

Tips
• For most wavelet applications, either a periodic extension or symmetric extension works fine.

Version History
Introduced before R2006a
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References
[1] Strang, G., and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,

1996.

See Also
dwt | dwt2 | idwt | idwt2 | wextend
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dwtpassbands
DWT filter bank passbands

Syntax
dwtbands = dwtpassbands(fb)

Description
dwtbands = dwtpassbands(fb) returns the theoretical discrete wavelet transform (DWT)
passbands for the DWT filter bank fb.

Examples

DWT Filter Bank Passbands

Obtain the theoretical DWT passbands for a four-level wavelet transform using the Daubechies db6
wavelet with a sampling frequency of 1 kHz.

wv = 'db6';
Fs = 1e3;
fb = dwtfilterbank('Wavelet',wv,'Level',4,'SamplingFrequency',Fs);
dwtpassbands(fb)

ans = 5×2

  250.0000  500.0000
  125.0000  250.0000
   62.5000  125.0000
   31.2500   62.5000
         0   31.2500

Obtain the power bandwidths for the filter bank. Compare the theoretical passbands with the
measured wavelet 3 dB bandwidths at all four levels.

ptable = powerbw(fb);
ptable(:,1:3)

ans=4×3 table
    Level       DWTBand        Wavelet3dBBandwidth
    _____    ______________    ___________________

      1        250      500        250       500  
      2        125      250      123.2    253.71  
      3       62.5      125     61.601    126.78  
      4      31.25     62.5     30.815    63.389  
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
dwtbands — Theoretical DWT passbands
real-valued matrix

Theoretical DWT passbands for the filter bank fb, returned as an L+1-by-2 real-valued matrix, where
L is the wavelet transform level of the filter bank.

• The first L rows of dwtbands contain the theoretical passband frequencies for the DWT listed in
order of decreasing resolution (increasing scale).

• The final row of dwtbands contains the theoretical passband for the coarsest resolution scaling
filter.

• The first column of dwtbands contains the lower frequency limit.
• The final row of dwtbands contains the theoretical passband for the coarsest resolution scaling
filter.

Version History
Introduced in R2018a

See Also
powerbw | dwtfilterbank
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dyaddown
Dyadic downsampling

Syntax
Y = dyaddown(X)
Y = dyaddown(X,EVENODD)
Y = dyaddown( ___ ,'type')

Description
Y = dyaddown(X) downsamples even-indexed elements of X. Y contains even-index samples of X in
this case. Specify X as a vector or matrix. When you specify X as a vector, the function returns a
version of X downsampled by 2.

Y = dyaddown(X,EVENODD) downsamples even- or odd-indexed elements of X. Y can contain even-
or odd-indexed samples of X depends on the value of EVENODD. Specify X as a vector. When you
specify X as a vector, the function returns a version of X downsampled by 2.

Y = dyaddown( ___ ,'type') returns a version of X obtained by suppressing columns or rows, or
rows and columns of X using 'type' argument. Specify X as a matrix.

Examples

Perform Dyadic Downsampling

Create a vector of data that you want to downsample.

X1 = 1:10 

X1 = 1×10

     1     2     3     4     5     6     7     8     9    10

Downsample elements with even indices.

dse = dyaddown(X1)  

dse = 1×5

     2     4     6     8    10

You can also downsample the elements in X1 by setting EVENODD to 0.

dse2 = dyaddown(X1,0)

dse2 = 1×5

     2     4     6     8    10

 dyaddown

1-429



Downsample elements with odd indices.

dso = dyaddown(X1,1) 

dso = 1×5

     1     3     5     7     9

Create a matrix data that you want to downsample.

X = (1:3)'*(1:4)

X = 3×4

     1     2     3     4
     2     4     6     8
     3     6     9    12

Downsample columns with even indices.

dec = dyaddown(X,0,'c') 

dec = 3×2

     2     4
     4     8
     6    12

Downsample rows with odd indices.

der = dyaddown(X,1,'r') 

der = 2×4

     1     2     3     4
     3     6     9    12

Downsample rows and columns with odd indices.

dem = dyaddown(X,1,'m') 

dem = 2×2

     1     3
     3     9

Input Arguments
X — Data to be downsampled
vector | matrix
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Data to be downsampled, specified as a vector or matrix. X is a vector when you do not use the
'type' argument in the dyaddown function and X is a matrix when you use the 'type' argument in
the dyaddown function.

EVENODD — Even- or odd-indexed elements of X
0 (default) | positive integer

Even- or odd-indexed elements of X, specified as a positive integer.

Y contains the even- or odd-indexed samples of X depending on the value of EVENODD:

• If EVENODD is even, then Y(k) = X(2k).
• If EVENODD is odd, then Y(k) = X(2k+1).

Example: dyaddown(X,0) consists of even-indexed samples.

'type' — Type of downsampling
'c' (default) | 'r' | 'm'

Type of downsampling , specified as one of the following:

• 'c' to downsample columns of X
• 'r' to downsample rows of X
• 'm' to downsample rows and columns of X

Output Arguments
Y — Dyadic downsampled version of X
vector | matrix

Dyadic downsampled version of X, returned as a vector or a matrix.

Version History
Introduced before R2006a

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
dyadup
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dyaddown
Dyadic downsampling of Laurent polynomial or Laurent matrix

Syntax
Q = dyaddown(P)

Description
Q = dyaddown(P) downsamples by two the Laurent polynomial or Laurent matrix specified by P. If
P is a Laurent matrix, dyaddown downsamples the matrix elements.

Note The laurentPolynomial and laurentMatrix objects have their own versions of dyaddown.
The input data type determines which version is executed.

Examples

Dyadic Downsampling of Laurent Polynomial

Create the Laurent polynomial a(z) = ∑
k = − 5

6
(− 1)k k zk. Obtain the degree of a(z).

cfs = (-1).^(-5:6).*(-5:6);
a = laurentPolynomial(Coefficients=fliplr(cfs),MaxOrder=6)

a = 
  laurentPolynomial with properties:

    Coefficients: [6 -5 4 -3 2 -1 0 1 -2 3 -4 5]
        MaxOrder: 6

degree(a)

ans = 11

Obtain the degree of the dyadic downsampling of a(z).

ddown = dyaddown(a)

ddown = 
  laurentPolynomial with properties:

    Coefficients: [6 4 2 0 -2 -4]
        MaxOrder: 3

degree(ddown)

ans = 5
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Dyadic Downsampling of Laurent Matrix

Create two Laurent polynomials:

•
a(z) = ∑

k = 0

5
(6− k)z6− k

•
b(z) = ∑

k = 0

5
(k + 1)z−k

lpA = laurentPolynomial(Coefficients=[6:-1:1],MaxOrder=6);
lpB = laurentPolynomial(Coefficients=[1:6],MaxOrder=0);

Create the Laurent matrix matA = 
a z 1

2 b z
.

matA = laurentMatrix(Elements={lpA,1;2,lpB});

Obtain the dyadic downsampling of matA.

matB = dyaddown(matA);

Inspect the elements of matB.

matB.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: [6 4 2]
        MaxOrder: 3

matB.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: 0

matB.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 2
        MaxOrder: 0

matB.Elements{2,2}

ans = 
  laurentPolynomial with properties:
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    Coefficients: [1 3 5]
        MaxOrder: 0

Input Arguments
P — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Downsampled Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Downsampled Laurent polynomial or Laurent matrix, returned as a laurentPolynomial object or a

laurentMatrix object. Downsampling a Laurent polynomial P(z) = ∑
k = −∞

∞
Ckzk by two results in the

polynomial Q(z) = ∑
k = −∞

∞
C2kzk.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dyadup | polyphase | reflect

Objects
laurentMatrix | laurentPolynomial
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dyadup
Dyadic upsampling

Syntax
Y = dyadup(X)
Y = dyadup(X,EVENODD)
Y = dyadup( ___ ,'type')

Description
Y = dyadup(X) upsamples odd-indexed elements of X. Y contains odd-index samples of X in this
case. Specify X as a vector or matrix. When you specify X as a vector, the function returns an
extended copy of vector X upsampled by inserting zeros.

Y = dyadup(X,EVENODD), where X upsamples even- or odd-indexed elements of X. Y can contain
even- or odd-indexed samples of X depends on the value of EVENODD. Specify X as a vector. When you
specify X as a vector, the function returns an extended copy of vector X obtained by inserting zeros.

dyadup implements a simple zero-padding scheme very useful in the wavelet reconstruction
algorithm.

Y = dyadup( ___ ,'type') returns a extended copies of X obtained by inserting columns or rows,
or rows and columns of X using 'type' argument. Specify X as a matrix.

Examples

Perform Dyadic Upsampling

Create a vector of data that you want to upsample.

s = 1:5 

s = 1×5

     1     2     3     4     5

Upsample elements at odd indices.

dse = dyadup(s) 

dse = 1×11

     0     1     0     2     0     3     0     4     0     5     0

You can also upsample the elements in X1 by setting EVENODD to 1.

dse1 = dyadup(s,1)
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dse1 = 1×11

     0     1     0     2     0     3     0     4     0     5     0

Upsample elements at even indices.

dso = dyadup(s,0) 

dso = 1×9

     1     0     2     0     3     0     4     0     5

Create a matrix data that you want to upsample.

s = (1:2)'*(1:3)

s = 2×3

     1     2     3
     2     4     6

Upsample rows at even indices.

der = dyadup(s,1,'r') 

der = 5×3

     0     0     0
     1     2     3
     0     0     0
     2     4     6
     0     0     0

Upsample columns at odd indices.

doc = dyadup(s,0,'c')  

doc = 2×5

     1     0     2     0     3
     2     0     4     0     6

Upsample rows and columns at even indices.

dem = dyadup(s,1,'m')

dem = 5×7

     0     0     0     0     0     0     0
     0     1     0     2     0     3     0
     0     0     0     0     0     0     0
     0     2     0     4     0     6     0
     0     0     0     0     0     0     0
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Using default values for dyadup and dyaddown, we have: dyaddown(dyadup(s)) = s.

s = 1:5

s = 1×5

     1     2     3     4     5

uds = dyaddown(dyadup(s))

uds = 1×5

     1     2     3     4     5

In general reversed identity is false.

Input Arguments
X — Data to be upsampled
vector | matrix

Data to be upsampled, specified as a vector or matrix. X is a vector when you do not use the 'type'
argument in the dyadup function and X is a matrix when you use the 'type' argument in the
dyadup function.

EVENODD — Even- or odd-indexed samples of X
1 (default) | positive integer

Even- or odd-indexed samples of X, specified as a positive integer.

Y contains the even- or odd-indexed samples of X depends on the value of EVENODD:

• If EVENODD is even, then Y(2k–1) = X(k), Y(2k) = 0.
• If EVENODD is odd, then Y(2k–1) = 0, Y(2k) = X(k).

dyadup defaults to EVENODD = 1 (zeros in odd-indexed positions).

'type' — Type of upsampling
'c' (default) | 'r' | 'm'

Type of upsampling , specified as one of the following:

• 'c' to upsample columns of X
• 'r' to upsample rows of X
• 'm' to upsample rows and columns of X

Output Arguments
Y — Dyadic upsampled version of X
vector | matrix

Dyadic upsampled version of X, returned as a vector or a matrix.
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Version History
Introduced before R2006a

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If X is empty, generated code returns X and MATLAB returns [].
• Suppose that all of the following conditions are true:

• X is a variable-size array.
• X is not a variable-length column vector (:-by-1).
• X is a column vector at run time.
• 'type' is not supplied.

In generated code, the output for y = dyadup(X,k), where k is optional, matches the output for
y = dyadup(X,k,'c'). In MATLAB, the output for y = dyadup(X,k) matches the output for y
= dyadup(X,k,'r').

For code generation, when you do not specify 'type', if you want dyadup to treat X as a column
vector, X must be a variable-length vector (:-by-1).

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
dyaddown
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dyadup
Dyadic upsampling of Laurent polynomial or Laurent matrix

Syntax
Q = dyadup(P)

Description
Q = dyadup(P) upsamples by two the Laurent polynomial or Laurent matrix specified by P. If P is a
Laurent matrix, dyadup upsamples the matrix elements. If P is a Laurent matrix, dyadup upsamples
the matrix elements.

Note The laurentPolynomial and laurentMatrix objects have their own versions of dyadup.
The input data type determines which version is executed.

Examples

Dyadic Upsampling of Laurent Polynomial

Create the Laurent polynomial a(z) = ∑
k = − 5

6
(− 1)k k zk. Obtain the degree of a(z).

cfs = (-1).^(-5:6).*(-5:6);
a = laurentPolynomial(Coefficients=fliplr(cfs),MaxOrder=6)

a = 
  laurentPolynomial with properties:

    Coefficients: [6 -5 4 -3 2 -1 0 1 -2 3 -4 5]
        MaxOrder: 6

degree(a)

ans = 11

Obtain the degree of the dyadic upsampling of a(z).

dup = dyadup(a)

dup = 
  laurentPolynomial with properties:

    Coefficients: [6 0 -5 0 4 0 -3 0 2 0 -1 0 0 0 1 0 -2 0 3 0 -4 0 5]
        MaxOrder: 12

degree(dup)
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ans = 22

Dyadic Upsampling of Laurent Matrix

Create two Laurent polynomials:

• a(z) = 2 + 4z−1 + 6z−2

• b(z) = z + 3 + 5z−1

lpA = laurentPolynomial(Coefficients=[2 4 6],MaxOrder=0);
lpB = laurentPolynomial(Coefficients=[1 3 5],MaxOrder=1);

Create the Laurent matrix matA = 
a z 2

3 b z
.

matA = laurentMatrix(Elements={lpA,2;3,lpB});

Obtain the dyadic upsampling of matA.

matB = dyadup(matA);

Inspect the elements of matB.

matB.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: [2 0 4 0 6]
        MaxOrder: 0

matB.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 2
        MaxOrder: 0

matB.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 3
        MaxOrder: 0

matB.Elements{2,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: [1 0 3 0 5]
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        MaxOrder: 2

Input Arguments
P — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Upsampled Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Upsampled Laurent polynomial or Laurent matrix, returned as a laurentPolynomial object or a
laurentMatrix object . Upsampling a Laurent polynomial P(z) by two results in the polynomial Q(z)
= P(z2).

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dyaddown | polyphase | reflect

Objects
laurentMatrix | laurentPolynomial
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editLabelDefinition
Edit label definition properties

Syntax
editLabelDefinition(lss,lblname,propname,val)

Description
editLabelDefinition(lss,lblname,propname,val) changes the propname property of the
label or sublabel definition lblname to val.

The function can edit only the “Name” on page 1-0 , “DefaultValue” on page 1-0 , “Tag” on page 1-
0 , “Description” on page 1-0 , and “Categories” on page 1-0  properties. To change any other
property of the label definition, remove the definition using removeLabelDefinition and add a
definition with the desired property values using addLabelDefinitions.

• If you edit the “DefaultValue” on page 1-0  property, all existing label values remain unchanged.
The new default value applies only to new members, new regions, or new points.

• You can edit the “Categories” on page 1-0  property only when the “LabelDataType” on page 1-
0  of the target label or sublabel definition is 'Categorical'.

New specified categories do not replace any existing categories. They are appended to the existing
values.

Examples

Edit Label Definition

Load a labeled signal set containing recordings of whale songs. Get the names of the labels.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

getLabelNames(lss)

 editLabelDefinition

1-443



ans = 3x1 string
    "WhaleType"
    "MoanRegions"
    "TrillRegions"

The first label corresponds to the type of whale. Get the types available in the set.

lbldefs = getLabelDefinitions(lss);
types = lbldefs(1)

types = 
  signalLabelDefinition with properties:

             Name: "WhaleType"
        LabelType: "attribute"
    LabelDataType: "categorical"
       Categories: [3x1 string]
     DefaultValue: []
        Sublabels: [0x0 signalLabelDefinition]
              Tag: ""
      Description: "Whale type"

 Use labeledSignalSet to create a labeled signal set.

types = types.Categories

types = 3x1 string
    "blue"
    "humpback"
    "white"

Modify the label to incorporate sperm whales and killer whales. Verify that the labeled signal set
includes the two new whale types.

editLabelDefinition(lss,'WhaleType', ...
    'Categories',{'sperm','killer'})

lbldefs = getLabelDefinitions(lss);
types = lbldefs(1).Categories

types = 5x1 string
    "blue"
    "humpback"
    "white"
    "sperm"
    "killer"

The definition for trill regions has a sublabel that identifies peaks.

lbldefs(3).Sublabels

ans = 
  signalLabelDefinition with properties:

                      Name: "TrillPeaks"
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                 LabelType: "point"
             LabelDataType: "numeric"
        ValidationFunction: []
    PointLocationsDataType: "double"
              DefaultValue: []
                 Sublabels: [0x0 signalLabelDefinition]
                       Tag: ""
               Description: "Trill peaks"

 Use labeledSignalSet to create a labeled signal set.

Change the description of the sublabel.

editLabelDefinition(lss,["TrillRegions" "TrillPeaks"],'Description','Peaks of trill regions')

lbldefs = getLabelDefinitions(lss);
lbldefs(3).Sublabels

ans = 
  signalLabelDefinition with properties:

                      Name: "TrillPeaks"
                 LabelType: "point"
             LabelDataType: "numeric"
        ValidationFunction: []
    PointLocationsDataType: "double"
              DefaultValue: []
                 Sublabels: [0x0 signalLabelDefinition]
                       Tag: ""
               Description: "Peaks of trill regions"

 Use labeledSignalSet to create a labeled signal set.

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.
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Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

propname — Property name
'Name' | 'DefaultValue' | 'Tag' | 'Description' | 'Categories'

Property name, specified as 'Name', 'DefaultValue', 'Tag', 'Description', or
'Categories'.
Data Types: char | string

val — Property value
numeric value | logical value | character vector | string | vector of strings | cell array of character
vectors

Label values, specified as a numeric or logical value, a character vector or string, a vector of strings,
or a cell array of character vectors. val must be of the data type specified for propname.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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emd
Empirical mode decomposition

Syntax
[imf,residual] = emd(x)
[imf,residual,info] = emd(x)
[ ___ ] = emd( ___ ,Name,Value)

emd( ___ )

Description
[imf,residual] = emd(x) returns intrinsic mode functions imf and residual signal residual
corresponding to the empirical mode decomposition of x. Use emd to decompose and simplify
complicated signals into a finite number of intrinsic mode functions required to perform Hilbert
spectral analysis.

[imf,residual,info] = emd(x) returns additional information info on IMFs and residual signal
for diagnostic purposes.

[ ___ ] = emd( ___ ,Name,Value) performs the empirical mode decomposition with additional
options specified by one or more Name,Value pair arguments.

emd( ___ ) plots the original signal, IMFs, and residual signal as subplots in the same figure.

Examples

Perform Empirical Mode Decomposition and Visualize Hilbert Spectrum of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load("sinusoidalSignalExampleData.mat","X","fs")
t = (0:length(X)-1)/fs;

plot(t,X)
xlabel("Time (s)")
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The mixed signal contains sinusoidal waves with different amplitude and frequency values.

To create the Hilbert spectrum plot, you need the intrinsic mode functions (IMFs) of the signal.
Perform empirical mode decomposition to compute the IMFs and residuals of the signal. Since the
signal is not smooth, specify 'pchip' as the interpolation method.

[imf,residual,info] = emd(X,Interpolation="pchip");

The table generated in the command window indicates the number of sift iterations, the relative
tolerance, and the sift stop criterion for each generated IMF. This information is also contained in
info. You can hide the table by adding the 'Display',0 name value pair.

Create the Hilbert spectrum plot using the imf components obtained using empirical mode
decomposition.

hht(imf,fs)
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The frequency versus time plot is a sparse plot with a vertical color bar indicating the instantaneous
energy at each point in the IMF. The plot represents the instantaneous frequency spectrum of each
component decomposed from the original mixed signal. Three IMFs appear in the plot with a distinct
change in frequency at 1 second.

Zero Crossings and Extrema in Intrinsic Mode Function of Sinusoid

This trigonometric identity presents two different views of the same physical signal:

5
2cos2πf1t + 1

4 cos2π f1 + f2 t + cos2π f1− f2 t = 2 + cos2πf2t cos2πf1t.

Generate two sinusoids, s and z, such that s is the sum of three sine waves and z is a single sine
wave with a modulated amplitude. Verify that the two signals are equal by calculating the infinity
norm of their difference.

t = 0:1e-3:10;
omega1 = 2*pi*100;
omega2 = 2*pi*20;
s = 0.25*cos((omega1-omega2)*t) + 2.5*cos(omega1*t) + 0.25*cos((omega1+omega2)*t);
z = (2+cos(omega2/2*t).^2).*cos(omega1*t);

norm(s-z,Inf) 

ans = 3.2729e-13
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Plot the sinusoids and select a 1-second interval starting at 2 seconds.

plot(t,[s' z'])
xlim([2 3])
xlabel('Time (s)')
ylabel('Signal')

Obtain the spectrogram of the signal. The spectrogram shows three distinct sinusoidal components.
Fourier analysis sees the signals as a superposition of sine waves.

pspectrum(s,1000,'spectrogram','TimeResolution',4)
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Use emd to compute the intrinsic mode functions (IMFs) of the signal and additional diagnostic
information. The function by default outputs a table that indicates the number of sifting iterations,
the relative tolerance, and the sifting stop criterion for each IMF. Empirical mode decomposition sees
the signal as z.

[imf,~,info] = emd(s);

The number of zero crossings and local extrema differ by at most one. This satisfies the necessary
condition for the signal to be an IMF.

info.NumZerocrossing - info.NumExtrema

ans = 1

Plot the IMF and select a 0.5-second interval starting at 2 seconds. The IMF is an AM signal because
emd views the signal as amplitude modulated.

plot(t,imf)
xlim([2 2.5])
xlabel('Time (s)')
ylabel('IMF')
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Compute Intrinsic Mode Functions of Vibration Signal

Simulate a vibration signal from a damaged bearing. Perform empirical mode decomposition to
visualize the IMFs of the signal and look for defects.

A bearing with a pitch diameter of 12 cm has eight rolling elements. Each rolling element has a
diameter of 2 cm. The outer race remains stationary as the inner race is driven at 25 cycles per
second. An accelerometer samples the bearing vibrations at 10 kHz.

fs = 10000;
f0 = 25;
n = 8;
d = 0.02;
p = 0.12;
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The vibration signal from the healthy bearing includes several orders of the driving frequency.

t = 0:1/fs:10-1/fs;
yHealthy = [1 0.5 0.2 0.1 0.05]*sin(2*pi*f0*[1 2 3 4 5]'.*t)/5;

A resonance is excited in the bearing vibration halfway through the measurement process.

yHealthy = (1+1./(1+linspace(-10,10,length(yHealthy)).^4)).*yHealthy;

The resonance introduces a defect in the outer race of the bearing that results in progressive wear.
The defect causes a series of impacts that recur at the ball pass frequency outer race (BPFO) of the
bearing:

BPFO = 1
2nf0 1− d

pcosθ ,

where f0 is the driving rate, n is the number of rolling elements, d is the diameter of the rolling
elements, p is the pitch diameter of the bearing, and θ is the bearing contact angle. Assume a contact
angle of 15° and compute the BPFO.

ca = 15;
bpfo = n*f0/2*(1-d/p*cosd(ca));

Use the pulstran (Signal Processing Toolbox) function to model the impacts as a periodic train of 5-
millisecond sinusoids. Each 3 kHz sinusoid is windowed by a flat top window. Use a power law to
introduce progressive wear in the bearing vibration signal.

fImpact = 3000;
tImpact = 0:1/fs:5e-3-1/fs;
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wImpact = flattopwin(length(tImpact))'/10;
xImpact = sin(2*pi*fImpact*tImpact).*wImpact;

tx = 0:1/bpfo:t(end);
tx = [tx; 1.3.^tx-2];

nWear = 49000;
nSamples = 100000;
yImpact = pulstran(t,tx',xImpact,fs)/5;
yImpact = [zeros(1,nWear) yImpact(1,(nWear+1):nSamples)];

Generate the BPFO vibration signal by adding the impacts to the healthy signal. Plot the signal and
select a 0.3-second interval starting at 5.0 seconds.

yBPFO = yImpact + yHealthy;

xLimLeft = 5.0;
xLimRight = 5.3;
yMin = -0.6;
yMax = 0.6;

plot(t,yBPFO)

hold on
[limLeft,limRight] = meshgrid([xLimLeft xLimRight],[yMin yMax]);
plot(limLeft,limRight,'--')
hold off

1 Functions

1-454



Zoom in on the selected interval to visualize the effect of the impacts.

xlim([xLimLeft xLimRight])

Add white Gaussian noise to the signals. Specify a noise variance of 1/1502.

rn = 150;
yGood = yHealthy + randn(size(yHealthy))/rn;
yBad = yBPFO + randn(size(yHealthy))/rn;

plot(t,yGood,t,yBad)
xlim([xLimLeft xLimRight])
legend('Healthy','Damaged')
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Use emd to perform an empirical mode decomposition of the healthy bearing signal. Compute the first
five intrinsic mode functions (IMFs). Use the 'Display' name-value pair to show a table with the
number of sifting iterations, the relative tolerance, and the sifting stop criterion for each IMF.

imfGood = emd(yGood,'MaxNumIMF',5,'Display',1);

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        3     |     0.017132   |  SiftMaxRelativeTolerance
      2      |        3     |      0.12694   |  SiftMaxRelativeTolerance
      3      |        6     |      0.14582   |  SiftMaxRelativeTolerance
      4      |        1     |     0.011082   |  SiftMaxRelativeTolerance
      5      |        2     |      0.03463   |  SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

Use emd without output arguments to visualize the first three modes and the residual.

emd(yGood,'MaxNumIMF',5)
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Compute and visualize the IMFs of the defective bearing signal. The first empirical mode reveals the
high-frequency impacts. This high-frequency mode increases in energy as the wear progresses. The
third mode shows the resonance in the vibration signal.

imfBad = emd(yBad,'MaxNumIMF',5,'Display',1);

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        2     |     0.041274   |  SiftMaxRelativeTolerance
      2      |        3     |      0.16695   |  SiftMaxRelativeTolerance
      3      |        3     |      0.18428   |  SiftMaxRelativeTolerance
      4      |        1     |     0.037177   |  SiftMaxRelativeTolerance
      5      |        2     |     0.095861   |  SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

emd(yBad,'MaxNumIMF',5)
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The next step in the analysis is to compute the Hilbert spectrum of the extracted IMFs. For more
details, see the “Compute Hilbert Spectrum of Vibration Signal” (Signal Processing Toolbox) example.

Visualize Residual and Intrinsic Mode Functions of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load('sinusoidalSignalExampleData.mat','X','fs')
t = (0:length(X)-1)/fs;
plot(t,X)
xlabel('Time(s)')
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The mixed signal contains sinusoidal waves with different amplitude and frequency values.

Perform empirical mode decomposition to plot the intrinsic mode functions and residual of the signal.
Since the signal is not smooth, specify 'pchip' as the interpolation method.

emd(X,'Interpolation','pchip','Display',1)

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        2     |     0.026352   |  SiftMaxRelativeTolerance
      2      |        2     |    0.0039573   |  SiftMaxRelativeTolerance
      3      |        1     |     0.024838   |  SiftMaxRelativeTolerance
      4      |        2     |      0.05929   |  SiftMaxRelativeTolerance
      5      |        2     |      0.11317   |  SiftMaxRelativeTolerance
      6      |        2     |      0.12599   |  SiftMaxRelativeTolerance
      7      |        2     |      0.13802   |  SiftMaxRelativeTolerance
      8      |        3     |      0.15937   |  SiftMaxRelativeTolerance
      9      |        2     |      0.15923   |  SiftMaxRelativeTolerance
Decomposition stopped because the number of extrema in the residual signal is less than the 'MaxNumExtrema' value.
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emd generates an interactive plot with the original signal, the first 3 IMFs, and the residual. The table
generated in the command window indicates the number of sift iterations, the relative tolerance, and
the sift stop criterion for each generated IMF. You can hide the table by removing the 'Display'
name-value pair or specifying it as 0.

Right-click on the white space in the plot to open the IMF selector window. Use IMF selector to
selectively view the generated IMFs, the original signal, and the residual.
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Select the IMFs to be displayed from the list. Choose whether to display the original signal and
residual on the plot.

The selected IMFs are now displayed on the plot.
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Use the plot to visualize individual components decomposed from the original signal along with the
residual. Note that the residual is computed for the total number of IMFs, and does not change based
on the IMFs selected in the IMF selector window.

Input Arguments
x — Time-domain signal
vector | timetable

Time-domain signal, specified as a real-valued vector, or a single-variable timetable with a single
column. If x is a timetable, x must contain increasing, finite row times.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MaxNumIMF',5

SiftRelativeTolerance — Cauchy-type convergence criterion
0.2 (default) | positive scalar
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Cauchy-type convergence criterion, specified as the comma-separated pair consisting of
'SiftRelativeTolerance' and a positive scalar. SiftRelativeTolerance is one of the sifting
stop criteria, that is, sifting stops when the current relative tolerance is less than
SiftRelativeTolerance. For more information, see “Sift Relative Tolerance” on page 1-466.

SiftMaxIterations — Maximum number of sifting iterations
100 (default) | positive scalar integer

Maximum number of sifting iterations, specified as the comma-separated pair consisting of
'SiftMaxIterations' and a positive scalar integer. SiftMaxIterations is one of the sifting stop
criteria, that is, sifting stops when the current number of iterations is larger than
SiftMaxIterations.

SiftMaxIterations can be specified using only positive whole numbers.

MaxNumIMF — Maximum number of IMFs extracted
10 (default) | positive scalar integer

Maximum number of IMFs extracted, specified as the comma-separated pair consisting of
'MaxNumIMF' and a positive scalar integer. MaxNumIMF is one of the decomposition stop criteria,
that is, decomposition stops when number of IMFs generated is equal to MaxNumIMF.

MaxNumIMF can be specified using only positive whole numbers.

MaxNumExtrema — Maximum number of extrema in the residual signal
1 (default) | positive scalar integer

Maximum number of extrema in the residual signal, specified as the comma-separated pair consisting
of 'MaxNumExtrema' and a positive scalar integer. MaxNumExtrema is one of the decomposition stop
criteria, that is, decomposition stops when number of extrema is less than MaxNumExtrema.

MaxNumExtrema can be specified using only positive whole numbers.

MaxEnergyRatio — Signal to residual energy ratio
20 (default) | scalar

Signal to residual energy ratio, specified as the comma-separated pair consisting of
'MaxEnergyRatio' and a scalar. MaxEnergyRatio is the ratio of the energy of the signal at the
beginning of sifting and the average envelope energy. MaxEnergyRatio is one of the decomposition
stop criteria, that is, decomposition stops when current energy ratio is larger than MaxEnergyRatio.
For more information, see “Energy Ratio” on page 1-467.

Interpolation — Interpolation method for envelope construction
'spline' (default) | 'pchip'

Interpolation method for envelope construction, specified as the comma-separated pair consisting of
'Interpolation' and either 'spline' or 'pchip'.

Specify Interpolation as:

• 'spline', if x is a smooth signal
• 'pchip', if x is a nonsmooth signal

'spline' interpolation method uses cubic splines, while 'pchip' uses piecewise-cubic Hermite
interpolating polynomials.
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Display — Toggle information display in the command window
0 (default) | 1

Toggle information display in the command window, specified as the comma-separated pair consisting
of 'Display' and either 0 or 1. The table generated in the command window indicates the number
of sift iterations, the relative tolerance, and the sift stop criterion for each generated IMF. Specify
Display as 1 to show the table or 0 to hide the table.

Output Arguments
imf — Intrinsic mode function
matrix | timetable

Intrinsic mode function (IMF), returned as a matrix or timetable. Each IMF is an amplitude and
frequency modulated signal with positive and slowly varying envelopes. To perform spectral analysis
of a signal, you can apply the Hilbert-Huang transform to its IMFs. See hht and “Intrinsic Mode
Functions” on page 1-466.

imf is returned as:

• A matrix whose each column is an imf, when x is a vector
• A timetable, when x is a single data column timetable

residual — Residual of the signal
column vector | single data column timetable

Residual of the signal, returned as a column vector or a single data column timetable. residual
represents the portion of the original signal x not decomposed by emd.

residual is returned as:

• A column vector, when x is a vector.
• A single data column timetable, when x is a single data column timetable.

info — Additional information for diagnostics
structure

Additional information for diagnostics, returned as a structure with the following fields:

• NumIMF — Number of IMFs extracted

NumIMF is a vector from 1 to N, where N is the number of IMFs. If no IMFs are extracted, NumIMF
is empty.

• NumExtrema — Number of extrema in each IMF

NumExtrema is a vector equal in length to the number of IMFs. The kth element of NumExtrema
is the number of extrema found in the kth IMF. If no IMFs are extracted, NumExtrema is empty.

• NumZerocrossing — Number of zero crossings in each IMF

Number of zero crossings in each IMF. NumZerocrossing is a vector equal in length to the
number of IMFs. The kth element of NumZerocrossing is the number of zero crossings in the kth
IMF. If no IMFs are extracted, NumZerocrossing is empty.
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• NumSifting — Number of sifting iterations used to extract each IMF

NumSifting is a vector equal in length to the number of IMFs. The kth element of NumSifting
is the number of sifting iterations used in the extraction of the kth IMF. If no IMFs are extracted,
NumSifting is empty.

• MeanEnvelopeEnergy — Energy of the mean of the upper and lower envelopes obtained for each
IMF

If UE is the upper envelope and LE is the lower envelope, MeanEnvelopeEnergy is mean(((LE
+UL)/2).^2). MeanEnvelopeEnergy is a vector equal in length to the number of IMFs. The kth
element of MeanEnvelopeEnergy is the mean envelope energy for the kth IMF. If no IMFs are
extracted, MeanEnvelopeEnergy is empty.

• RelativeTolerance — Final relative tolerance of the residual for each IMF

The relative tolerance is defined as the ratio of the squared 2-norm of the difference between the
residual from the previous sifting step and the residual from the current sifting step to the
squared 2-norm of the residual from the ith sifting step. The sifting process stops when
RelativeTolerance is less than SiftRelativeTolerance. For additional information, see
“Sift Relative Tolerance” on page 1-466. RelativeTolerance is a vector equal in length to the
number of IMFs. The kth element of RelativeTolerance is the final relative tolerance obtained
for the kth IMF. If no IMFs are extracted, RelativeTolerance is empty.

More About
Empirical Mode Decomposition

The empirical mode decomposition (EMD) algorithm decomposes a signal x(t) into intrinsic mode
functions (IMFs) and a residual in an iterative process. The core component of the algorithm involves
sifting a function x(t) to obtain a new function Y(t):

• First find the local minima and maxima of x(t).
• Then use the local extrema to construct lower and upper envelopes s−(t) and s+(t), respectively, of

x(t). Form the mean of the envelopes, m(t).
• Subtract the mean from x(t) to obtain the residual: Y(t) = x(t) − m(t).

An overview of the decomposition is as follows:

1 To begin, let r0(t) = x(t), where x(t) is the initial signal, and let i = 0.
2 Before sifting, check ri(t):

a Find the total number (TN) of local extrema of ri(t).
b Find the energy ratio (ER) of ri(t) (see “Energy Ratio” on page 1-467).

3 If (ER > MaxEnergyRatio) or (TN < MaxNumExtrema) or (number of IMFs > MaxNumIMF) then
stop the decomposition.

4 Let ri,Prev(t) = ri(t).
5 Sift ri,Prev(t) to obtain ri,Cur(t).
6 Check ri,Cur(t)

a Find the relative tolerance (RT) of ri,Cur(t) (see “Sift Relative Tolerance” on page 1-466).
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b Get current sift iteration number (IN).
7 If (RT < SiftRelativeTolerance) or (IN > SiftMaxIterations) then stop sifting. An IMF

has been found: IMFi(t) = ri,Cur(t). Otherwise, let ri,Prev(t) = ri,Cur(t) and go to Step 5.
8 Let ri+1(t) = ri(t) − ri,Cur(t).
9 Let i = i + 1. Return to Step 2.

For additional information, see [1] and [3].

Intrinsic Mode Functions

The EMD algorithm decomposes, via an iterative sifting process, a signal x(t) into IMFs imfi(t) and a
residual rN(t):

X t = ∑
i = 1

N
IMFi t + rN t

When first introduced by Huang et al. [1], an IMF was defined to be a function with two
characteristics:

• The number of local extrema — the total number of local minima and local maxima — and the
number of zero crossings differ by at most one.

• The mean value of the upper and lower envelopes constructed from the local extrema is zero.

However, as noted in [4], sifting until a strict IMF is obtained can result in IMFs that have no physical
significance. Specifically, sifting until the number of zero crossings and local extrema differ by at
most one can result in pure-tone like IMFs, in other words, functions very similar to what would be
obtained by projection on the Fourier basis. This situation is precisely what EMD strives to avoid,
preferring AM-FM modulated components for their physical significance.

Reference [4] proposes options to obtain physically meaningful results. The emd function relaxes the
original IMF definition by using “Sift Relative Tolerance” on page 1-466, a Cauchy-type stop criterion.
The emd function iterates to extract natural AM-FM modes. The IMFs generated may fail to satisfy
the local extrema-zero crossings criteria. See “Zero Crossings and Extrema in Intrinsic Mode
Function of Sinusoid” on page 1-449.

Sift Relative Tolerance

Sift Relative Tolerance is a Cauchy-type stop criterion proposed in [4]. Sifting stops when current
relative tolerance is less than SiftRelativeTolerance. The current relative tolerance is defined as

Relative Tolerance ≜
rprev t − rcur t 2

2

rprev t 2
2 .

Because the Cauchy criterion does not directly count the number of zero crossings and local extrema,
it is possible that the IMFs returned by the decomposition do not satisfy the strict definition of an
intrinsic mode function. In those cases, you can try reducing the value of the
SiftRelativeTolerance from its default value. See [4] for a detailed discussion of stopping
criteria. The reference also discusses the advantages and disadvantages of insisting on strictly
defined IMFs in empirical mode decomposition.
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Energy Ratio

Energy ratio is the ratio of the energy of the signal at the beginning of sifting and the average
envelope energy [2]. Decomposition stops when current energy ratio is larger than
MaxEnergyRatio. For the ith IMF, the energy ratio is defined as

Energy Ratio ≜ 10log10
X t 2
ri t 2

.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Timetables are not supported for code generation.
• If supplied, the interpolation method specified using the 'Interpolation' name-value pair must

be a compile-time constant.

See Also
Apps
Signal Multiresolution Analyzer
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entrupd
Entropy update (wavelet packet)

Syntax
T = entrupd(T,ENT)
T = entrupd(T,ENT,PAR)

Description
entrupd is a one- or two-dimensional wavelet packet utility.

T = entrupd(T,ENT) or T = entrupd(T,ENT,PAR) returns for a given wavelet packet tree T, the
updated tree using the entropy function ENT with the optional parameter PAR (see wenergy for more
information).

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 2 with db1 wavelet packets 
% using shannon entropy. 
t = wpdec(x,2,'db1','shannon');

% Read entropy of all the nodes. 
nodes = allnodes(t);
ent = read(t,'ent',nodes);
ent'
ent =
    1.0e+04 *
    -5.8615 -6.8204 -0.0350 -7.7901 -0.0497 -0.0205 -0.0138

% Update nodes entropy. 
t = entrupd(t,'threshold',0.5); 
nent = read(t,'ent');
nent'
nent =
    937 488 320 241 175 170 163

Version History
Introduced before R2006a

See Also
wenergy | wpdec | wpdec2
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eq
Laurent polynomials or Laurent matrices equality test

Syntax
tf = eq(A,B)
tf = (A == B)

Description
tf = eq(A,B) compares the pair of Laurent polynomials or Laurent matrices A and B and returns 1
(true) if the two are identical and 0 (false) otherwise.

Note The laurentPolynomial and laurentMatrix objects have their own versions of eq. The
input data type determines which version is executed.

tf = (A == B) is equivalent to tf = eq(A,B).

Examples

Test Equality of Laurent Polynomials

Create two Laurent polynomials:

• a(z) = 2z3− 3z2 + 4z − 5
• b(z) = 4z3− 6z2 + 8z

a = laurentPolynomial(Coefficients=[2 -3 4 -5],MaxOrder=3);
b = laurentPolynomial(Coefficients=[4 -6 8],MaxOrder=3);

Confirm a(z) and b(z) are not equal.

a ~= b

ans = logical
   1

Confirm 2a(z) + 10 and b(z) are equal.

c = rescale(a,2)+10;
eq(c,b)

ans = logical
   1
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Input Arguments
A — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

B — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
tf — Equality test result
true or 1 | false or 0

Equality test result, returned as a numeric or logical 1 (true) or 0 (false).

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ne

Objects
laurentMatrix | laurentPolynomial
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euclid
Euclidean algorithm for Laurent polynomials

Syntax
dec = euclid(A,B)

Description
dec = euclid(A,B) returns an array of structures such that each row of dec corresponds to the
Euclidean division of the Laurent polynomial A by the Laurent polynomial B:

A = B*Q + R,
where Q is the quotient and R is the remainder.

Examples

Euclidean Division of Laurent Polynomials

Create two Laurent polynomials:

• A(z) = z2 + 3z + 5 + 7z−1

• B(z) = 1 + 2z−1

cfa = [1 3 5 7];
cfb = [1 2];
lpA = laurentPolynomial(Coefficients=cfa,MaxOrder=2);
lpB = laurentPolynomial(Coefficients=cfb);

Perform Euclidean division of A(z) by B(z). Use the helper function helperPrintLaurent to print
the quotient and remainder polynomials of each Euclidean division.

dec = euclid(lpA,lpB);
numFac = size(dec,1);
for k=1:numFac
    q = helperPrintLaurent(dec(k,1).LP);
    r = helperPrintLaurent(dec(k,2).LP);
    fprintf('Euclidean Division #%d\n',k)
    fprintf('Quotient: %s\n',q)
    fprintf('Remainder:  %s\n \n',r)
end

Euclidean Division #1

Quotient: z^(2) + z + 3

Remainder:   + z^(-1)
 

Euclidean Division #2

Quotient: z^(2) + z + 3.5
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Remainder:   - 0.5
 

Euclidean Division #3

Quotient: z^(2) + 0.75*z + 3.5

Remainder:   + 0.25*z
 

Euclidean Division #4

Quotient: 1.125*z^(2) + 0.75*z + 3.5

Remainder:  - 0.125*z^(2)
 

For each Euclidean division, confirm that A(z) = B(z) Qi(z) + Ri(z), where Qi(z) and Ri(z) are the
quotient and remainder polynomials, respectively, of the ith division.

for k=1:numFac
    q = dec(k,1).LP;
    r = dec(k,2).LP;
    areEqual = (lpA==lpB*q+r);
    fprintf('Euclidean Division #%d: %d\n',k,areEqual)
end

Euclidean Division #1: 1
Euclidean Division #2: 1
Euclidean Division #3: 1
Euclidean Division #4: 1

Input Arguments
A — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

B — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

Output Arguments
dec — Euclidean algorithm factors
structure array

Euclidean algorithm factors, returned as a N-by-2 structure array, where N ≤ 4 is the number of
decompositions. The ith row of dec contains one Euclidean division of A by B:

A = B*(dec(i,1).LP) + dec(i,2).LP
where

• dec(i,1).LP is the Laurent polynomial corresponding to the quotient.
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• dec(i,2).LP is the Laurent polynomial corresponding to the remainder.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
laurentMatrix | laurentPolynomial
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ewt
Empirical wavelet transform

Syntax
mra = ewt(x)
[mra,cfs] = ewt(x)
[mra,cfs,wfb] = ewt(x)
[mra,cfs,wfb,info] = ewt(x)

[ ___ ] = ewt( ___ ,Name,Value)

ewt( ___ )

Description
mra = ewt(x) returns the multiresolution analysis (MRA) components corresponding to the
empirical wavelet transform (EWT) of x. Use ewt to decompose signals using an adaptable wavelet
subdivision scheme that automatically determines the empirical wavelet and scaling filters and
preserves energy.

By default, the number of empirical wavelet filters is automatically determined by identifying peaks in
a multitaper power spectral estimate of x.

[mra,cfs] = ewt(x) returns the EWT analysis coefficients of x.

[mra,cfs,wfb] = ewt(x) returns the empirical wavelet filter bank used in the analysis of x.

[mra,cfs,wfb,info] = ewt(x) returns the peak normalized frequencies identified in x and the
approximate frequency passbands of the wavelet filter bank.

[ ___ ] = ewt( ___ ,Name,Value) specifies additional options using name-value pair arguments.
These arguments can be added to any of the previous input syntaxes. For example,
'MaxNumPeaks',5 specifies a maximum of five peaks used to determine the EWT filter passbands.

ewt( ___ ) with no output arguments plots the original signal with the empirical wavelet MRA in the
same figure. For complex-valued data, the real part is plotted in the first color in the MATLAB color
order matrix and the imaginary part is plotted in the second color.

Examples

Perform Empirical Wavelet Transform and Visualize Hilbert Spectrum of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The signal is sampled at 250 Hz.

fs = 250;
load nonstatdistinct
t = (0:length(nonstatdistinct)-1)/fs;
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plot(t,nonstatdistinct)
xlabel('Time (s)')
ylabel('Signal')
axis tight

Use ewt to obtain a multiresolution analysis (MRA) of the signal.

mra = ewt(nonstatdistinct);

Use the MRA components with the hht function and plot the Hilbert spectrum.

hht(mra,fs)
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The frequency versus time plot is a sparse plot with a vertical color bar indicating the instantaneous
energy at each point in the MRA. The plot represents the instantaneous frequency spectrum of each
component decomposed from the original mixed signal.

Visualize Empirical Wavelet Transform Filter Bank

Create a nonstationary continuous signal composed of sinusoidal waves with a distinct change in
frequency. The signal is sampled at 1000 Hz.

Fs = 1000;
t = 0:1/Fs:4;
x1 = sin(2*pi*50*t) + sin(2*pi*200*t);
x2 = sin(2*pi*25*t) + sin(2*pi*100*t) + sin(2*pi*250*t);
x = [x1 x2] + 0.1*randn(1,length(t)*2);
t1 = (0:length(x)-1)/Fs;
plot(t1,x)
xlabel('Time (s)')
ylabel('Amplitude')
title('Signal')
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Use ewt and obtain the MRA of the signal. Display the normalized peak frequencies identified in the
signal, and the approximate frequency passbands of the filter bank. Because the frequencies are in
cycles per sample, normalize by the sampling frequency. Note that the peak frequencies correspond
to the frequencies of the sinusoidal waves.

[mra,~,wfb,info] = ewt(x);
Fs*info.PeakFrequencies

ans = 5×1

  249.9375
  200.0750
  100.1000
   50.1125
   25.1187

Fs*info.FilterBank.Passbands 

ans = 5×2

  223.6941  500.0000
  141.5896  223.6941
   70.8573  141.5896
   35.4911   70.8573
         0   35.4911
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Plot the magnitude spectrum of the signal, and the filter bank. The locations of the peaks determine
the filter passbands.

f = 0:Fs/length(x):Fs-1/length(x);
plot(f,wfb)
ylabel('Magnitude')
grid on
yyaxis right
plot(f,abs(fft(x)),'k--','linewidth',1.5)
ylabel('Magnitude')
xlabel('Hz')

Because the empirical wavelets form a Parseval tight frame, the analysis filter bank is equal to the
synthesis filter bank. Therefore, squaring the magnitudes at each frequency summed over the filters
equals 1. If the sum was not equal to 1, perfect reconstruction would not be possible.

Empirical Wavelet Transform of ECG Signal

Load an ECG signal. The signal is sampled at 180 Hz.

load wecg

Use ewt to obtain a multiresolution analysis (MRA) of the signal, and the corresponding analysis
coefficients. Use the four largest peaks to determine the filter passbands.
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mp = 4;
[mra,cfs] = ewt(wecg,'MaxNumPeaks',mp);

Plot the signal and the MRA components.

fs = 180;
subplot(mp+1,1,1)
t = (0:length(wecg)-1)/fs;
plot(t,wecg)
title('MRA of Signal')
ylabel('Signal')
axis tight
for k=1:mp
    subplot(mp+1,1,k+1)
    plot(t,mra(:,k))
    ylabel(['MRA ',num2str(k)])
    axis tight
end
xlabel('Time (s)')

Verify that summing the MRA components results in perfect reconstruction of the signal.

max(abs(wecg-sum(mra,2)))

ans = 8.8818e-16

Verify energy preservation of the EWT analysis coefficients.
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cfsenergy = sum(sum(abs(cfs).^2));
[cfsenergy norm(wecg,2)^2]

ans = 1×2

  298.2759  298.2759

Input Arguments
x — Input data
vector | timetable

Input data, specified as a real- or complex-valued vector or as a single-variable timetable containing a
single column vector. x must have at least two samples.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ewt(x,'MaxNumPeaks',5,'SegmentMethod','localmin') obtains the MRA of x using
the five largest peaks and the first local minimum between adjacent peaks.

PeakThresholdPercent — Threshold percentage of maximum peak
70 (default) | real number in the interval (0, 100)

Threshold percentage of maximum peak used to determine which peaks to retain in the multitaper
power spectrum of x, specified as a real number in the interval (0, 100). Local maxima in the
multitaper power spectral estimate of x are normalized to lie in the range [0,1] with the maximum
peak equal to 1. All peaks with values strictly greater than PeakThresholdPercent of the maximum
peak are retained.
Data Types: single | double

SegmentMethod — Segmentation method
'geomean' (default) | 'localmin'

Segmentation method used to determine the EWT filter passbands, specified as:

• 'geomean' — Geometric mean of adjacent peaks
• 'localmin' — First local minimum between adjacent peaks

If no local minimum is identified between adjacent peaks, the function uses the geometric mean.

MaxNumPeaks — Maximum number of peaks
positive integer
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Maximum number of peaks used to determine the EWT filter passbands. If ewt finds fewer peaks
than the number specified in MaxNumPeaks, it uses the maximum number of peaks available. If it
does not find any peaks, ewt uses a level-one discrete wavelet transform (DWT) filter bank.

You cannot specify both MaxNumPeaks and PeakThresholdPercent.
Data Types: single | double

FrequencyResolution — Frequency resolution bandwidth
real number less than or equal to 0.25

Frequency resolution bandwidth of the multitaper power spectral estimate, specified as a real
number less than or equal to 0.25.

The value of FrequencyResolution determines how many sine tapers are used in the multitaper
power spectrum estimate. The bandwidth of a sine multitaper power spectral estimate is (K+1)/(N
+1), where K is the number of tapers and N is the length of the signal. The minimum value of
FrequencyResolution is 2.5/N, where N is the maximum of the signal length and 64.
Data Types: single | double

LogSpectrum — Logarithm of spectrum
false or 0 (default) | true or 1

Logarithm of spectrum logical used to determine the peak frequencies. If LogSpectrum is set to
true, the log of the multitaper power spectrum is used. Consider setting LogSpectrum to true if
using the PeakThresholdPercent segmentation method and there is a dominant peak frequency
that is significantly larger in magnitude than other peaks.

Output Arguments
mra — Multiresolution analysis
matrix | timetable

Multiresolution analysis (MRA), returned as a matrix or timetable.

• When x is a vector, mra is a matrix where each column stores an extracted MRA component.

• For real-valued x, the MRA components are ordered by decreasing center frequencies. The
final column in mra corresponds to the lowpass scaling filter.

• For complex-valued x, the MRA components start near −½ cycles per sample and decrease in
center frequency until the lowpass scaling coefficients are obtained. The frequency then
increases toward +½ cycles per sample.

• When x is a timetable, mra is a timetable with multiple single variables where each variable stores
an MRA component.

See the info structure array for a description of the frequency bounds for empirical wavelet and
scaling filters.

If x has less than 64 samples, ewt works on a zero-padded version of x of length 64. The MRA
components are truncated to the original length.

cfs — EWT analysis coefficients
matrix
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EWT analysis coefficients, returned as a matrix. If the input data is real-valued, then cfs is a real-
valued matrix. Otherwise, cfs is a complex-valued matrix. Each column of cfs stores the EWT
analysis coefficients for the corresponding MRA component. The frequency bands of the analysis
coefficients are identical to the ordering of the MRA components. If x has less than 64 samples, cfs
contains the analysis coefficients obtained from the zero-padded version of x.
Data Types: single | double

wfb — Empirical wavelet filter bank
matrix

Empirical wavelet filter bank, returned as a matrix. The center frequencies of the filters in wfb match
the order in mra and cfs. Because the empirical wavelets form a Parseval tight frame, the analysis
filter bank is equal to the synthesis filter bank. Therefore, summing the MRA components results in
perfect reconstruction of the signal.
Data Types: single | double

info — Filter bank information
structure array

Filter bank information, returned as a structure with the following fields:

• PeakFrequencies — The peak normalized frequencies in cycles/sample identified in x as a
column vector. For real-valued x, the frequencies are positive in the interval (0, ½) in decreasing
order. For complex-valued x, the frequencies are ordered from (−½, ½). If PeakFrequencies is
empty, ewt did not find any peaks and a default one-level discrete wavelet transform (DWT)
subdivision is used.

• FilterBank — A table with two variables: MRAComponent and Passbands. MRAComponent is
the column index of the MRA component in mra. Passbands is a L-by-2 matrix where L is the
number of MRA components. Each row of Passbands is the approximate frequency passband in
cycles/sample for the corresponding EWT filter and MRA component.

Data Types: single | double
Complex Number Support: Yes

Version History
Introduced in R2020b
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https://doi.org/10.1137/130923774.

[3] Gilles, Jérôme, and Kathryn Heal. “A Parameterless Scale-Space Approach to Find Meaningful
Modes in Histograms — Application to Image and Spectrum Segmentation.” International
Journal of Wavelets, Multiresolution and Information Processing 12, no. 06 (November 2014):
1450044. https://doi.org/10.1142/S0219691314500441.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Timetable input data is not supported.

See Also
Apps
Signal Multiresolution Analyzer

Functions
emd | modwtmra | vmd | hht

Topics
“Empirical Wavelet Transform”
“Practical Introduction to Multiresolution Analysis”
“Time-Frequency Gallery”
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featureMatrix
Scattering feature matrix

Syntax
smat = featureMatrix(sf,x)
[smat,u] = featureMatrix(sf,x)
smat = featureMatrix( ___ ,Name,Value)

Description
smat = featureMatrix(sf,x) returns the scattering coefficient matrix for the wavelet time
scattering network sf and the real-valued input data x. x is a vector, matrix, or 3-D array.

The precision of smat depends on the precision specified in the scattering network sf.

[smat,u] = featureMatrix(sf,x) returns the scalogram coefficients in the cell array of cell
arrays, u. The number of elements in u is equal to the order of the scattering network. The ith
element of u contains the scalogram coefficients for the (i-1)th order of the scattering coefficients.

smat = featureMatrix( ___ ,Name,Value) returns the scattering feature matrix with additional
options specified by one or more Name,Value pair arguments.

Examples

Obtain Scattering Feature Matrix

This example shows how to obtain the scattering feature matrix for a wavelet time scattering network
and how to compare the matrix with scattering coefficients.

Load an ECG signal sampled at 180 Hz. Create a wavelet time scattering network that can be used
with the signal.

load wecg
Fs = 180;
sf = waveletScattering('SignalLength',numel(wecg),...
    'SamplingFrequency',Fs);

Calculate the scattering feature matrix using the log transformation. Display the dimensions of the
matrix.

smat = featureMatrix(sf,wecg,'Transform','Log');
size(smat)

ans = 1×2

   147     8
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Now calculate the scattering transform of the signal. Obtain the scattering coefficients. The output is
a cell array with three elements. Each element is a table. Confirm the total number of rows in the
tables is equal to the number of rows in the matrix.

S = scatteringTransform(sf,wecg);
t1rows = size(S{1},1);
t2rows = size(S{2},1);
t3rows = size(S{3},1);
disp(['Total Number of Rows: ',num2str(t1rows+t2rows+t3rows)])

Total Number of Rows: 147

Display the base-2 log resolution of the zeroth-order scattering coefficients.

disp(['Resolution: ',num2str(S{1}.resolution(1))])

Resolution: -8

Obtain the natural logarithm of the zeroth-order scattering coefficients. Compare the scattering
coefficients with the first row in the feature matrix. The number of coefficients in each equals the
absolute value of the base-2 log resolution.

logS = log(sf,S);
logScat = logS{1}.signals{1};
[smat(1,:)' logScat]

ans = 8×2

   -1.2914   -1.2914
   -2.4682   -2.4682
   -1.6368   -1.6368
   -1.2716   -1.2716
   -1.6818   -1.6818
   -4.3701   -4.3701
   -1.3199   -1.3199
   -1.0542   -1.0542

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

x — Input data
vector | matrix | 3-D array

Input data, specified as a real-valued vector, matrix, or 3-D array. If x is a vector, the number of
samples in x must equal the SignalLength value of sf. If x is a matrix or 3-D array, the number of
rows in x must equal the SignalLength value of sf. If x is 2-D, the first dimension is assumed to be
time and the columns of x are assumed to be separate channels. If x is 3-D, the dimensions of x are
Time-by-Channel-by-Batch.
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: smat = featureMatrix(sf,x,'Transform','log','Normalization','parent')

Normalization — Type of normalization
'none' (default) | 'parent'

Type of normalization to apply to the scattering coefficients, specified as 'none' or 'parent'. If
specified as 'parent', scattering coefficients of order greater than 0 are normalized by their parents
along the scattering path.

Transform — Type of transformation
'none' (default) | 'log'

Type of transformation to apply to the scattering coefficients, specified as 'none' or 'log'.

Output Arguments
smat — Scattering coefficients
matrix | 3-D array | 4-D array

Scattering coefficients, returned as a real-valued matrix or array. If x is a vector, smat is an Npath-by-
Nscat matrix, where Npath is the number of scattering paths and Nscat is the number of scattering
coefficients in each path, or the resolution of the scattering coefficients. If x is a matrix, smat is
Npath-by-Nscat-by-Nchan, where Nchan is the number of columns in x. If x is 3-D, then smat is
Npath-by-Nscat-by-Nchan-by-Nbatch.

The precision of smat depends on the precision specified in the scattering network sf.
Data Types: single | double

u — Scalogram coefficients
cell array

Scalogram coefficients, returned in a cell array of cell arrays. The number of elements in u is equal to
the order of the scattering network. The ith element of u contains the scalogram coefficients for the
(i-1)th order of the scattering coefficients.

Note that u{1}{1} contains the original data.
Data Types: single | double

Tips
• The scatteringTransform function calls featureMatrix to generate the scattering and

scalogram coefficients. If you only require the coefficients themselves, for improved performance
the recommended approach is to use featureMatrix. Use scatteringTransform if you are
also interested in the coefficients metadata.
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Version History
Introduced in R2018b

R2021a: featureMatrix function syntax will be deprecated
Not recommended starting in R2021a

One of the featureMatrix syntaxes will be deprecated in a future release.

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

smat =
featureMatrix(sf,s
), where s are the
scattering coefficients
of real-valued data x

Still runs smat =
featureMatrix(sf,x
)

Replace all instances of
smat =
featureMatrix(sf,s
) with smat =
featureMatrix(sf,x
).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The syntax smat = featureMatrix(sf,s), where s are the scattering coefficients of real-
valued data x, is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
waveletScattering | scatteringTransform
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featureMatrix
Image scattering feature matrix

Syntax
smat = featureMatrix(sf,im)
smat = featureMatrix(sf,sc)
smat = featureMatrix( ___ ,'Transform',transformtype)

Description
smat = featureMatrix(sf,im) returns the scattering feature matrix for the wavelet image
scattering network, sf, and the input image, im. im is a real-valued 2-D (M-by-N) or 3-D matrix (M-
by-N-by-3). If im is a 3-D matrix, the size of the third dimension must be 3. If im is a 2-D matrix, smat
is Np-by-Ms-by-Ns, where Np is the number of scattering paths and Ms-by-Ns is the resolution of the
scattering coefficients. If im is a 3-D matrix, smat is Np-by-Ms-by-Ns-by-3.

smat = featureMatrix(sf,sc) returns the scattering feature matrix for the cell array of
scattering coefficients, sc. sc is obtained from the scatteringTransform method of the wavelet
image scattering network.

smat = featureMatrix( ___ ,'Transform',transformtype) applies the transformation
specified by transformtype to the scattering coefficients. Valid options for transformtype are
'log' and 'none'. If unspecified, transformtype defaults to 'none'. You can use this syntax with
any of the previous syntaxes.

Examples

Obtain Feature Matrix for Wavelet Image Scattering Network

This example shows how to obtain the feature matrix for a wavelet image scattering network.

Load the xbox image. Create an image scattering network suitable for the image.

load xbox
sf = waveletScattering2('ImageSize',size(xbox))

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: "single"
    OversamplingFactor: 0
          OptimizePath: 1

Obtain the feature matrix.
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smat = featureMatrix(sf,xbox);

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

im — Input image
real-valued matrix

Input image, specified as real-valued 2-D matrix or 3-D matrix. If im is 3-D, im is assumed to be a
color image in the RGB color space, and the size of the third dimension must equal 3. The row and
column sizes of im must match the ImageSize property of sf.

sc — Scattering coefficients
cell array

Scattering coefficients, specified as a cell array. sc is obtained from the scatteringTransform
method of the image scattering network.

transformtype — Transformation
'none' (default) | 'log'

Transformation to apply to the scattering coefficients:

• 'none': No transformation is applied to the scattering coefficients.
• 'log': The natural logarithm is applied to the scattering coefficients.

Output Arguments
smat — Scattering feature matrix
real-valued array

Scattering feature matrix for the 2-D scattering network sf, returned as a real-valued array. If im is a
2-D matrix, smat is Np-by-Ms-by-Ns, where Np is the number of scattering paths and Ms-by-Ns is the
resolution of the scattering coefficients. If im is a 3-D matrix, smat is Np-Ms-by-Ns-by-3.

Version History
Introduced in R2019a

See Also
waveletScattering2 | scatteringTransform
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fbspwavf
Complex frequency B-spline wavelet

Syntax
[PSI,X] = fbspwavf(LB,UB,N,M,FB,FC)

Description
[PSI,X] = fbspwavf(LB,UB,N,M,FB,FC) returns values of the complex frequency B-Spline
wavelet defined by the order parameter M (M is an integer such that 1 ≤ M), a bandwidth parameter
FB, and a wavelet center frequency FC.

The function PSI is computed using the explicit expression

PSI(X) = (FB^0.5)*((sinc(FB*X/M).^M).*exp(2*i*pi*FC*X))

on an N point regular grid in the interval [LB,UB].

FB and FC must be such that FC > 0 and > FB > 0.

Output arguments are the wavelet function PSI computed on the grid X.

Examples
% Set order, bandwidth and center frequency parameters.
m = 2; fb = 0.5; fc = 1;

% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;

% Compute complex Frequency B-Spline wavelet fbsp2-0.5-1.
[psi,x] = fbspwavf(lb,ub,n,m,fb,fc);

% Plot complex Frequency B-Spline wavelet.
subplot(211)
plot(x,real(psi))
title('Complex Frequency B-Spline wavelet fbsp2-0.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid
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Version History
Introduced before R2006a

References
Teolis, A. (1998), Computational signal processing with wavelets, Birkhäuser, p. 63.

See Also
waveinfo
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fejerkorovkin
Fejér-Korovkin wavelet filters

Syntax
Lo = fejerkorovkin(wname)

Description
Lo = fejerkorovkin(wname) returns the Fejér-Korovkin scaling filter specified by wname. Valid
entries for wname are 'fk4', 'fk6', 'fk8', 'fk14', 'fk18', and 'fk22'. For information on the
Fejér–Korovkin filters, see Nielson[1].

Examples

Fejér-Korovkin Filters

Construct and plot the Fejér-Korovkin (14) scaling function and wavelet.

Obtain the Fejér-Korovkin scaling filter and display its 14 coefficients.

Lo = fejerkorovkin("fk14")

Lo = 1×14

    0.2604    0.6869    0.6116    0.0514   -0.2456   -0.0486    0.1243    0.0222   -0.0640   -0.0051    0.0298   -0.0033   -0.0093    0.0035

Use the scaling filter to obtain the wavelet filter and display its wavelet filter coefficients.

Hi = qmf(Lo)

Hi = 1×14

    0.0035    0.0093   -0.0033   -0.0298   -0.0051    0.0640    0.0222   -0.1243   -0.0486    0.2456    0.0514   -0.6116    0.6869   -0.2604

wavefun provides an efficient way to construct and plot the scaling function and wavelet.

[phi,psi,xval] = wavefun("fk14");
subplot(2,1,1)
plot(xval,phi)
title("Scaling Function")
subplot(2,1,2)
plot(xval,psi)
title("Wavelet")
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Input Arguments
wname — Name
'fk4' | 'fk6' | 'fk8' | 'fk14' | 'fk18' | 'fk22'

Name of desired Fejér-Korovkin scaling filter. The numeric value in each name is the number of Fejér-
Korovkin filter coefficients. For example, if wname is 'fk14', Lo has 14 coefficients.

Output Arguments
Lo — Scaling filter
vector

Scaling filter, returned as a vector.

Version History
Introduced in R2015b

References
[1] Nielsen, M. "On the construction and frequency localization of finite orthogonal quadrature

filters." Journal of Approximation Theory. Vol. 108, Number 1, 2001, pp. 36–52.
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See Also
coifwavf | dbwavf | symwavf
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filt2ls
(To be removed) Transform quadruplet of filters to lifting scheme

Note filt2ls will be removed in a future release. Use liftingScheme instead. For more
information, see “Compatibility Considerations”.

Syntax
LS = filt2ls(LoD,HiD,LoR,HiR)

Description
LS = filt2ls(LoD,HiD,LoR,HiR) returns the lifting scheme LS associated with the four input
filters LoD, HiD, LoR, and HiR that verify the perfect reconstruction condition.

Examples

Create Lifting Scheme From Filters

Obtain the filters associated with the db2 wavelet.

[LoD,HiD,LoR,HiR] = wfilters('db2')

LoD = 1×4

   -0.1294    0.2241    0.8365    0.4830

HiD = 1×4

   -0.4830    0.8365   -0.2241   -0.1294

LoR = 1×4

    0.4830    0.8365    0.2241   -0.1294

HiR = 1×4

   -0.1294   -0.2241    0.8365   -0.4830

Obtain the lifting scheme associated with the filters.

LS = filt2ls(LoD,HiD,LoR,HiR);
disp(LS)

      Wavelet               : 'custom' 
     LiftingSteps          : [3 × 1] liftingStep 
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     NormalizationFactors  : [0.29886 3.346] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: 0.5774
        MaxOrder: 0

            Type: 'update'
    Coefficients: [-0.4330 2.7990]
        MaxOrder: 0

            Type: 'predict'
    Coefficients: -0.3333
        MaxOrder: 1

Input Arguments
LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors

Wavelet decomposition filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. The lengths of LoD and
HiD must be equal. See wfilters for additional information.
Data Types: double

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass reconstruction filter, and HiD is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.
Data Types: double

Output Arguments
LS — Lifting scheme
liftingScheme object

Lifting scheme, returned as a liftingScheme object.
Data Types: cell

Version History
Introduced before R2006a

R2021a: filt2ls will be removed
Not recommended starting in R2021a

The filt2ls function will be removed in a future release. Set the CustomLowpassFilter property
of liftingScheme instead.
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See Also
liftingScheme | ls2filt
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filterbank
Full-weight CWT filter bank for deep learning

Syntax
psif = filterbank(clayer)

Description
psif = filterbank(clayer) returns the full-weight continuous wavelet transform (CWT) filter
bank for the cwtLayer, clayer.

Examples

Obtain Full-Weight CWT Filter Bank

Create a cwtLayer for a signal of length 2048 samples. Specify the analytic Morlet wavelet.

clayer = cwtLayer(SignalLength=2048,Wavelet="amor");

Obtain the full-weight CWT filter bank of the layer.

psif = filterbank(clayer);

Plot the filter bank.

slen = clayer.SignalLength;
f = 0:1/slen:1-1/slen;
plot(f,psif')
xlim([0 1/2])
xlabel("Cycles/Sample")
ylabel("Magnitude")
title("Full-Weight Filter Bank")
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Create a CWT filter bank. Specify the same wavelet and signal length you used to create the CWT
layer. Obtain the two-sided frequency responses of the wavelet filters in the filter bank. Compare with
the full-weight CWT filter bank.

fb = cwtfilterbank(SignalLength=2048,Wavelet="amor", ...
    Boundary="periodic");
psidft = freqz(fb,FrequencyRange="twosided");
max(abs(psidft(:)-psif(:)))

ans = 9.9601e-09

Input Arguments
clayer — CWT layer
cwtLayer object

CWT layer, specified as a cwtLayer object.

Output Arguments
psif — Full-weight CWT filter bank
matrix

Full-weight CWT filter bank, returned as a matrix.
Data Types: double

Version History
Introduced in R2022b
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See Also
Functions
dlcwt | cwtfilters2array

Objects
cwtLayer | cwtfilterbank
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filterbank
Shearlet system filters

Syntax
psi = filterbank(sls)
[psi,scale] = filterbank(sls)
[psi,scale,shear] = filterbank(sls)
[psi,scale,shear,cone] = filterbank(sls)

Description
psi = filterbank(sls) returns the Fourier transforms of the shearlet filters defined by the
shearlet system sls as a 3-D real-valued array. The array size is M-by-N-by-K, where M and N are the
values of the two-element row vector “ImageSize” on page 1-0  of sls. K is the number of
shearlets including the lowpass filter, K = numshears(sls) + 1.

[psi,scale] = filterbank(sls) returns the scale parameters of the shearlet filters as a K-by-1
integer vector. K is the number of shearlets including the lowpass filter, K = numshears(sls) + 1.

[psi,scale,shear] = filterbank(sls) returns the shearing parameters of the shearlet filters
as a K-by-1 integer vector. K is the number of shearlets including the lowpass filter, K =
numshears(sls) + 1.

[psi,scale,shear,cone] = filterbank(sls) returns the frequency cones of the shearlet
filters as a K-by-1 cell array of characters. K is the number of shearlets including the lowpass filter, K
= numshears(sls) + 1.

Examples

Obtain Shearlet Filters

Load an image. Create a shearlet system that can be used with the image.

load clown
sls = shearletSystem('ImageSize',size(X))

sls = 
  shearletSystem with properties:

         ImageSize: [200 320]
         NumScales: 4
    PreserveEnergy: 0
     TransformType: 'real'
    FilterBoundary: 'periodic'
         Precision: 'double'

Obtain the shearlet filters defined by the shearlet system.
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psi = filterbank(sls);

Obtain the shearlet transform of the image.

cfs = sheart2(sls,X);

Confirm that the size of the third dimension of psi is equal to the size of the third dimension of cfs.

[size(psi,3) size(cfs,3)]

ans = 1×2

    41    41

Plot Shearlet Filters

Create a complex-valued shearlet system for 256-by-256 images with truncated boundaries and four
scales.

sls = shearletSystem('TransformType','complex',...
    'ImageSize',[256 256],...
    'FilterBoundary','truncated',...
    'NumScales',4);

Obtain the shearlet filters and their geometric interpretations.

[psi,scale,shear,cone] = filterbank(sls);

Different scales can have a different number of shears. The scales in the shearlet system range from
0 to 3 inclusive. Find the range of shears per scale.

for k=0:3
    ind = find(scale==k);
    fprintf('scale: %d  shear range: [%d:%d]\n',...
        k,min(shear(ind)),max(shear(ind)))
end

scale: 0  shear range: [-1:1]
scale: 1  shear range: [-2:2]
scale: 2  shear range: [-2:2]
scale: 3  shear range: [-3:3]

Display the unique frequency cone labels.

unique(cone)

ans = 5x1 cell
    {'B'}
    {'L'}
    {'R'}
    {'T'}
    {'X'}

Find the shearlet filter at scale 2 with shear parameter equal to 1 and whose support is in the 'R'
frequency cone.

 filterbank

1-503



vScale = 2;
vShear = 1;
vCone = 'R';
ind = (scale'==vScale)&(shear'==vShear)&([cone{:}]==vCone);
shFilter = psi(:,:,ind);

Plot the shearlet filter.

omegax = -1/2:1/256:1/2-1/256;
omegay = omegax;
surf(omegax,flip(omegay),shFilter,'EdgeColor','none')
view(0,90)
xlabel('\omega_x')
ylabel('\omega_y')
str = sprintf('Shearlet Filter: Scale %d / Shear %d / Cone %c',...
    vScale,vShear,vCone);
title(str)
axis equal
axis tight

Plot the supports of all scale 2 shearlet filters with shear parameters equal to ±2. Areas where filter
supports overlap have maximum brightness.

vScale = 2;
vShear = 2;
ind = find((scale==vScale).*(abs(shear)==vShear));
tmp = zeros(size(psi,1),size(psi,2));
for k=1:length(ind)
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    tmp = tmp+(psi(:,:,ind(k))~=0);
end
surf(omegax,flip(omegay),double(tmp),'EdgeColor','none')
view(0,90)
xlabel('\omega_x')
ylabel('\omega_y')
str = sprintf('Filter Supports: Scale %d / Abs(Shear) %d',...
    vScale,vShear);
title(str)
axis equal
axis tight
colormap gray
colorbar

Input Arguments
sls — Shearlet system
shearletSystem object

Shearlet system, specified as a shearletSystem object.

Output Arguments
psi — Fourier transforms of shearlet filters
real-valued 3-D array
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Fourier transforms of the shearlet filters defined by the shearlet system, returned as a 3-D real-valued
array. The array size is M-by-N-by-K, where M and N are the first and second elements, respectively,
of the ImageSize value of sls. K is the number of shearlets including the lowpass filter, K =
numshears(sls) + 1. The first element in the third dimension of psi corresponds to the lowpass
filter. The subsequent elements correspond to the shearlets.

The data type of psi matches the Precision value of the shearlet system.
Data Types: single | double

scale — Scale parameters
integer vector

Scale parameters of the shearlet filters defined by the shearlet system, returned as a K-by-1 integer
vector. K is the number of shearlets including the lowpass filter, K = numshears(sls) + 1. The first
element of scale, −1, corresponds to the lowpass filter. The remaining elements of scale
correspond to the shearlet filters.

The data type of scale matches the Precision value of the shearlet system.
Data Types: single | double

shear — Shearing parameters
integer vector

Shearing parameters of the shearlet filters defined by the shearlet system, returned as a K-by-1
integer vector. K is the number of shearlets including the lowpass filter, K = numshears(sls) + 1.
The shear values at scale S range from −ceil(2^(S/2)) to ceil(2^(S/2)) inclusive. The first
element of shear, 0, corresponds to the lowpass filter. The remaining elements of shear denote the
shears for the corresponding shearlet filters.

The data type of shear matches the Precision value of the shearlet system.
Data Types: single | double

cone — Frequency cones
cell array of characters

Frequency cones of the shearlet filters defined by the shearlet system, returned as a K-by-1 cell array
of characters. K is the number of shearlets including the lowpass filter, K = numshears(sls) + 1.
The first element of cone, 'X', corresponds to the lowpass filter. The remaining elements of cone are
the frequency cones in which the corresponding shearlet filters have their frequency support.

For complex-valued shearlets, the frequency plane is divided into four cones: 'R' (right), 'T' (top),
'L' (left), and 'B' (bottom). For real-valued shearlets, the frequency cones are 'H' (horizontal) and
'V' (vertical).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
shearletSystem | numshears
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filterbank
Wavelet time scattering filter banks

Syntax
filters = filterbank(sf)
[filters,f] = filterbank(sf)
[filters,f,filterparams] = filterbank(sf)
[ ___ ] = filterbank(sf,order)

Description
filters = filterbank(sf) returns the filter banks used in the computation of the scattering
coefficients. filters is a cell array of structure arrays with norder elements, where norder is the
number of scattering orders. The first element of filters contains the scaling filter, phift, used in
the computation of the 0th-order scattering coefficients. Subsequent elements of filters contain
the wavelet filters, psift, and scaling filter, phift, for the corresponding filter banks of the
scattering decomposition.

The precision of phift and psift depends on the precision specified in the scattering network sf.

[filters,f] = filterbank(sf) returns the frequencies corresponding to the DFT bins in the
psift and phift fields of filters. If you specify a sampling frequency in the construction of sf, f
is measured in hertz. Otherwise, f is measured in cycles/sample.

[filters,f,filterparams] = filterbank(sf) returns the filter parameters for each element
of filters. filterparams is a cell array with norder elements. Each element of filterparams is
a MATLAB table.

[ ___ ] = filterbank(sf,order) returns the filter banks used to compute the specified order
scattering coefficients. order is an integer between 0 and nfilters inclusive, where nfilters is the
number of filter banks in the scattering network. These input arguments can be used with any of the
output syntaxes shown previously.

Examples

Plot Scattering Network Filter Banks

Create a wavelet time scattering network for a signal sampled at 25 Hz.

sf = waveletScattering('SamplingFrequency',25)

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 20.4800
        QualityFactors: [8 1]
              Boundary: 'periodic'
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     SamplingFrequency: 25
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0

Obtain the filter banks, DFT frequency bins, and filter bank parameters.

[filters,f,fparams] = filterbank(sf);

Plot the wavelet filters used in computing the first-order coefficients. Plot the wavelet center
frequencies as well.

coefOrder = 1;
wvFilters = filters{coefOrder+1}.psift;
wvcenFrq = fparams{coefOrder+1}.omegapsi;
plot(f,wvFilters)
hold on
cf = plot(wvcenFrq,max(wvFilters),'rx');
grid on
title('Wavelet Filters')
xlabel('Hz')
ylabel('Magnitude')
legend(cf,'Center Frequencies')
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Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

order — Order of scattering coefficients
positive integer

Order of scattering coefficients, specified as a positive integer between 0 and nfilters inclusive, where
nfilters is the number of filter banks in the scattering decomposition sf.
Data Types: double

Output Arguments
filters — Filter banks
cell array

Filter banks using in the computation of the scattering coefficients, returned as a cell array of
structure arrays. filters has norder elements, where norder is the number of scattering orders.
The first element of filters is a structure with the single field phift. phift contains the scaling
filter used in the computation of the 0th-order scattering coefficients. Subsequent elements of
filters contain the wavelet filters, psift, and the scaling filter, phift, for the corresponding filter
banks of the scattering network in the structure fields.

The precision of phift and psift depends on the precision specified in the scattering network sf.

f — Frequencies
real-valued vector

Frequencies corresponding to the DFT bins in the psift and phift fields of filters. If you specify
a sampling frequency in the construction of sf, f is measured in hertz. Otherwise, f is measured in
cycles/sample.
Data Types: double

filterparams — Filter bank parameters
cell array

Filter bank parameters for each element of filters, returned as a cell array. filterparams has
norder elements, where norder is the number of scattering orders.

The first element of filterparams is a MATLAB table with the following variables:

• boundary — The signal extension used in the filters, returned as either 'periodic' or
'reflection'.

• precision — The precision used in the filters, returned as 'double' or 'single'.
• sigmaphi — The time standard deviation of the scaling function, returned as a scalar. If you

specify a sampling frequency, sigmaphi is in seconds. Otherwise, sigmaphi is in samples.
• freqsigmaphi — The frequency standard deviation of the scaling function, returned as a scalar.

If you specify a sampling frequency, freqsigmaphi is in hertz. Otherwise, freqsigmaphi is in
cycles/sample.
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• phiftsupport — The frequency support of the scaling function, returned as a scalar. If you
specify a sampling frequency, phiftsupport is in hertz. Otherwise, phiftsupport is in cycles/
sample.

• phi3dBbw — The 3-dB bandwidth of the scaling function, returned as a scalar.

Subsequent elements of filterparams include additional variables for the wavelet parameters:

• J — The integer number of logarithmically spaced wavelet filters in the scattering filter bank.
• omegapsi — The center frequencies for the wavelet filters in descending order (highest to

lowest), returned as a vector. The omegapsi variable includes the center frequencies for any
linearly spaced filters.

• freqsigmapsi — The wavelet frequency standard deviations, returned as a vector.
• timesigmapsi — The wavelet time standard deviations, returned as a vector.
• psi3dBbw — The wavelet 3-dB bandwidths, returned as a vector.
• psiftsupport — The wavelet frequency supports, returned as a vector.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
waveletScattering | littlewoodPaleySum
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filterbank
Wavelet and scaling filters

Syntax
phif = filterbank(sf)
[phif,psifilters] = filterbank(sf)
[phif,psifilters,f] = filterbank(sf)
[phif,psifilters,f,filterparams] = filterbank(sf)
[ ___ ] = filterbank(sf,fb)

Description
phif = filterbank(sf) returns the Fourier transform of the scaling filter for the 2-D wavelet
scattering network, sf. phif is a single or double-precision matrix depending on the value of the
Precision property of the scattering network. phif has dimensions M-by-N, where M and N are the
padded row and column sizes of the scattering network.

[phif,psifilters] = filterbank(sf) returns the Fourier transforms for the wavelet filters in
psifilters. psifilters is an Nfb-by-1 cell array, where Nfb is the number of filter banks in the
scattering network. Each element of psifilters is a 3-D array. The 3-D arrays are M-by-N-by-L,
where M and N are the padded row and column sizes of the wavelet filters and L is the number of
wavelet filters for each filter bank. The wavelet filters are ordered by increasing scale with
NumRotations wavelet filters for each scale. Within a scale, the wavelet filters are ordered by
rotation angle.

[phif,psifilters,f] = filterbank(sf) returns the center spatial frequencies for the wavelet
filters in psifilters. f is an Nfb-by-1 cell array, where Nfb is the number of filter banks in sf. The
jth element of f contains the center frequencies for the jth wavelet filter bank in psifilters. Each
element of f is a L-by-2 matrix with each row containing the center frequencies of the corresponding
Lth wavelet.

[phif,psifilters,f,filterparams] = filterbank(sf) returns the filter parameters for the
2-D scattering network. filterparams is an Nfb-by-1 cell array of MATLAB tables, where the jth
element of filterparams is a MATLAB table containing the filter parameters for the jth filter bank

[ ___ ] = filterbank(sf,fb) returns the desired outputs for the filter banks specified in fb. fb
is a scalar or vector of integers between 1 and numfilterbanks(sf) inclusive. If fb is a scalar,
psifilters is an M-by-N-by-L matrix, and filterparams is a MATLAB table.

Examples

Plot Wavelet Center Frequencies

This example shows how to plot the scaling filter and the wavelet filter center frequencies for a two-
filter bank wavelet image scattering network.

Create a wavelet image scattering network with two filter banks. The first filter bank has a quality
factor of 2, and the second filter bank has a quality factor of 1.
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sf = waveletScattering2('QualityFactors',[2 1])

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [2 1]
             Precision: "single"
    OversamplingFactor: 0
          OptimizePath: 1

Obtain the scaling filter, wavelet filters, and wavelet center frequencies for the network.

[phif,psifilters,f] = filterbank(sf);

Make a surface plot of the scaling filter.

Nx = size(phif,1);
Ny = size(phif,2);
fx = -1/2:1/Nx:1/2-1/Nx;
fy = -1/2:1/Ny:1/2-1/Ny;
surf(fx,fy,fftshift(phif))
shading interp
title('Scaling Filter')
xlabel('f_x')
ylabel('f_y')
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Plot the wavelet center frequencies for the two filter banks.

figure
plot(f{1}(:,1),f{1}(:,2),'k*')
hold on
grid on
plot(f{2}(:,1),f{2}(:,2),'r^','MarkerFaceColor',[1 0 0])
axis equal
xlabel('f_x')
ylabel('f_y')
legend('First Filter Bank Q = 2','Second Filter Bank Q = 1')
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Plot Specific Wavelet of Image Scattering Network

This example shows how to obtain and plot a specific wavelet of a wavelet image scattering network.

Create a wavelet image scattering network with two filter banks. The first filter bank has a quality
factor of 2 and seven rotations per wavelet. The second filter bank has a quality factor of 1 and five
rotations per wavelet.

sf = waveletScattering2('QualityFactors',[2 1],'NumRotations',[7 5])

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [7 5]
        QualityFactors: [2 1]
             Precision: "single"
    OversamplingFactor: 0
          OptimizePath: 1

Obtain the wavelet filters and center frequencies for the network. Return the dimensions of the two
cell arrays.
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[~,psifilters,f] = filterbank(sf);
psifilters

psifilters=2×1 cell array
    {192x192x42 single}
    {192x192x20 single}

f

f=2×1 cell array
    {42x2 double}
    {20x2 double}

The first filter bank has 42 wavelet filters, and the second filter bank has 20 filters. The number of
filters in each filter bank is a multiple of the corresponding value in NumRotations. Use the helper
function helperPlotWavelet to plot a specific wavelet and mark its center frequency.

figure
whichFilterBank = 1;
whichWavelet = 13;
helperPlotWavelet(psifilters,f,whichFilterBank,whichWavelet)

Appendix

The following helper function is used in this example.
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function helperPlotWavelet(psiFilters,psiFreq,filBank,wvFilter)
Nx = size(psiFilters{filBank},2);
Ny = size(psiFilters{filBank},1);
fx = -1/2:1/Nx:1/2-1/Nx;
fy = -1/2:1/Ny:1/2-1/Ny;
imagesc(fx,fy,fftshift(psiFilters{filBank}(:,:,wvFilter)))
axis xy
hold on
xlabel('f_x')
ylabel('f_y')
plot(psiFreq{filBank}(wvFilter,1),psiFreq{filBank}(wvFilter,2),...
    'k^','markerfacecolor',[0 0 0])
str = sprintf('Filter Bank: %d   Wavelet: %d',filBank,wvFilter);
title(str)
end

Determine Wavelet Semi-Major Axis

This example shows how to determine the semi-major axis of a wavelet filter in a 2-D wavelet
scattering network.

Create a 2-D wavelet scattering network. The network has two filter banks with quality factors of 2
and 1, respectively. There are seven rotations per wavelet in the first filter bank and five rotations per
wavelet in the second filter bank. Return the Fourier transforms of the wavelet filters and their center
spatial frequencies, and the filter bank parameters.

sf = waveletScattering2('QualityFactors',[2 1],'NumRotations',[7 5]);
[~,psif,f,fparams] = filterbank(sf);

The wavelet filters in psif are ordered by increasing scale, with NumRotations wavelet filters for
each scale. Within a scale, the wavelet filters are ordered by rotation.

Return the reported 3 dB bandwidths, rotation angles, and slant parameter of the first filter bank.
Return the dimensions of the matrix containing the wavelet filters of the first filter bank. Confirm that
(number of rotations) × (number of bandwidths) equals the size of the third dimension of the matrix.
The product is the number of wavelet filters in the filter bank. The row and column sizes are the
dimensions of the padded wavelet filters. Note that the slant parameter is less than 1.

fparams{1}.psi3dBbw

ans = 1×6

    0.1464    0.1036    0.0732    0.0518    0.0366    0.0366

fparams{1}.rotations

ans = 1×7

         0    0.4488    0.8976    1.3464    1.7952    2.2440    2.6928

fparams{1}.slant

ans = 0.5817

size(psif{1})
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ans = 1×3

   192   192    42

The vector fparams{1}.psi3dBbw has six elements. The number of elements is equal to the number
of wavelet scales in the first filter bank.

From the first filter bank, obtain the unrotated wavelet filter from the second finest scale. Obtain the
center spatial frequency of the wavelet. Use the helper function helperPlotWaveletFT to plot the
wavelet and mark its center frequency. The code for helperPlotWaveletFT is shown at the end of
this example.

whichFilterBank = 1;
whichScale = 2;
whichRotAngle = 1;
numRot = sf.NumRotations(whichFilterBank);

wvf = psif{whichFilterBank}(:,:,1+(whichScale-1)*numRot+(whichRotAngle-1));
wvfCenFrq = f{whichFilterBank}(1+(whichScale-1)*numRot+(whichRotAngle-1),:);

helperPlotWaveletFT(wvf,wvfCenFrq)

Take the inverse Fourier transform of the wavelet filter. The filter is strictly real, and the inverse
Fourier transform is complex-valued. Use the helper function helperPlotWavelet to plot the
absolute value of the wavelet. The code for helperPlotWavelet is shown at the end of this
example.
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wvf_ifft = ifft2(wvf);
figure
helperPlotWavelet(wvf_ifft)

Note that the semi-major axis of the wavelet support is in the y-direction. This is consistent with a
slant parameter whose value is less than 1. The vector (0,0.1) coincides with the semi-major axis.
Plot the vector in the previous figure.

vec = [0 0.1];
hold on
plot([0 vec(1)],[0 vec(2)],'wx-')
xlim([-0.2 0.2])
ylim([-0.2 0.2])
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From the same filter bank and scale, choose a rotated wavelet filter. Plot the absolute value of the
wavelet in the spatial domain. Use the associated rotation angle in fparams{1}.rotations, and
rotate clockwise the vector (0,0.1) by that amount. Plot the rotated vector in the figure. Confirm
that the vector is aligned with the semi-major axis of the rotated wavelet.

whichRotAngle = 3;
rotAngle = fparams{whichFilterBank}.rotations(whichRotAngle);
rmat = [cos(rotAngle) sin(rotAngle) ; -sin(rotAngle) cos(rotAngle)];

wvf = psif{whichFilterBank}(:,:,1+(whichScale-1)*numRot+(whichRotAngle-1));
wvf_ifft = ifft2(wvf);

rvec = rmat*vec'; 

figure
helperPlotWavelet(wvf_ifft)
hold on
plot([0 rvec(1)],[0 rvec(2)],'wx-')
xlim([-0.2 0.2])
ylim([-0.2 0.2])
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Appendix

The following helper functions are used in this example.

helperPlotWaveletFT — Plot in the frequency domain

function helperPlotWaveletFT(wavelet,cenFreq)
Nx = size(wavelet,2);
Ny = size(wavelet,1);
fx = -1/2:1/Nx:1/2-1/Nx;
fy = -1/2:1/Ny:1/2-1/Ny;
imagesc(fx,fy,fftshift(wavelet))
colorbar
axis xy
hold on
xlabel('$\omega_x$','Interpreter',"latex")
ylabel('$\omega_y$','Interpreter',"latex")
axis equal
axis tight
plot(cenFreq(1),cenFreq(2),'k^','markerfacecolor',[0 0 0])
title('Wavelet Filter in Frequency Domain')
end

helperPlotWavelet — Plot in the spatial domain

function helperPlotWavelet(wavelet)
Nx = size(wavelet,2);
Ny = size(wavelet,1);
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fx = -1/2:1/Nx:1/2-1/Nx;
fy = -1/2:1/Ny:1/2-1/Ny;
imagesc(fx,fy,abs(fftshift(wavelet)))
colorbar
axis xy
hold on
xlabel('x')
ylabel('y')
axis equal
axis tight
title('Wavelet Filter in Spatial Domain')
end

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

fb — Filter banks
positive integer | vector of positive integers

Filter banks, specified as an integer or vector of integers between 1 and numfilterbanks(sf)
inclusive. If fb is a scalar, psifilters is an M-by-N-by-L matrix and filterparams is a MATLAB
table.

Output Arguments
phif — Fourier transform of scaling filter
real-valued matrix

Fourier transform of scaling filter, returned as a real-valued 2-D matrix. The precision of phif
depends on the value of the Precision property of the scattering network. phif has dimensions M-
by-N, where M and N are the padded row and column sizes of the scattering network.

psifilters — Fourier transforms of the wavelet filters
cell array

Fourier transforms of the wavelet filters, returned as an Nfb-by-1 cell array, where Nfb is the number
of filter banks in the scattering network. Each element of psifilters is a 3-D array. The 3-D arrays
are M-by-N-by-L, where M and N are the padded row and column sizes of the wavelet filters and L is
the number of wavelet filters for each filter bank. The wavelet filters are ordered by increasing scale
with NumRotations wavelet filters for each scale.
Example: Note that size(psifilters,3) is equal to size(f,1).

f — Center spatial frequencies
cell array

Center spatial frequencies of the wavelet filters, returned as a Nfb-by-1 cell array where Nfb is the
number of filter banks in the scattering network. The jth element of f contains the center frequencies
for the jth wavelet filter bank in psifilters. Each element of f is an L-by-2 matrix with each row
containing the center frequencies of the corresponding Lth wavelet. The spatial frequencies are in
cycles per pixel.
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filterparams — Filter parameters
cell array

Filter parameters for the 2-D scattering network, sf. filterparams is an Nfb-by-1 cell array of
MATLAB tables, where the jth element of filterparams is a MATLAB table containing the filter
parameters for the jth filter bank. Each table contains these variables:

• Q — The quality factor of the filter bank, returned as an integer.
• J — The highest factor used in the dilation of the Morlet wavelets, 2J/Q, returned as an integer.
• precision — The precision of the scattering network, returned as 'single' or 'double'.
• omegapsi — The wavelet center frequencies in descending order (highest to lowest), returned as

a vector.
• freqsigmapsi — The wavelet frequency standard deviations, returned as a vector.
• slant — The slant parameter for the spatial vertical semi-major axis of the wavelet, returned as a

real number. The slant parameter, also known as the spatial aspect ratio, characterizes the shape
of the support of the wavelet.

• spatialsigmapsi — The wavelet spatial standard deviations, returned as a vector.
• spatialsigmaphi — The scaling filter spatial standard deviation, returned as a real number.
• psi3dBbw — The wavelet 3 dB bandwidths, returned as a vector.
• psiftsupport — The wavelet frequency support, returned as a vector.
• phiftsupport — The scaling filter frequency support, returned as a real number.
• phi3dBbw — The scaling filter 3 dB bandwidth, returned as a real number.
• rotations — The wavelet orientation angles in radians, returned as a vector. The length of

rotations equals the NumRotations value associated with the filter bank.

The following vectors in the table have equal length: omegapsi, freqsigmapsi,
spatialsigmapsi, psi3dBbw, and psiftsupport.

The total number of wavelet filters in a filter bank is length(omegapsi)×length(rotations).
See “Determine Wavelet Semi-Major Axis” on page 1-517.

More About
Slant Parameter

The slant parameter or spatial aspect ratio controls the shape of the elliptical support of the Morlet
wavelet.

The Morlet wavelet is of the form

ψ(x, y) = e−(x2 + ν2y2)/2σ2eiωλx

where v is the slant parameter. Typically, v < 1, so that the ellipse 
x2

σ2 + y2

σ2/ν2  is elongated spatially

in the y-direction. The wavelet is rotated in a clockwise direction: 
x′
y′

=
cosθ sinθ
−sinθ cosθ

x
y

.

The rotated Morlet wavelet is of the form
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ψ(x′, y′) = e−(x′2 + ν2y′2)/2σ2eiωλx′

If g(x,y) and G(ωx,ωy) form a Fourier pair: g(x, y) FT G(ωx, ωy), then so do their rotations:

g(xcosθ + ysinθ, − xsinθ + ycosθ) FT G(ωxcosθ + ωysinθ, − ωxsinθ + ωycosθ)

The Fourier transform of the Morlet wavelet is

ψ (ωx, ωy) = 2πσ2

ν e−
σ2
ν (ωx− ωλ)2 +

ωy
ν2

A given wavelet ψ(x,y) has a reported bandwidth bw. The reported bandwidth is dependent on the
scale, but not the rotation angle. For a reported 3 dB bandwidth bw, the bandwidth along the semi-
major spatial axis of the ellipse that describes the wavelet support is bw × slant.

The semi-major spatial axis depends on the rotation angle. The semi-major spatial axis can be
computed from the vector rotations in the output argument filterparams.

As ordered in the output arguments f and psifilters, the wavelet filter psifilters(:,:,1 + k
× NumRotations) for an integer k is the first, unrotated wavelet at a given scale. The wavelet has a
center spatial frequency of f(1 + k × NumRotations,:), which is of the form (ωx,0). See
“Determine Wavelet Semi-Major Axis” on page 1-517.

Version History
Introduced in R2019a

See Also
waveletScattering2
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filters
DWT filter bank filters

Syntax
[Lo,Hi] = filters(fb)

Description
[Lo,Hi] = filters(fb) returns the lowpass (scaling) and highpass (wavelet) filters, Lo and Hi,
respectively, for the discrete wavelet transform (DWT) filter bank fb.

Examples

DWT Filter Bank Filters

Obtain the lowpass and highpass filters for the order-4 symlet.

fb = dwtfilterbank('Wavelet','sym4');
[Lo,Hi] = filters(fb)

Lo = 8×2

   -0.0758    0.0322
   -0.0296   -0.0126
    0.4976   -0.0992
    0.8037    0.2979
    0.2979    0.8037
   -0.0992    0.4976
   -0.0126   -0.0296
    0.0322   -0.0758

Hi = 8×2

   -0.0322   -0.0758
   -0.0126    0.0296
    0.0992    0.4976
    0.2979   -0.8037
   -0.8037    0.2979
    0.4976    0.0992
    0.0296   -0.0126
   -0.0758   -0.0322

Confirm the filter bank is orthogonal.

isOrthogonal(fb)

ans = logical
   1
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
Lo — Lowpass (scaling) filters
real-valued matrix

Lowpass (scaling) filters for the DWT filter bank, returned as an L-by-2 matrix. L is an even positive
integer. The first column of Lo is the analysis filter, and the second column is the synthesis filter.

For orthogonal wavelets, the lowpass synthesis and lowpass analysis filters are time-reversed
versions of each other.

Hi — Highpass (wavelet) filters
real-valued matrix

Highpass (wavelet) filters for the DWT filter bank, returned as an L-by-2 matrix. L is an even positive
integer. The first column of Hi is the analysis filter, and the second column is the synthesis filter.

For orthogonal wavelets, the highpass synthesis and highpass analysis filters are time-reversed
versions of each other.

Version History
Introduced in R2018a

See Also
dwtfilterbank | wfilters
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filters2lp
Filters to Laurent polynomials

Syntax
[LoDz,HiDz] = filters2lp(Lo)
[ ___ ,LoRz,HiRz] = filters2lp(Lo)
[ ___ ,PRCond,AACond] = filters2lp(Lo)
[ ___ ] = filters2lp(Lo,PmaxLoRz)
[ ___ ] = filters2lp(Lo,PmaxLoRz,AddPOW)

Description
[LoDz,HiDz] = filters2lp(Lo) returns the Laurent polynomials LoDz and HiDz that
correspond to the z-transform of the lowpass and highpass analysis filters, respectively, associated
with the lowpass filter specified by Lo.

[ ___ ,LoRz,HiRz] = filters2lp(Lo) also returns the Laurent polynomials LoRz and HiRz that
correspond to the z-transform of the lowpass and highpass synthesis filters, respectively. Use this
syntax with any of the output arguments in the previous syntax.

[ ___ ,PRCond,AACond] = filters2lp(Lo) also returns the perfect reconstruction condition
PRCond and the anti-aliasing condition AACond.

[ ___ ] = filters2lp(Lo,PmaxLoRz) sets the maximum order of LoRz.

[ ___ ] = filters2lp(Lo,PmaxLoRz,AddPOW) sets the maximum order of the Laurent polynomial
HiRz.

Examples

Laurent Polynomials Associated With Wavelet Filters

Obtain the lowpass filters associated with the biorthogonal bior1.3 wavelet.

[LoD,~,LoR,~] = wfilters("bior1.3");

Use filters2lp to obtain the Laurent polynomials associated with the wavelet. Also obtain the
perfect reconstruction and anti-aliasing conditions.

[LoDz,HiDz,LoRz,HiRz,PRC,AAC] = filters2lp({LoR,LoD});

Verify the perfect reconstruction condition.

eq(LoRz*LoDz + HiRz*HiDz,PRC)

ans = logical
   1
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Verify the anti-aliasing condition. Use the helper function helperMakeLaurentPoly on page 1-528
to obtain LoDz(− z), where LoD(z) is the Laurent polynomial LoDz. Use the helper function
helperMakeLaurentPoly to obtain HiDz(− z), where HiD(z) is the Laurent polynomial HiDz.

LoDzm = helperMakeLaurentPoly(LoDz);
HiDzm = helperMakeLaurentPoly(HiDz);
eq(LoRz*LoDzm + HiRz*HiDzm,AAC)

ans = logical
   1

Helper Functions

function polyout = helperMakeLaurentPoly(poly)
% This function is only intended to support this example.
% It may change or be removed in a future release.

polyout = poly;
cflen = length(polyout.Coefficients);
cmo = polyout.MaxOrder;
polyneg = (-1).^(mod(cmo,2)+(0:cflen-1));
polyout.Coefficients = polyout.Coefficients.*polyneg;

end

Input Arguments
Lo — Wavelet lowpass filter
cell array

Wavelet lowpass filter, specified as a cell array. If the wavelet is orthogonal, then Lo is a one-element
cell array that corresponds to LoR, the lowpass reconstruction filter. The corresponding highpass
filter is HiR = qmf(LoR). For biorthogonal wavelets, Lo is a two-element cell array specified as Lo
= {LoR,LoD}. In this case, HiR = qmf(fliplr(LoD)).
Example: If [LoD,~,LoR,~] = wfilters("bior2.2"), then Lo is specified as Lo = {LoR,LoD}.
Data Types: double

PmaxLoRz — Maximum power
0 (default) | integer

Maximum power of the Laurent polynomial LoRz, specified as an integer.
Example: If [~,~,LoRz,HiRz] = filters2lp(Lo,3), then the maximum power, or order, of the
Laurent polynomial LoRz is 3.
Data Types: double

AddPOW — Integer
0 (default) | integer

Integer to set the maximum order of the Laurent polynomial HiRz. PmaxHiRz, the maximum order of
HiRz, is

PmaxHiRz = PmaxLoRz+length(HiRz.Coefficients)-2+AddPow.
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AddPOW must be an even integer to preserve the perfect reconstruction condition.
Data Types: double

Output Arguments
LoDz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the lowpass analysis filter, returned as a laurentPolynomial
object. LoDz is the z-transform of the lowpass analysis filter.

HiDz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the highpass analysis filter, returned as a laurentPolynomial
object. HiDz is the z-transform of the highpass analysis filter.

LoRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the lowpass synthesis filter, returned as a laurentPolynomial
object. LoRz is the z-transform of the lowpass synthesis filter.

HiRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the highpass synthesis filter, returned as a laurentPolynomial
object. HiRz is the z-transform of the highpass synthesis filter.

PRCond,AACond — Perfect reconstruction and anti-aliasing conditions
laurentPolynomial objects

Perfect reconstruction and anti-aliasing conditions, returned as laurentPolynomial objects. The
perfect reconstruction condition PRCond and anti-aliasing condition AACond are:

• PRCond(z) = LoRz(z) LoDz(z) + HiRz(z) HiDz(z)
• AACond(z) = LoRz(z) LoDz(-z) + HiRz(z) HiDz(-z)

The pairs (LoRz, HiRz) and (LoDz, HiDz) are associated with perfect reconstructions filters if and
only if:

• PRCond(z) = 2, and
• AACond(z) = 0

If PRCond(z) = 2 zd, a delay is introduced in the reconstruction process.

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
lp2filters | qmf | wave2lp

Objects
laurentMatrix | laurentPolynomial
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framebounds
DWT filter bank frame bounds

Syntax
[a,b] = framebounds(fb)

Description
[a,b] = framebounds(fb) returns the frame bounds for the discrete wavelet transform (DWT)
filter bank fb. For an orthogonal wavelet filter bank, the theoretical frame bounds a and b are equal
to 1.

Examples

DWT Filter Bank Frame Bounds

Obtain the frame bounds for the orthogonal Daubechies db6 wavelet.

wv = 'db6';
fb = dwtfilterbank('Wavelet',wv)

fb = 
  dwtfilterbank with properties:

                Wavelet: 'db6'
           SignalLength: 1024
                  Level: 6
      SamplingFrequency: 1
             FilterType: 'Analysis'
    CustomWaveletFilter: []
    CustomScalingFilter: []

[a,b] = framebounds(fb)

a = 1.0000

b = 1.0000

The filter bank has the default filter type Analysis. Create a second filter bank using the same
orthogonal wavelet but with the filter type Synthesis. Obtain the frame bounds of this filter bank,
which are equal to the previous frame bounds.

fbSynthesis = dwtfilterbank('Wavelet',wv,'FilterType','Synthesis');
[a2,b2] = framebounds(fbSynthesis)

a2 = 1.0000

b2 = 1.0000
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Create a filter bank for the biorthogonal bior3.9 wavelet. Obtain the frame bounds. The frame
bounds are not equal to 1.

wv = 'bior3.9';
fbA = dwtfilterbank('Wavelet',wv);
[c,d] = framebounds(fbA)

c = 0.6250

d = 3.2982

Create a second filter bank using the same biorthogonal wavelet but with the filter type Synthesis.
Obtain the frame bounds of this filter bank. Since the wavelet is biorthogonal, the frame bounds
change.

fbASynthesis = dwtfilterbank('Wavelet',wv,'FilterType','Synthesis');
[c2,d2] = framebounds(fbASynthesis)

c2 = 0.5502

d2 = 2.0015

Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
a — Lower frame bound
positive real number

Lower frame bound of the DWT filter bank fb, returned as a positive real number.

b — Upper frame bound
positive real number

Upper frame bound of the DWT filter bank fb, returned as a positive real number.

Version History
Introduced in R2018a

See Also
dwtfilterbank | isBiorthogonal | isOrthogonal
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framebounds
Shearlet system frame bounds

Syntax
[a,b] = framebounds(sls)

Description
[a,b] = framebounds(sls) returns the lower and upper frame bounds for the shearlet system
sls. The energy in the shearlet transform coefficients is bounded by the energy in the input image
and the frame bounds. See “Frame Bounds” on page 1-534.

Examples

Shearlet System Frame Bounds

This example shows how the PreserveEnergy property affects the frame bounds of a shearlet
system.

Load an image and calculate its energy.

load xbox
energyIm = norm(xbox,'fro')^2;

Create two shearlet systems that can be applied to the image. Set the value of PreserveEnergy in
the first shearlet system to true and in the second shearlet system to false.

slsT = shearletSystem('ImageSize',size(xbox),'PreserveEnergy',true);
slsF = shearletSystem('ImageSize',size(xbox),'PreserveEnergy',false);

Obtain the shearlet transform of the image using both shearlet systems.

cfsT = sheart2(slsT,xbox);
cfsF = sheart2(slsF,xbox);

Calculate the frame bounds of slsT. Confirm that slsT is a Parseval frame.

[aT,bT] = framebounds(slsT)

aT = 1

bT = 1

Confirm that using slsT preserves energy.

energyCfsT = norm(cfsT(:))^2;
abs(energyIm-energyCfsT)

ans = 6.9849e-10

Obtain the frame bounds of slsF. Confirm the lower and upper frame bounds are not both equal to 1.
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[aF,bF] = framebounds(slsF)

aF = 1.0000

bF = 8.0000

Even though slsF is not normalized to be a Parseval frame, confirm the frame inequality is still
satisfied.

energyCfsF = norm(cfsF(:))^2;
aF*energyIm <= norm(cfsF(:))^2 && norm(cfsF(:))^2 <= bF*energyIm

ans = logical
   1

Input Arguments
sls — Shearlet system
shearletSystem object

Shearlet system, specified as a shearletSystem object.

Output Arguments
a,b — Lower and upper frame bounds
positive real numbers

Lower and upper frame bounds of the shearlet system, returned as positive real numbers. If the
PreserveEnergy value of sls is true, then sls is a Parseval frame, and both frame bounds are equal
to 1. See “Frame Bounds” on page 1-534.

The data types of the frame bounds match the Precision value of the shearlet system.

Note For an image X, if sls is a Parseval frame and C = sheart2(sls,X), then the energy of X
and the energy of C are equal within round-off error.

Data Types: single | double

More About
Frame Bounds

The energy in the shearlet transform of an image is bounded by the energy of the image and the
lower and upper frame bounds a,b of the shearlet system. If X is an M-by-N image and C, the
shearlet transform of X, is M-by-N-by-K, then the frame inequality holds:

a ∑
i = 1

M
∑

j = 1

N
xi j

2
≤ ∑

i = 1

M
∑

j = 1

N
∑

k = 1

K
ci jk

2
≤ b ∑

i = 1

M
∑

j = 1

N
xi j

2
.

In a Parseval frame, a = b = 1, and the shearlet transform preserves energy.
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
shearletSystem
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freqz
CWT filter bank frequency responses

Syntax
[psidft,f] = freqz(fb)
[ ___ ] = freqz( ___ ,Name=Value)
freqz( ___ )

Description
[psidft,f] = freqz(fb) returns the frequency responses for the wavelet filters, psidft, and the
frequency vector, f, for the continuous wavelet transform (CWT) filter bank, fb. Frequencies are in
cycles/sample or Hz. If you specify a sampling period, the frequencies are in cycles/unit time where
the time unit is the unit of the duration sampling period.

The frequency responses, psidft, are one-sided frequency responses for the positive frequencies.
For the analytic wavelets supported by cwtfilterbank, the frequency responses are real-valued and
are equivalent to the magnitude frequency response.

[ ___ ] = freqz( ___ ,Name=Value) specifies one or more additional name-value arguments. For
example, psidft = freqz(fb,FrequencyRange="twosided") returns the full two-sided
frequency responses.

freqz( ___ ) with no output arguments plots the magnitude frequency responses for the CWT filter
bank, fb.

Examples

Invert CWT Using Approximate Synthesis Filters

Load the Kobe earthquake data. Create a CWT filter bank with period boundary handling that you can
apply to the data.

load kobe
fb = cwtfilterbank(SignalLength=numel(kobe),Boundary="periodic");

Obtain the two-sided wavelet and scaling filter responses.

[psidft,f] = freqz(fb,IncludeLowpass=true,FrequencyRange="twosided");

Obtain the CWT of the data. Also obtain the scaling coefficients.

[cfs,~,~,scalcfs] = wt(fb,kobe);

Invert the transform using the filter bank and the scaling coefficients.

xrec = icwt(cfs,ScalingCoefficients=scalcfs,AnalysisFilterBank=psidft);
plot([kobe(:) xrec(:)])
axis tight
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Obtain the maximum reconstruction error.

norm(kobe(:)-xrec(:),'Inf')

ans = 2.9104e-11

Frequency Responses of Continuous Wavelet Transform Filter Bank

Create a CWT filter bank. Set the voices per octave to 14, the sampling frequency to 1000 Hz, and
frequency limits to range from 200 Hz to 300 Hz.

fb = cwtfilterbank(VoicesPerOctave=14,...
    SamplingFrequency=1000,FrequencyLimits=[200 300]);

Plot the frequency responses.

freqz(fb)
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Boundary Handling and Frequency Range

This example shows how boundary handling and signal length affect the range of frequency
responses freqz returns.

Reflection / Even Length

Create a CWT filter bank suitable for an even-length signal. Use the default Boundary setting
reflection.

sLen = 256;
fb = cwtfilterbank(SignalLength=sLen);

Obtain the one-sided frequency responses of the filter bank. Also obtain the frequency vector.

[psidft,f] = freqz(fb,FrequencyRange="onesided");

Confirm the range of frequencies includes the Nyquist.

f(end)

ans = 0.5000

Plot the frequency response of the filter with the highest center frequency.
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plot(f,psidft(1,:))
xlabel("Frequency (samples/cycle)")
ylabel("Magnitude")
title("Reflection / Even / One-sided")

Obtain and plot the two-sided frequency responses. Confirm the frequency range does not include the
Nyquist.

[psidft,f] = freqz(fb,FrequencyRange="twosided");
f(end)

ans = 0.9980

plot(f,psidft(1,:))
xlabel("Frequency (samples/cycle)")
ylabel("Magnitude")
title("Reflection / Even / Two-sided")
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Reflection / Odd Length

Create a CWT filter bank suitable for an odd-length signal. Use the default Boundary setting
reflection.

sLen = 255;
fb = cwtfilterbank(SignalLength=sLen);

Obtain the one-sided frequency responses of the filter bank. Confirm the range of frequencies does
not include the Nyquist.

[~,f] = freqz(fb,FrequencyRange="onesided");
f(end)

ans = 0.4990

Periodic / Even Length

Create a CWT filter bank with periodic boundary handling suitable for an even-length signal

sLen = 256;
fb = cwtfilterbank(SignalLength=sLen,Boundary="periodic");

Obtain the one-sided frequency responses of the filter bank. Confirm the range of frequencies does
include the Nyquist.

[~,f] = freqz(fb,FrequencyRange="onesided");
f(end)
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ans = 0.5000

Periodic / Odd Length

Create a CWT filter bank with periodic boundary handling suitable for an odd-length signal

sLen = 255;
fb = cwtfilterbank(SignalLength=sLen,Boundary="periodic");

Obtain the one-sided frequency responses of the filter bank. Confirm the range of frequencies does
not include the Nyquist.

[~,f] = freqz(fb,FrequencyRange="onesided");
f(end)

ans = 0.4980

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: psidft = freqz(fb,IncludeLowpass=true) appends the lowpass, or scaling filter,
frequency response as the final row of psidft.

IncludeLowpass — Append lowpass filter frequency response
false or 0 (default) | true or 1

Option to append lowpass, or scaling filter, frequency response as the final row of psidft, specified
as one of these:

• 1 (true) — Include the frequency response symmetrically
• 0 (false) — Do not include the frequency response

For the analytic wavelets supported by cwtfilterbank, the scaling filter frequency response is real-
valued and is equivalent to the magnitude frequency response.
Data Types: logical

FrequencyRange — Frequency range for filter responses
"onesided" (default) | "twosided"

Frequency range for the wavelet and scaling function frequency responses, specified as one of
"onesided", or "twosided". The frequency ranges corresponding to each option are

• "onesided" — returns the frequency responses from [0,½] when the length of the padded filters
is even and [0,½) when the length of the padded filters is odd. Padding is added when the
Boundary property of the filter bank is "reflection".
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If a sampling frequency Fs is specified in the filter bank, the intervals become [0,Fs/2] and [0,Fs/2)
respectively.

• "twosided" — returns the full two-sided frequency responses over the range [0,1). If a sampling
frequency Fs is specified in the filter bank, the interval becomes [0,Fs).

Note To use the wavelet and scaling filters in the inverse CWT, set Boundary in the filter bank to
"periodic", and use IncludeLowpass=true and FrequencyRange="twosided" in freqz.

Output Arguments
psidft — Frequency responses
real-valued 2-D matrix

Frequency responses of a CWT filter bank, returned as a real-valued matrix. Each column of psidft
is the response at the frequency in the corresponding element of f.

By default, frequency responses, psidft, are one-sided frequency responses for the positive
frequencies. For the analytic wavelets supported by cwtfilterbank, the frequency responses are
real-valued and are equivalent to the magnitude frequency response.
Data Types: double

f — Frequencies
real-valued vector

Frequencies, in cycles/sample or hertz, returned as a real-valued vector.

If you specify a sampling period, the frequencies are in cycles/unit time, where the time unit is the
unit of the duration SamplingPeriod.
Data Types: double

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Plotting is not supported.

See Also
cwtfilterbank | powerbw | centerFrequencies | centerPeriods
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freqz
DWT filter bank frequency responses

Syntax
[psidft,f] = freqz(fb)
[psidft,f,phidft] = freqz(fb)
freqz(fb)

Description
[psidft,f] = freqz(fb) returns the complex-valued frequency responses for the wavelet filters
psidft and the frequency vector f for the discrete wavelet transform (DWT) filter bank fb.
Frequencies are in cycles/sample or in Hz if a sampling frequency is defined in fb. The frequency
responses are centered so that the zero frequency is in the middle.

[psidft,f,phidft] = freqz(fb) returns the complex-valued frequency responses for the
scaling filters phidft for the DWT filter bank fb at all levels of the decomposition.

freqz(fb) plots the one-sided magnitude frequency responses for the wavelet filter bank, fb.
Magnitude frequency responses are plotted for all wavelet bandpass filters and the coarsest
resolution scaling filter. The legend is interactive. To toggle the visibility of the filter magnitude
response, click the corresponding line in the legend.

Examples

DWT Filter Bank Frequency Responses

Create a DWT filter bank for a length 4096 signal and the Fejér-Korovkin fk22 wavelet. Plot the
magnitude frequency responses of the wavelet filters and final resolution scaling filter.

len = 4096;
fb = dwtfilterbank('Wavelet','fk22','SignalLength',len);
freqz(fb)

Obtain the frequency responses for the wavelet and scaling filters. Plot the magnitude frequency
responses of the scaling filters at all levels of decomposition.

[psidft,f,phidft] = freqz(fb);
plot(f,abs(phidft)')
grid on
xlabel('Normalized Frequency (cycles/sample)')
ylabel('Magnitude')
legend('A1','A2','A3','A4','A5','A6','A7')
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Plot the one-sided magnitude frequency responses of the wavelet and scaling filters at the first two
levels of decomposition. Note how the second level frequency responses overlap the magnitude
response of the first level scaling filter.

plot(f(len/2:end),abs(psidft(1,len/2:end))')
hold on
plot(f(len/2:end),abs(phidft(1,len/2:end))')
plot(f(len/2:end),abs(psidft(2,len/2:end))')
plot(f(len/2:end),abs(phidft(2,len/2:end))')
grid on
xlabel('Normalized Frequency (cycles/sample)')
ylabel('Magnitude')
legend('Level 1 Wavelet','Level 1 Scaling','Level 2 Wavelet','Level 2 Scaling')
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
psidft — Wavelet filter frequency responses
complex-valued matrix

Wavelet filter frequency responses for the DWT filter bank fb, returned as an L-by-N matrix, where L
is the filter bank Level and N is the filter bank SignalLength. The frequency responses are
centered so that the zero frequency is centered in the middle.

f — Frequencies
real-valued vector

Frequencies, in cycles/sample or Hz, returned as a real-valued vector of length N, where N is the
filter bank SignalLength. If a sampling frequency is specified in fb, frequencies are in Hz.
Data Types: double
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phidft — Scaling function frequency responses
complex-valued matrix

Scaling function frequency responses for the DWT filter bank fb, returned as an L-by-N matrix,
where L is the filter bank Level and N is the filter bank SignalLength. The frequency responses
are centered so that the zero frequency is centered in the middle.

Version History
Introduced in R2018a

See Also
dwtfilterbank | wavelets | scalingfunctions
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gather
Collect scattering network properties into local workspace

Syntax
sn = gather(sf)

Description
sn = gather(sf) collects all the wavelet time scattering network, sf, properties from the GPU
device and returns the gathered waveletScattering object sn. All properties of the gathered
object are stored in the local workspace.

Examples

Gather waveletScattering object

Refer to “GPU Computing Requirements” (Parallel Computing Toolbox) to see what GPUs are
supported.

Load the noisy Doppler signal. Create a wavelet scattering network gsf that you can apply to the
data.

load noisdopp
gsf = waveletScattering;

Copy the signal to the GPU.

gnoisdopp = gpuArray(noisdopp);

Obtain the scattering feature matrix for the scattering network gsf and the data that is on the GPU.
Specify the log transformation. Confirm the feature matrix is on the GPU.

gsmat = featureMatrix(gsf,gnoisdopp);
isgpuarray(gsmat)

ans = logical
   1

Obtain the scaling and wavelet filters used in the scattering network.

gfil = filterbank(gsf)

gfil=3×1 cell array
    {1×1 struct}
    {1×1 struct}
    {1×1 struct}

The first element of gfil contains the scaling filter used in the computation of the zeroth order
scattering coefficients. Subsequent elements of gfil contain the wavelet filters and scaling filter for
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the corresponding filter banks of the scattering decomposition. Confirm all the scaling and wavelet
filters are on the GPU.

[isgpuarray(gfil{1}.phift)
isgpuarray(gfil{2}.phift)
isgpuarray(gfil{2}.psift)
isgpuarray(gfil{3}.phift)
isgpuarray(gfil{3}.psift)]

ans = 5×1 logical array

   1
   1
   1
   1
   1

Gather the scattering network. Confirm all the filters in the gathered network sf are in the
workspace.

sf = gather(gsf);
fil = filterbank(sf);
[isgpuarray(fil{1}.phift)
isgpuarray(fil{2}.phift)
isgpuarray(fil{2}.psift)
isgpuarray(fil{3}.phift)
isgpuarray(fil{3}.psift)]

ans = 5×1 logical array

   0
   0
   0
   0
   0

Obtain the scattering feature matrix for the scattering network sf and the original signal. Specify the
log transformation. Confirm the feature matrix is not on the GPU. Confirm the feature matrix is equal
to the matrix obtained using the network gsf.

smat = featureMatrix(sf,noisdopp);
isgpuarray(smat)

ans = logical
   0

xgsmat = gather(gsmat);
max(abs(smat(:)-xgsmat(:)))

ans = 8.8818e-16
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Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

Version History
Introduced in R2023a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
waveletScattering

 gather

1-549



gauswavf
Gaussian wavelet

Syntax
[psi,x] = gauswavf(lb,ub,n)
[psi,x] = gauswavf(lb,ub,n,p)
[psi,x] = gauswavf(lb,ub,n,wname)

Description
[psi,x] = gauswavf(lb,ub,n) returns the 1st order derivative of the Gaussian wavelet, psi, on
an n-point regular grid, x, for the interval [lb,ub]. The effective support of the Gaussian wavelets is
[-5, 5].

[psi,x] = gauswavf(lb,ub,n,p) returns the pth derivative. p is an integer from 1 through 8.

The Gaussian function is defined as Cpe−x2. Cp is such that the 2-norm of the pth derivative of psi is
equal to 1.

Note For visualizing the second or third order derivative of Gaussian wavelets, the convention is to
use the negative of the normalized derivative. In the case of the second derivative, scaling by -1
produces a wavelet with its main lobe in the positive y direction. This scaling also makes the Gaussian
wavelet resemble the Mexican hat, or Ricker, wavelet. The validity of the wavelet is not affected by
the -1 scaling factor.

[psi,x] = gauswavf(lb,ub,n,wname) used the valid wavelet family short name wname plus the
order of the derivative in a character vector or string scalar, such as 'gaus4'. To see valid character
vectors for Gaussian wavelets, use waveinfo('gaus') or use wavemngr('read',1) and refer to
the Gaussian section.

Examples

Create Gaussian Wavelet

This example shows how to create and plot a Gaussian wavelet of order 8.

Set the initial effective support and grid parameters.

lb = -5;
ub = 5;
n = 1000;

Compute the Gaussian wavelet of order 8.

[psi,x] = gauswavf(lb,ub,n,8);

Now plot the wavelet.
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plot(x,psi)
title('Order 8 Gaussian Wavelet')
grid on

Input Arguments
lb — Left endpoint
real number

Left endpoint of the closed interval, specified as a real number. lb is strictly less than ub.
Data Types: double

ub — Right endpoint
real number

Right endpoint of the closed interval, specified as a real number. ub is strictly greater than lb.
Data Types: double

n — Number of regularly spaced points
positive integer

Number of regularly spaced points in the interval [lb,ub], specified as a positive integer. The
derivative of the Gaussian is evaluated at these points.
Data Types: double
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p — Derivative
positive integer

Positive integer defining the order of the derivative of the Gaussian wavelet, specified as a positive
integer. p is an integer from 1 through 8.

wname — Gaussian wavelet
character vector | string scalar

Gaussian wavelet to evaluate, specified as a character vector or string scalar. wname is of the form
'cgauN' where N is an integer that denotes the order of the derivative of the Gaussian wavelet. N is
an integer from 1 through 8.
Example: 'gaus4' denotes the fourth derivative of the Gaussian wavelet.

Output Arguments
psi — Derivative of Gaussian wavelet
real-valued vector

Derivative of the Gaussian wavelet, returned as a real-valued 1-by-N vector.

x — Sample points
real-valued vector

Sample points where the derivative of the Gaussian wavelet is evaluated, returned as a real-valued 1-
by-N vector. The sample points are evenly distributed between lb and ub.

Version History
Introduced before R2006a

See Also
waveinfo | wavemngr
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get
WPTREE contents

Syntax
[FieldValue1,FieldValue2, ...] = get(T,'FieldName1','FieldName2', ...)
[FieldValue1,FieldValue2, ...] = get(T)

Description
[FieldValue1,FieldValue2, ...] = get(T,'FieldName1','FieldName2', ...) returns
the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can get the subfield contents, giving the name of
these subfields as 'FieldName' values. (See “Examples” below.)

[FieldValue1,FieldValue2, ...] = get(T) returns all the field contents of the tree T.

The valid choices for 'FieldName' are

'dtree' DTREE parent object
'wavInfo' Structure (wavelet information)

The fields of the wavelet information structure, 'wavInfo', are also valid for 'FieldName':

'wavName' Wavelet name
'Lo_D' Low Decomposition filter
'Hi_D' High Decomposition filter
'Lo_R' Low Reconstruction filter
'Hi_R' High Reconstruction filter

'entInfo' Structure (entropy information)

The fields of the entropy information structure, 'entInfo', are also valid for 'FieldName':

'entName' Entropy name
'entPar' Entropy parameter

Or fields of DTREE parent object:

'ntree' NTREE parent object
'allNI' All nodes information
'terNI' Terminal nodes information

Or fields of NTREE parent object:
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'wtbo' WTBO parent object
'order' Order of the tree
'depth' Depth of the tree
'spsch' Split scheme for nodes
'tn' Array of terminal nodes of the tree

Or fields of WTBO parent object:

'wtboInfo' Object information
'ud' Userdata field

Examples
% Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
o = get(t,'order');
[o,tn] = get(t,'order','tn');
[o,allNI,tn] = get(t,'order','allNI','tn');
[o,wavInfo,allNI,tn] = get(t,'order','wavInfo','allNI','tn');
[o,tn,Lo_D,EntName] = get(t,'order','tn','Lo_D','EntName');
[wo,nt,dt] = get(t,'wtbo','ntree','dtree');

Version History
Introduced before R2006a

See Also
disp | read | set | write
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getLabelDefinitions
Get label definitions in labeled signal set

Syntax
lbldefs = getLabelDefinitions(lss)
getLabelDefinitions(lss,Name=Value)

Description
lbldefs = getLabelDefinitions(lss) returns a vector of signalLabelDefinition objects
with the labels of the labeled signal set lss.

Changing lbldefs does not affect the labeled set. To modify label definitions, use
editLabelDefinition, addLabelDefinitions, and removeLabelDefinition.

getLabelDefinitions(lss,Name=Value) returns a vector of signalLabelDefintion objects
that have a label type and frame policy equal to the values you specify using name-value arguments.

Examples

Get Label Definitions

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve the definitions of the labels in the set.

dfs = getLabelDefinitions(lss);

for k = 1:length(dfs)
    dfs(k)
end

ans = 
  signalLabelDefinition with properties:
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             Name: "WhaleType"
        LabelType: "attribute"
    LabelDataType: "categorical"
       Categories: [3x1 string]
     DefaultValue: []
        Sublabels: [0x0 signalLabelDefinition]
              Tag: ""
      Description: "Whale type"

 Use labeledSignalSet to create a labeled signal set.

ans = 
  signalLabelDefinition with properties:

                  Name: "MoanRegions"
             LabelType: "roi"
         LabelDataType: "logical"
    ValidationFunction: []
     ROILimitsDataType: "double"
          DefaultValue: []
             Sublabels: [0x0 signalLabelDefinition]
                   Tag: ""
           Description: "Regions where moans occur"

 Use labeledSignalSet to create a labeled signal set.

ans = 
  signalLabelDefinition with properties:

                  Name: "TrillRegions"
             LabelType: "roi"
         LabelDataType: "logical"
    ValidationFunction: []
     ROILimitsDataType: "double"
          DefaultValue: []
             Sublabels: [1x1 signalLabelDefinition]
                   Tag: ""
           Description: "Regions where trills occur"

 Use labeledSignalSet to create a labeled signal set.

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.
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Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
getLabelDefinitions(lss,LabelType="roiFeature",FrameSize=50,FrameOverlapLengt
h=5) returns signalLabelDefinition objects that contain roiFeature labels which have a
frame size equal to 50 and a frame overlap length equal to 5.

LabelType — Label type
"attribute" | "roi" | "point" | "attributeFeature" | "roiFeature"

Label type, specified as "attribute", "roi", "point", "attributeFeature", or "roiFeature".
Example: LabelType="attribute"
Data Types: char | string

FrameSize — Frame size
numeric scalar

Frame size, specified as a numeric scalar. To enable this argument, set LabelType to
"roiFeature".
Example: LabelType="roiFeature",FrameSize=50
Data Types: double

FrameOverlapLength — Frame overlap length
numeric scalar

Frame overlap length, specified as a numeric scalar. To enable this argument, set LabelType to
"roiFeature". You cannot specify FrameOverlapLength and FrameRate simultaneously.

When you specify a frame overlap length, the function returns signalLabelDefinition objects
that contain roiFeature labels that have FrameSize and FrameOverlapLength equal to the
values you specify.
Example: LabelType="roiFeature",FrameSize=50,FrameOverlapLength=5
Data Types: double

FrameRate — Frame rate
numeric scalar

Frame rate, specified as a numeric scalar. To enable this argument, set LabelType to
"roiFeature". You cannot specify FrameRate and FrameOverlapLength simultaneously.

When you specify a frame rate, the function returns signalLabelDefinition objects that contain
roiFeature labels that have FrameSize and FrameRate equal to the values you specify.
Example: LabelType="roiFeature",FrameSize=50,FrameRate=45
Data Types: double
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Output Arguments
lbldefs — Signal label definitions
signalLabelDefinition object

Signal label definitions, returned as a signalLabelDefinition object or a vector of such objects.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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getLabeledSignal
Get labeled signals from labeled signal set

Syntax
[t,info] = getLabeledSignal(lss)
[t,info] = getLabeledSignal(lss,midx)

Description
[t,info] = getLabeledSignal(lss) returns a table with all the signals and labeled data in the
labeled signal set lss.

[t,info] = getLabeledSignal(lss,midx) returns a table with the signals specified in midx.

Examples

Get Labeled Signal

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get a table with all the signals in lss.

t = getLabeledSignal(lss)

t=2×4 table
                      Signal         WhaleType    MoanRegions    TrillRegions
                 ________________    _________    ___________    ____________

    Member{1}    {79572x1 double}      blue       {3x2 table}    {1x3 table} 
    Member{2}    {76579x1 double}      blue       {3x2 table}    {1x3 table} 

Identify the sublabels of the trill regions.
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d = getLabelNames(lss,'TrillRegions')

d = 
"TrillPeaks"

Get the labeled signal corresponding to the second member of the set. Determine the sample rate.

idx = 2;

[lbs,info] = getLabeledSignal(lss,idx)

lbs=1×4 table
                      Signal         WhaleType    MoanRegions    TrillRegions
                 ________________    _________    ___________    ____________

    Member{2}    {76579x1 double}      blue       {3x2 table}    {1x3 table} 

info = struct with fields:
    TimeInformation: "sampleRate"
         SampleRate: 4000

fs = info.SampleRate;

Identify the moan and trill regions of interest. Use a signalMask (Signal Processing Toolbox) object
to plot the signal and highlight the moans and trills.

mvals = getLabelValues(lss,idx,'MoanRegions');
tvals = getLabelValues(lss,idx,'TrillRegions');

tb = [mvals;tvals];
tb.Value = categorical( ...
    [repmat("moan",height(mvals),1);repmat("trill",height(tvals),1)], ...
    ["moan" "trill"]);
sm = signalMask(tb,"SampleRate",fs);
plotsigroi(sm,getSignal(lss,idx))
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Identify three peaks of the trill region and plot them.

peaks = getLabelValues(lss,idx,{'TrillRegions','TrillPeaks'});

hold on
pk = plot(peaks.Location,cell2mat(peaks.Value),'v');
hold off
legend(pk,'trill peaks')
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

Output Arguments
t — Labeled signal
table

Labeled signal, specified as a table.
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info — Time information
structure

Time information, returned as a structure.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition

 getLabeledSignal

1-563



getLabelNames
Get label names in labeled signal set

Syntax
lblnames = getLabelNames(lss)
sublblnames = getLabelNames(lss,lblname)
getLabelNames(lss,Name=Value)

Description
lblnames = getLabelNames(lss) returns a string array containing the label names in the
labeled signal set lss.

sublblnames = getLabelNames(lss,lblname) returns a string array containing the sublabel
names for the label named lblname in the labeled signal set lss.

getLabelNames(lss,Name=Value) returns a string array containing the label names in the
labeled signal set for labels which have a label type and frame policy equal to the values you specify
using name-value arguments.

Examples

Get Label Names

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the names of the labels in the set.

str = getLabelNames(lss)

str = 3x1 string
    "WhaleType"
    "MoanRegions"
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    "TrillRegions"

Verify that only the 'TrillRegions' label has sublabels.

for kj = 1:length(str)
    sbstr = str{kj};
    sbl = [sbstr getLabelNames(lss,sbstr)]
end

sbl = 
"WhaleType"

sbl = 
"MoanRegions"

sbl = 1x2 string
    "TrillRegions"    "TrillPeaks"

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label name
character vector | string scalar

Label name, specified as a character vector or a string scalar.
Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.

Name-Value Arguments
Example:
getLabelNames(lss,LabelType="roiFeature",FrameSize=50,FrameOverlapLength=5)
returns the names of roiFeature labels which have a frame size equal to 50 and a frame overlap
length equal to 5.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

LabelType — Label type
"attribute" | "roi" | "point" | "attributeFeature" | "roiFeature"

Label type, specified as "attribute", "roi", "point", "attributeFeature", or "roiFeature".
Example: LabelType="attribute"
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Data Types: char | string

FrameSize — Frame size
numeric scalar

Frame size, specified as a numeric scalar. To enable this argument, set LabelType to
"roiFeature".
Example: LabelType="roiFeature",FrameSize=50
Data Types: double

FrameOverlapLength — Frame overlap length
numeric scalar

Frame overlap length, specified as a numeric scalar. To enable this argument, set LabelType to
"roiFeature". You cannot specify FrameOverlapLength and FrameRate simultaneously.
Example: LabelType="roiFeature",FrameSize=50,FrameOverlapLength=5
Data Types: double

FrameRate — Frame rate
numeric scalar

Frame rate, specified as a numeric scalar. To enable this argument, set LabelType to
"roiFeature". You cannot specify FrameRate and FrameOverlapLength simultaneously.
Example: LabelType="roiFeature",FrameSize=50,FrameRate=45
Data Types: double

Output Arguments
lblnames — Label names
string array

Label names, returned as a string array.

sublblnames — Sublabel names
string array

Sublabel names, returned as a string array.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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getLabelValues
Get label values from labeled signal set

Syntax
val = getLabelValues(lss)
val = getLabelValues(lss,midx)

[val,sublbltbl] = getLabelValues(lss,midx,lblname)

[ ___ ] = getLabelValues( ___ ,'LabelRowIndex',ridx)
[ ___ ] = getLabelValues( ___ ,'SublabelRowIndex',sridx)

Description
val = getLabelValues(lss) returns a table containing the label values for all members of the
labeled signal set lss.

val = getLabelValues(lss,midx) returns a table containing the label values for the member
specified by midx.

[val,sublbltbl] = getLabelValues(lss,midx,lblname) returns the value of the label
named lblname. If lblname has sublabels, then the table sublbltbl shows the structure of the
label value and its sublabel variables.

[ ___ ] = getLabelValues( ___ ,'LabelRowIndex',ridx) specifies the row index, ridx, of an
ROI or point label whose value you want to get.

[ ___ ] = getLabelValues( ___ ,'SublabelRowIndex',sridx) specifies the row index, sridx,
of an ROI or point sublabel whose value you want to get.

Examples

Get Label Values

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"
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 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the values of the labels.

lbls = getLabelValues(lss)

lbls=2×3 table
                 WhaleType    MoanRegions    TrillRegions
                 _________    ___________    ____________

    Member{1}      blue       {3x2 table}    {1x3 table} 
    Member{2}      blue       {3x2 table}    {1x3 table} 

Display the moan ROI limits for the second signal of the set.

lbb = getLabelValues(lss,2,'MoanRegions')

lbb=3×2 table
     ROILimits      Value
    ____________    _____

     2.5     3.5    {[1]}
     5.8       8    {[1]}
    15.4    16.7    {[1]}

Plot the trill region of the signal between the ROI limits. Display the labeled trill peaks.

tvals = getLabelValues(lss,2,'TrillRegions');
peaks = getLabelValues(lss,2,{'TrillRegions','TrillPeaks'});

sg = getSignal(lss,2);
plot((0:length(sg)-1)/lss.SampleRate,sg)
xlim(tvals.ROILimits)
hold on
plot(peaks.Location,cell2mat(peaks.Value),'v')
hold off
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Display the coordinates of the third trill peak.

pcoor = getLabelValues(lss,2,{'TrillRegions','TrillPeaks'}, ...
    'LabelRowIndex',1,'SublabelRowIndex',3)

pcoor=1×2 table
    Location      Value   
    ________    __________

     11.437     {[0.1500]}

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

 getLabelValues

1-569



Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

Output Arguments
val — Label values
table

Label values, returned as a table.

sublbltbl — Sublabel values
table

Sublabel values, returned as a table showing the structure of the label value and its sublabel
variables.

• If lblname has no sublabels, then sublbltbl is empty.
• If you specify lblname as a string or cell array, then sublbltbl is empty.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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getMemberNames
Get member names in labeled signal set

Syntax
mnames = getMemberNames(lss)

Description
mnames = getMemberNames(lss) returns a string array containing the member names in the
order in which they are stored in the labeled signal set lss.

Examples

Get Member Names

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Return a string array with the names of the members.

getMemberNames(lss)

ans = 2x1 string
    "Member{1}"
    "Member{2}"

Set the names of the set members to the whales' nicknames.

setMemberNames(lss,{'Brutus' 'Lucy'})

Verify that the members have the nicknames as names.

getMemberNames(lss)
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ans = 2x1 string
    "Brutus"
    "Lucy"

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
mnames — Member names
string array

Member names, returned as a string array.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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getSignal
Get signals from labeled signal set

Syntax
[s,info] = getSignal(lss,midx)

Description
[s,info] = getSignal(lss,midx) returns the values for the signals contained in member midx
of the labeled signal set lss.

Examples

Get Signal

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve the second member of the set and plot it.

[song,tinfo] = getSignal(lss,2);
t = (0:length(song)-1)/tinfo.SampleRate;
plot(t,song)
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

Output Arguments
s — Signal values
vector | matrix | timetable | cell array

Signal values, returned as vector, matrix, timetable, or cell array.
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info — Time information
structure

Time information, returned as a structure.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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haart
Haar 1-D wavelet transform

Syntax
[a,d] = haart(x)
[a,d] = haart(x,level)
[a,d] = haart( ___ ,integerflag)

Description
[a,d] = haart(x) performs the 1-D Haar discrete wavelet transform of the even-length vector, x.
The input x can be univariate or multivariate data. If x is a matrix, haart operates on each column of
x. If the length of x is a power of 2, the Haar transform is obtained down to level log2(length(x)).
Otherwise, the Haar transform is obtained down to level floor(log2(length(x)/2)).

[a,d] = haart(x,level) obtains the Haar transform down to the specified level.

[a,d] = haart( ___ ,integerflag) specifies how the Haar transform handles integer-valued
data, using any of the previous syntaxes.

Examples

Haar Transform of ECG Data

Obtain the Haar transform down to the default maximum level.

load wecg;
[a,d] = haart(wecg);

Haar Transform of Electricity Consumption Data Down to Specified Level

Obtain the Haar transform of a multivariate time series dataset of electricity consumption data down
to level 4. The signals data is transposed so that each time series is in a column, rather than a row.

load elec35_nor;
signals = signals';
[a,d] = haart(signals,4);

Haar Transform of Integer Data Series

Obtain the Haar transform and inverse Haar transform of ECG heart rate data. The data is made up
of integers only.

Load and plot the ECG data.
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load BabyECGData;
plot(times,HR)
xlabel('Hours')
ylabel('Heart Rate')
title('ECG Data')

Obtain the Haar transform. Then, obtain the inverse Haar transform approximated at level 5. The
scale for this level is 512 seconds, which is 25 times the sampling interval (16 seconds).

[a,d] = haart(HR,'integer');
HaarHR = ihaart(a,d,5,'integer');

Compare the reconstructed data to the original data.

figure;
plot(times,HaarHR)
xlabel('Hours')
ylabel('Heart Rate')
title('Haar Approximation of Heart Rate')
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, it must be even length. If x is a matrix,
each column must be even length, and haart operates on each column of x.
Data Types: single | double

level — Maximum level
positive integer

Maximum level to which to perform the Haar transform, specified as a positive integer.

• If the length of x is a power of two, level is a positive integer less than or equal to
log2(length(x)).

• If the length of x is even, but not a power of two, level is a positive integer less than or equal to
floor(log2(length(x)/2)).

If level is 1, the detail coefficients, d, are returned as a vector or matrix, depending on whether the
input is a vector or matrix, respectively.

integerflag — Integer-valued data handling
'noninteger' (default) | 'integer'
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Integer-valued data handling, specified as either 'noninteger' or 'integer'. 'noninteger'
does not preserve integer-valued data in the Haar transform, and 'integer' preserves it. The
'integer' option applies only if all elements of the input, x, are integers. For integer-valued input,
haart returns integer-valued wavelet coefficients. For both 'noninteger' and 'integer',
however, the Haar transform algorithm uses floating-point arithmetic. If x is single precision, the
Haar transform coefficients are single precision. For all other numeric type, the numeric type of the
coefficients is double precision.

Output Arguments
a — Approximation coefficients
scalar | vector | matrix

Approximation coefficients at the coarsest level, returned as a scalar, vector, or matrix of coefficients,
depending on the level to which the transform is calculated. Approximation, or scaling, coefficients
are a lowpass representation of the input. At each level, the approximation coefficients are divided
into coarser approximation and detail coefficients.
Data Types: single | double

d — Detail coefficients
scalar | vector | matrix | cell array

Detail coefficients, returned as a scalar, vector, matrix, or cell array. Detail coefficients are generally
referred to as wavelet coefficients. The number of detail coefficients depends on the selected level
and the length of the input. If d is a cell array, the elements of d are ordered from finest to coarsest
resolution.

Note: Generated C and C++ code always returns the wavelet coefficients d in a cell array.
Data Types: single | double

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
ihaart | ihaart2 | haart2

Topics
“Haar Transforms for Time Series Data and Images”

 haart

1-579



haart2
2-D Haar wavelet transform

Syntax
[a,h,v,d] = haart2(x)
[a,h,v,d] = haart2(x,level)
[a,h,v,d] = haart2( ___ ,integerflag)

Description
[a,h,v,d] = haart2(x) performs the 2-D Haar discrete wavelet transform (DWT) of the matrix, x.
x is a 2-D, 3-D, or 4-D matrix with even length row and column dimensions. If x is 4-D, the dimensions
are Spatial-by-Spatial-by-Channel-by-Batch. The Haar transform is always computed along the row
and column dimensions of the input. If the row and column dimensions of x are powers of two, the
Haar transform is obtained down to level log2(min(size(x,[1 2]))). If the row or column
dimension of x is even, but not a power of two, the Haar transform is obtained down to level
floor(log2(min(size(x,[1 2])/2))).

haart2 returns the approximation coefficients, a, at the coarsest level. haart2 also returns cell
arrays of matrices containing the horizontal, vertical, and diagonal detail coefficients by level. If the
2-D Haar transform is computed only at one level coarser in resolution, then h, v, and d are matrices.
The default level depends on the number of rows of x.

[a,h,v,d] = haart2(x,level) performs the 2-D Haar transform down to the specified level.

[a,h,v,d] = haart2( ___ ,integerflag) specifies how the 2-D Haar transform handles integer-
valued data, using any of the previous syntaxes.

Examples

Haar Transform and First Level Details of 2-D Data

Obtain the 2-D Haar transform of 2-D data and plot its diagonal and horizontal level 1 details.

load xbox;
[a,h,v,d] = haart2(xbox);
imagesc(xbox)
title('Original Image')
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figure
subplot(2,1,1)
imagesc(d{1})
title('Diagonal Level 1 Details')
subplot(2,1,2)
imagesc(h{1})
title('Horizontal Level 1 Details')
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Haar Transform of Image Down to a Specified Level

Show the effect of limiting the maximum level of the 2-D Haar transform on an image.

Load and display the image of a cameraman.

im = imread('cameraman.tif');
imagesc(im)
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Obtain the 2-D Haar transform to level 2 and view the level 2 approximation.

[a2,h2,v2,d2] = haart2(im,2);
imagesc(a2)
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Haar Transform Using Integer Image Data

Compare 2-D Haar transform results using the default 'noninteger' flag and the 'integer' flag.
The cameraman image is uint8 data, so its maximum value is 255.

Obtain the default Haar transform. The approximation detail coefficient is outside the range 0 to 255.

im = imread('cameraman.tif');
[a,h,v,d] = haart2(im);
a

a = 3.0393e+04

Obtain the Haar transform, limiting it to integer values. The approximation detail is an integer and is
within the range of the original image data.

[a,h,v,d] = haart2(im,'integer');
a

a = 119
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Input Arguments
x — Input signal
matrix

Input signal, specified as a 2-D, 3-D, or 4-D real-valued matrix. If x is 4-D, the dimensions are Spatial-
by-Spatial-by-Channel-by-Batch. The row and column sizes of x must be even length.
Data Types: single | double

level — Maximum level
positive integer

Maximum level to which to perform the 2-D Haar transform, specified as a positive integer. The
default value depends on the length of the input signal, x.

• If both the row and column sizes of x are powers of two, the 2-D Haar transform is obtained down
to level log2(min(size(x,[1 2]))).

• If both the row and column sizes of x are even, but at least one is not a power of two, level is
equal to floor(log2(min(size(x,[1 2])/2))).

If level is greater than 1, then h, v, and d are cell arrays. If level is equal to 1, then h, v, and d are
matrices.

integerflag — Integer-valued data handling
'noninteger' (default) | 'integer'

Integer-valued data handling, specified as either 'noninteger' or 'integer'. 'noninteger'
does not preserve integer-valued data in the 2-D Haar transform, and 'integer' preserves it. The
'integer' option applies only if all elements of the input, x, are integers. For integer-valued input,
haart2 returns integer-valued wavelet coefficients. For both 'noninteger' and 'integer',
however, the 2-D Haar transform algorithm uses floating-point arithmetic. If x is a single-precision
input, the numeric type of the Haar transform coefficients is single precision. For all other numeric
types, the numeric type of the coefficients is double precision.

Output Arguments
a — Approximation coefficients
scalar | matrix

Approximation coefficients at the coarsest scale, returned as a scalar or matrix of coefficients,
depending on the level to which the transform is calculated. Approximation, or scaling, coefficients
are a lowpass representation of the input. At each level, the approximation coefficients are divided
into coarser approximation and detail coefficients.
Data Types: single | double

h — Horizontal detail coefficients
matrix | cell array

Horizontal detail coefficients by level, returned as a matrix or cell array of matrices. If level is
greater than 1, h is a cell array. If level is equal to 1, the 2-D Haar transform is computed at only
one level coarser in resolution and h is a matrix.

Note: Generated C and C++ code always returns the horizontal detail coefficients h in a cell array.

 haart2
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Data Types: single | double

v — Vertical detail coefficients
matrix | cell array

Vertical detail coefficients by level, returned as a matrix or cell array of matrices. If level is greater
than 1, v is a cell array. If level is equal to 1, the 2-D Haar transform is computed at only one level
coarser in resolution and v is a matrix.

Note: Generated C and C++ code always returns the vertical detail coefficients v in a cell array.
Data Types: single | double

d — Diagonal detail coefficients
matrix | cell array

Diagonal detail coefficients by level, returned as a matrix or cell array of matrices. If level is greater
than 1, d is a cell array. If level is equal to 1, the 2-D Haar transform is computed at only one level
coarser in resolution and d is a matrix.

Note: Generated C and C++ code always returns the diagonal detail coefficients d in a cell array.
Data Types: single | double

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
ihaart | ihaart2 | haart

Topics
“Haar Transforms for Time Series Data and Images”
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hanscalf
Han real orthogonal scaling filters with sum and linear-phase moments

Syntax
scalf = hanscalf(wname)

Description
scalf = hanscalf(wname) returns the Han real-valued orthogonal scaling filter corresponding to
wname.

Examples

Han Real Orthogonal Wavelet

Obtain the scaling filter corresponding to the Han real orthogonal wavelet with five sum rules and
five linear-phase moments.

scalf = hanscalf("han5.5");

Use orthfilt to obtain the scaling and wavelet filters corresponding to the wavelet.

[LoD,HiD,LoR,HiR] = orthfilt(scalf);

Confirm the filters form an orthonormal perfect reconstruction wavelet filter bank.

[tf,checks] = isorthwfb(LoD)

tf = logical
   1

checks=7×3 table
                                          Pass-Fail    Maximum Error    Test Tolerance
                                          _________    _____________    ______________

    Equal-length filters                    pass                 0                 0  
    Even-length filters                     pass                 0                 0  
    Unit-norm filters                       pass        1.2146e-13        1.4901e-08  
    Filter sums                             pass        2.1645e-13        1.4901e-08  
    Even and odd downsampled sums           pass        1.0836e-13        1.4901e-08  
    Zero autocorrelation at even lags       pass        1.2484e-13        1.4901e-08  
    Zero crosscorrelation at even lags      pass        3.0222e-17        1.4901e-08  

Create two discrete wavelet transform filter banks, one using the Han wavelet, and the other using
the Haar wavelet. Specify a single level of decomposition for both filter banks. Plot the one-sided
magnitude frequency responses of both filter banks. The Han wavelet has a larger frequency
separation between the wavelet and scaling filters than the Haar wavelet.
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fbHan = dwtfilterbank(Wavelet="han5.5",Level=1);
fbHaar = dwtfilterbank(Wavelet="haar",Level=1);
freqz(fbHan)

figure
freqz(fbHaar)
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Input Arguments
wname — Han scaling filter
"hanSR.LP"

Han scaling filter, specified as "hanSR.LP", where SR is the number of sum rules, and LP is the
number of linear-phase moments. wname can be "han2.3", "han3.3", "han4.5", or "han5.5". For
information on the filter properties, see “Han Real Orthogonal Scaling Filters” on page 1-590.

Output Arguments
scalf — Scaling filter
vector

Scaling filter corresponding to wname, returned as a vector. scalf should be used in conjunction with
orthfilt to obtain scaling and wavelet filters with the proper normalization.
Data Types: double
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More About
Han Real Orthogonal Scaling Filters

Han filters are characterized by their order of sum rules, linear-phase moments, and phase. This table
lists the filter specifications for the valid values of wname.

wname Order of Sum
Rules

Number of
Linear-Phase
Moments

Normalized
Variance of
Filter Impulse
Response

Frequency
Separation
Between
Scaling and
Wavelet Filter

Length

"han2.3" 2 3 0.465 0.8156 6
"han2.3" 2 3 0.426 0.8540 8
"han4.5" 4 5 0.488 0.8563 10
"han5.5" 5 5 0.530 0.8867 14

Frequency separation is a number between 0 and 1, where 0 indicates the filters are perfectly
matched and 1 indicates they are perfectly separated in frequency. As a point of reference, the Haar
("db1") wavelet filter has the smallest normalized variance of all wavelet filters with 0.25 and
poorest frequency separation with 0.666. An example of a scaling and wavelet filter pair with a
relatively large frequency separation is the Fejér-Korovkin ("fk22") 22-coefficient filter with a value
of 0.9522.

Version History
Introduced in R2022b

References
[1] Han, Bin. “Wavelet Filter Banks.” In Framelets and Wavelets: Algorithms, Analysis, and

Applications, 92–98. Applied and Numerical Harmonic Analysis. Cham, Switzerland:
Birkhäuser, 2017. https://doi.org/10.1007/978-3-319-68530-4_2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
symwavf | dbwavf | modwt | modwpt | wavedec | dwpt | orthfilt | isorthwfb
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head
Get top rows of labels table

Syntax
val = head(lss)

Description
val = head(lss) returns the top rows of the labels table of the labeled signal set lss.

Examples

Top Label Values

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the top rows of the labels table.

head(lss)

ans=2×3 table
                 WhaleType    MoanRegions    TrillRegions
                 _________    ___________    ____________

    Member{1}      blue       {3x2 table}    {1x3 table} 
    Member{2}      blue       {3x2 table}    {1x3 table} 

Input Arguments
lss — Labeled signal set
labeledSignalSet object

 head

1-591



Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
val — Top rows of labels
table

Top rows of labels, returned as a table.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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hht
Hilbert-Huang transform

Syntax
hs = hht(imf)
hs = hht(imf,fs)
[hs,f,t] = hht( ___ )
[hs,f,t,imfinsf,imfinse] = hht( ___ )
[ ___ ] = hht( ___ ,Name=Value)

hht( ___ )
hht( ___ ,freqlocation)

Description
hs = hht(imf) returns the Hilbert spectrum hs of the signal specified by intrinsic mode functions
imf. hs is useful for analyzing signals that comprise a mixture of signals whose spectral content
changes in time. Use hht to perform Hilbert spectral analysis on signals to identify localized features.

hs = hht(imf,fs) returns the Hilbert spectrum hs of a signal sampled at a rate fs.

[hs,f,t] = hht( ___ ) returns frequency vector f and time vector t in addition to hs. These
output arguments can be used with either of the previous input syntaxes.

[hs,f,t,imfinsf,imfinse] = hht( ___ ) also returns the instantaneous frequencies imfinsf
and the instantaneous energies imfinse of the intrinsic mode functions for signal diagnostics.

[ ___ ] = hht( ___ ,Name=Value) estimates Hilbert spectrum parameters with additional options
specified by one or more name-value arguments.

hht( ___ ) with no output arguments plots the Hilbert spectrum in the current figure window. You
can use this syntax with any of the input arguments in previous syntaxes.

hht( ___ ,freqlocation) plots the Hilbert spectrum with the optional freqlocation argument
to specify the location of the frequency axis. Frequency is represented on the y-axis by default.

Examples

Hilbert Spectrum of Quadratic Chirp

Generate a Gaussian-modulated quadratic chirp. Specify a sample rate of 2 kHz and a signal duration
of 2 seconds.

fs = 2000;
t = 0:1/fs:2-1/fs;
q = chirp(t-2,4,1/2,6,'quadratic',100,'convex').*exp(-4*(t-1).^2);
plot(t,q)
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Use emd to visualize the intrinsic mode functions (IMFs) and the residual.

emd(q)
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Compute the IMFs of the signal. Use the 'Display' name-value pair to output a table showing the
number of sifting iterations, the relative tolerance, and the sifting stop criterion for each IMF.

imf = emd(q,'Display',1);

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        2     |    0.0063952   |  SiftMaxRelativeTolerance
      2      |        2     |       0.1007   |  SiftMaxRelativeTolerance
      3      |        2     |      0.01189   |  SiftMaxRelativeTolerance
      4      |        2     |    0.0075124   |  SiftMaxRelativeTolerance
Decomposition stopped because the number of extrema in the residual signal is less than the 'MaxNumExtrema' value.

Use the computed IMFs to plot the Hilbert spectrum of the quadratic chirp. Restrict the frequency
range from 0 Hz to 20 Hz.

hht(imf,fs,'FrequencyLimits',[0 20])
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Perform Empirical Mode Decomposition and Visualize Hilbert Spectrum of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load("sinusoidalSignalExampleData.mat","X","fs")
t = (0:length(X)-1)/fs;

plot(t,X)
xlabel("Time (s)")
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The mixed signal contains sinusoidal waves with different amplitude and frequency values.

To create the Hilbert spectrum plot, you need the intrinsic mode functions (IMFs) of the signal.
Perform empirical mode decomposition to compute the IMFs and residuals of the signal. Since the
signal is not smooth, specify 'pchip' as the interpolation method.

[imf,residual,info] = emd(X,Interpolation="pchip");

The table generated in the command window indicates the number of sift iterations, the relative
tolerance, and the sift stop criterion for each generated IMF. This information is also contained in
info. You can hide the table by adding the 'Display',0 name value pair.

Create the Hilbert spectrum plot using the imf components obtained using empirical mode
decomposition.

hht(imf,fs)
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The frequency versus time plot is a sparse plot with a vertical color bar indicating the instantaneous
energy at each point in the IMF. The plot represents the instantaneous frequency spectrum of each
component decomposed from the original mixed signal. Three IMFs appear in the plot with a distinct
change in frequency at 1 second.

Hilbert Spectrum of Whale Song

Load a file that contains audio data from a Pacific blue whale, sampled at 4 kHz. The file is from the
library of animal vocalizations maintained by the Cornell University Bioacoustics Research Program.
The time scale in the data is compressed by a factor of 10 to raise the pitch and make the calls more
audible. Convert the signal to a MATLAB® timetable and plot it. Four features stand out from the
noise in the signal. The first is known as a trill, and the other three are known as moans.

[w,fs] = audioread('bluewhale.wav');
whale = timetable(w,'SampleRate',fs);
stackedplot(whale);
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Use emd to visualize the first three intrinsic mode functions (IMFs) and the residual.

emd(whale,'MaxNumIMF',3)
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Compute the first three IMFs of the signal. Use the 'Display' name-value pair to output a table
showing the number of sifting iterations, the relative tolerance, and the sifting stop criterion for each
IMF.

imf = emd(whale,'MaxNumIMF',3,'Display',1);

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        1     |      0.13523   |  SiftMaxRelativeTolerance
      2      |        2     |     0.030198   |  SiftMaxRelativeTolerance
      3      |        2     |      0.01908   |  SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

Use the computed IMFs to plot the Hilbert spectrum of the signal. Restrict the frequency range from
0 Hz to 1400 Hz.

hht(imf,'FrequencyLimits',[0 1400])
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Compute the Hilbert spectrum for the same range of frequencies. Visualize the Hilbert spectra of the
trill and moans as a mesh plot.

[hs,f,t] = hht(imf,'FrequencyLimits',[0 1400]);

mesh(seconds(t),f,hs,'EdgeColor','none','FaceColor','interp')
xlabel('Time (s)')
ylabel('Frequency (Hz)')
zlabel('Instantaneous Energy')
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Compute Hilbert Spectrum Parameters of Signal

Load and visualize a nonstationary continuous signal composed of sinusoidal waves with a distinct
change in frequency. The vibration of a jackhammer and the sound of fireworks are examples of
nonstationary continuous signals. The signal is sampled at a rate fs.

load("sinusoidalSignalExampleData.mat","X","fs")
t = (0:length(X)-1)/fs;

plot(t,X)
xlabel("Time (s)")
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The mixed signal contains sinusoidal waves with different amplitude and frequency values.

To compute the Hilbert spectrum parameters, you need the IMFs of the signal. Perform empirical
mode decomposition to compute the intrinsic mode functions and residuals of the signal. Since the
signal is not smooth, specify 'pchip' as the interpolation method.

[imf,residual,info] = emd(X,Interpolation="pchip");

The table generated in the command window indicates the number of sift iterations, the relative
tolerance, and the sift stop criterion for each generated IMF. This information is also contained in
info. You can hide the table by specifying 'Display' as 0.

Compute the Hilbert spectrum parameters: Hilbert spectrum hs, frequency vector f, time vector t,
instantaneous frequency imfinsf, and instantaneous energy imfinse.

[hs,f,t,imfinsf,imfinse] = hht(imf,fs);

Use the computed Hilbert spectrum parameters for time-frequency analysis and signal diagnostics.

VMD of Multicomponent Signal

Generate a multicomponent signal consisting of three sinusoids of frequencies 2 Hz, 10 Hz, and 30
Hz. The sinusoids are sampled at 1 kHz for 2 seconds. Embed the signal in white Gaussian noise of
variance 0.01².

 hht
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fs = 1e3;
t = 1:1/fs:2-1/fs;
x = cos(2*pi*2*t) + 2*cos(2*pi*10*t) + 4*cos(2*pi*30*t) + 0.01*randn(1,length(t));

Compute the IMFs of the noisy signal and visualize them in a 3-D plot.

imf = vmd(x);
[p,q] = ndgrid(t,1:size(imf,2));
plot3(p,q,imf)
grid on
xlabel('Time Values')
ylabel('Mode Number')
zlabel('Mode Amplitude')

Use the computed IMFs to plot the Hilbert spectrum of the multicomponent signal. Restrict the
frequency range to [0, 40] Hz.

hht(imf,fs,'FrequencyLimits',[0,40])
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Compute Hilbert Spectrum of Vibration Signal

Simulate a vibration signal from a damaged bearing. Compute the Hilbert spectrum of this signal and
look for defects.

A bearing with a pitch diameter of 12 cm has eight rolling elements. Each rolling element has a
diameter of 2 cm. The outer race remains stationary as the inner race is driven at 25 cycles per
second. An accelerometer samples the bearing vibrations at 10 kHz.

fs = 10000;
f0 = 25;
n = 8;
d = 0.02;
p = 0.12;
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The vibration signal from the healthy bearing includes several orders of the driving frequency.

t = 0:1/fs:10-1/fs;
yHealthy = [1 0.5 0.2 0.1 0.05]*sin(2*pi*f0*[1 2 3 4 5]'.*t)/5;

A resonance is excited in the bearing vibration halfway through the measurement process.

yHealthy = (1+1./(1+linspace(-10,10,length(yHealthy)).^4)).*yHealthy;

The resonance introduces a defect in the outer race of the bearing that results in progressive wear.
The defect causes a series of impacts that recur at the ball pass frequency outer race (BPFO) of the
bearing:

BPFO = 1
2nf0 1− d

pcosθ ,

where f0 is the driving rate, n is the number of rolling elements, d is the diameter of the rolling
elements, p is the pitch diameter of the bearing, and θ is the bearing contact angle. Assume a contact
angle of 15° and compute the BPFO.

ca = 15;
bpfo = n*f0/2*(1-d/p*cosd(ca));

Use the pulstran (Signal Processing Toolbox) function to model the impacts as a periodic train of 5-
millisecond sinusoids. Each 3 kHz sinusoid is windowed by a flat top window. Use a power law to
introduce progressive wear in the bearing vibration signal.

fImpact = 3000;
tImpact = 0:1/fs:5e-3-1/fs;
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wImpact = flattopwin(length(tImpact))'/10;
xImpact = sin(2*pi*fImpact*tImpact).*wImpact;

tx = 0:1/bpfo:t(end);
tx = [tx; 1.3.^tx-2];

nWear = 49000;
nSamples = 100000;
yImpact = pulstran(t,tx',xImpact,fs)/5;
yImpact = [zeros(1,nWear) yImpact(1,(nWear+1):nSamples)];

Generate the BPFO vibration signal by adding the impacts to the healthy bearing signal. Plot the
signal and select a 0.3-second interval starting at 5.0 seconds.

yBPFO = yImpact + yHealthy;

xLimLeft = 5.0;
xLimRight = 5.3;
yMin = -0.6;
yMax = 0.6;

plot(t,yBPFO)

hold on
[limLeft,limRight] = meshgrid([xLimLeft xLimRight],[yMin yMax]);
plot(limLeft,limRight,'--')
hold off
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Zoom in on the selected interval to visualize the effect of the impacts.

xlim([xLimLeft xLimRight])

Add white Gaussian noise to the signals. Specify a noise variance of 1/1502.

rn = 150;
yGood = yHealthy + randn(size(yHealthy))/rn;
yBad = yBPFO + randn(size(yHealthy))/rn;

plot(t,yGood,t,yBad)
xlim([xLimLeft xLimRight])
legend("Healthy","Damaged")
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Use emd (Signal Processing Toolbox) to perform an empirical mode decomposition of the healthy
bearing signal. Compute the first five intrinsic mode functions (IMFs). Use the 'Display' name-
value argument to output a table showing the number of sifting iterations, the relative tolerance, and
the sifting stop criterion for each IMF.

imfGood = emd(yGood,MaxNumIMF=5,Display=1);

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        3     |     0.017132   |  SiftMaxRelativeTolerance
      2      |        3     |      0.12694   |  SiftMaxRelativeTolerance
      3      |        6     |      0.14582   |  SiftMaxRelativeTolerance
      4      |        1     |     0.011082   |  SiftMaxRelativeTolerance
      5      |        2     |      0.03463   |  SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

Use emd without output arguments to visualize the first three IMFs and the residual.

emd(yGood,MaxNumIMF=5)
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Compute and visualize the IMFs of the defective bearing signal. The first empirical mode reveals the
high-frequency impacts. This high-frequency mode increases in energy as the wear progresses.

imfBad = emd(yBad,MaxNumIMF=5,Display=1);

Current IMF  |  #Sift Iter  |  Relative Tol  |  Stop Criterion Hit  
      1      |        2     |     0.041274   |  SiftMaxRelativeTolerance
      2      |        3     |      0.16695   |  SiftMaxRelativeTolerance
      3      |        3     |      0.18428   |  SiftMaxRelativeTolerance
      4      |        1     |     0.037177   |  SiftMaxRelativeTolerance
      5      |        2     |     0.095861   |  SiftMaxRelativeTolerance
Decomposition stopped because maximum number of intrinsic mode functions was extracted.

emd(yBad,MaxNumIMF=5)
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Plot the Hilbert spectrum of the first empirical mode of the defective bearing signal. The first mode
captures the effect of high-frequency impacts. The energy of the impacts increases as the bearing
wear progresses.

figure
hht(imfBad(:,1),fs)
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The Hilbert spectrum of the third mode shows the resonance in the vibration signal. Restrict the
frequency range from 0 Hz to 100 Hz.

hht(imfBad(:,3),fs,FrequencyLimits=[0 100])
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For comparison, plot the Hilbert spectra of the first and third modes of the healthy bearing signal.

subplot(2,1,1)
hht(imfGood(:,1),fs)
subplot(2,1,2)
hht(imfGood(:,3),fs,FrequencyLimits=[0 100])
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Input Arguments
imf — Intrinsic mode function
matrix | timetable

Intrinsic mode function, specified as a matrix or timetable. imf is any signal whose envelope is
symmetric with respect to zero and whose numbers of extrema and zero crossings differ by at most
one. emd is used to decompose and simplify complicated signals into a finite number of intrinsic mode
functions required to perform Hilbert spectral analysis.

hht treats each column in imf as an intrinsic mode function. For more information on computing
imf, see emd.

fs — Sample Rate
2π (default) | positive scalar

Sample rate, specified as a positive scalar. If fs is not supplied, a normalized frequency of 2π is used
to compute the Hilbert spectrum. If imf is specified as a timetable, the sample rate is inferred from
it.

freqlocation — Location of frequency axis on plot
"yaxis" (default) | "xaxis"

Location of frequency axis on the plot, specified as "yaxis" or "xaxis". To display frequency data
on the y-axis or x-axis of the plot, specify freqlocation as "yaxis" or "xaxis" respectively.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FrequencyResolution',1

FrequencyLimits — Frequency limits to compute Hilbert spectrum
[0,fs/2] (default) | 1-by-2 integer-valued vector

Frequency limits to compute Hilbert spectrum, specified as a 1-by-2 integer-valued vector.
FrequencyLimits is specified in Hz.

FrequencyResolution — Frequency resolution to discretize frequency range
(f_high-f_low)/100 (default) | positive scalar

Frequency resolution to discretize frequency limits, specified as a positive scalar.
FrequencyResolution is specified in Hz. If FrequencyResolution is not specified, a value of
(fhigh-flow)/100 is inferred from FrequencyLimits. Here, fhigh is the upper limit of FrequencyLimits
and flow is the lower limit.

MinThreshold — Minimum threshold value of Hilbert spectrum
-inf (default) | scalar

Minimum threshold value of Hilbert spectrum, specified as a scalar. MinThreshold sets elements of
hs to 0 when the corresponding elements of 10log10 hs  are less than MinThreshold.

Output Arguments
hs — Hilbert spectrum of signal
sparse matrix

Hilbert spectrum of the signal, returned as a sparse matrix. Use hs for time-frequency analysis and to
identify localized features in the signal.

f — Frequency values
vector

Frequency values of the signal, returned as a vector. hht uses the frequency vector f and the time
vector t to create the Hilbert spectrum plot.

Mathematically, f is denoted as: f = flow : fres : fhigh, where fres is the frequency resolution.

t — Time values
vector | duration array

Time values of the signal, returned as a vector or a duration array. hht uses the time vector t and
the frequency vector f to create the Hilbert spectrum plot.

t is returned as:

 hht
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• An array, if imf is specified as an array.
• A duration array, if imf is specified as a uniformly sampled timetable.

imfinsf — Instantaneous frequency of each IMF
vector | matrix | timetable

Instantaneous frequency of each IMF, returned as a vector, a matrix, or a timetable.

imfinsf has the same number of columns as imf and is returned as:

• A vector, if imf is specified as a vector.
• A matrix, if imf is specified as a matrix.
• A timetable, if imf is specified as a uniformly sampled timetable.

imfinse — Instantaneous energy of each IMF
vector | matrix | timetable

Instantaneous energy of each IMF, returned as a vector, a matrix, or a timetable.

imfinse has the same number of columns as imf and is returned as:

• A vector, if imf is specified as a vector.
• A matrix, if imf is specified as a matrix.
• A timetable, if imf is specified as a uniformly sampled timetable.

Algorithms
The Hilbert-Huang transform is useful for performing time-frequency analysis of nonstationary and
nonlinear data. The Hilbert-Huang procedure consists of the following steps:

1 emd or vmd decomposes the data set x into a finite number of intrinsic mode functions.
2 For each intrinsic mode function, xi, the function hht:

a Uses hilbert to compute the analytic signal, zi(t) = xi(t) + jH xi(t) , where H{xi} is the
Hilbert transform of xi.

b Expresses zi as zi(t) = ai(t) e jθi(t), where ai(t) is the instantaneous amplitude and θi(t) is the
instantaneous phase.

c Computes the instantaneous energy, ai(t) 2, and the instantaneous frequency,
ωi(t) ≡ dθi(t)/dt. If given a sample rate, hht converts ωi(t) to a frequency in Hz.

d Outputs the instantaneous energy in imfinse and the instantaneous frequency in imfinsf.
3 When called with no output arguments, hht plots the energy of the signal as a function of time

and frequency, with color proportional to amplitude.

Version History
Introduced in R2018a
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References
[1] Huang, Norden E, and Samuel S P Shen. Hilbert–Huang Transform and Its Applications. 2nd ed.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Name-value arguments must be compile-time constants.

See Also
emd | vmd

Topics
“Time-Frequency Gallery”
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horzcat
Horizontal concatenation of Laurent polynomials

Syntax
H = horzcat(P1,…,PN)

Description
H = horzcat(P1,…,PN) returns the horizontal concatenation of the Laurent polynomials P1,…,PN.

Examples

Laurent Polynomial Concatenation

Create two Laurent polynomials:

• a(z) = z − 1
• b(z) = − 2z3 + 6z2− 7z + 2

a = laurentPolynomial(Coefficients=[1 -1],MaxOrder=1);
b = laurentPolynomial(Coefficients=[-2 6 -7 2],MaxOrder=3);

Obtain the vertical and horizontal concatenations of a(z) and b(z).

v = vertcat(a,b)

v=2×1 cell array
    {1x1 laurentPolynomial}
    {1x1 laurentPolynomial}

h = horzcat(a,b)

h=1×2 cell array
    {1x1 laurentPolynomial}    {1x1 laurentPolynomial}

Input Arguments
P1,…,PN — Input polynomials
laurentPolynomial objects

Input polynomials, specified as laurentPolynomial objects.
Example: horzcat(P1,P2,P3) returns the horizontal concatenation of the three Laurent
polynomials P1, P2, and P3.
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Output Arguments
H — Horizontal cell array
cell array

Horizontal cell array of Laurent polynomials. H is a 1-by-N cell array, where N is the number of
Laurent polynomials.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
vertcat

Objects
laurentMatrix | laurentPolynomial
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horzcat
Horizontal concatenation of two sensing dictionaries

Syntax
Anew = horzcat(A,B)
Anew = [A,B]

Description
Anew = horzcat(A,B) creates a custom sensing dictionary by appending the columns in B after the
columns in A. The dictionaries A and B must have the same number of rows.

Anew = [A,B] is equivalent to Anew = horzcat(A,B).

Examples

Concatenate Two Sensing Dictionaries

Create two sensing dictionaries of size 100-by-100. Set the basis type of one dictionary to 'dct' and
to 'walsh' for the other dictionary.

A = sensingDictionary(Type={'dct'});
B = sensingDictionary(Type={'walsh'});

Concatenate the two sensing dictionaries.

C = [A B]

C = 
  sensingDictionary with properties:

                Type: {'dct'  'walsh'}
                Name: {''  ''}
               Level: [0 0]
    CustomDictionary: []
                Size: [100 200]

Extract the entire matrix from sensing dictionary C. Visualize the matrix.

Cmat = subdict(C,1:C.Size(1),1:C.Size(2));
imagesc(Cmat)
axis equal
axis tight
colorbar
colormap gray
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Input Arguments
A — Sensing dictionary
sensingDictionary object

Sensing dictionary, specified as a sensingDictionary object.

B — Sensing dictionary
sensingDictionary object | matrix

Sensing dictionary, specified as a sensingDictionary object.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
Anew — Sensing dictionary
sensingDictionary object

Sensing dictionary, returned as a sensingDictionary object. Depending on A and B, Anew has the
following properties:

• sensingDictionary A, matrix B:
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• Anew.Type = {A.type,'custom'}
• Anew.CustomDictionary = [A.CustomDictionary B]

• sensingDictionary A, sensingDictionary B:

• Anew.Type = {A.Type,B.Type}
• Anew.CustomDictionary = [A.CustomDictionary B.CustomDictionary]

Version History
Introduced in R2022a

See Also
sensingDictionary
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icqt
Inverse constant-Q transform using nonstationary Gabor frames

Syntax
xrec = icqt(cfs,g,fshifts)
xrec = icqt( ___ ,'SignalType',sigtype)
[xrec,gdual] = icqt( ___ )

Description
xrec = icqt(cfs,g,fshifts) returns the inverse constant-Q transform, xrec, of the coefficients
cfs. cfs is a matrix, cell array, or structure array. g is the cell array of nonstationary Gabor constant-
Q analysis filters used to obtain the coefficients cfs. fshifts is a vector of frequency bin shifts for
the constant-Q bandpass filters in g. icqt assumes by default that the original signal was real-valued.
To indicate the original input signal was complex-valued, use the 'SignalType' name-value pair. If
the input to cqt was a single signal, then xrec is a vector. If the input to cqt was a multichannel
signal, then xrec is a matrix. cfs, g, and fshifts must be outputs of cqt.

xrec = icqt( ___ ,'SignalType',sigtype) designates whether the signal was real-valued or
complex-valued. Valid options for sigtype are 'real' or 'complex'. If unspecified, sigtype
defaults to 'real'.

[xrec,gdual] = icqt( ___ ) returns the dual frames of xrec as a cell array the same size as g.
The dual frames are the canonical dual frames derived from the analysis filters.

Examples

Perfect Reconstruction of Constant-Q Transform

Load and plot the Handel signal.

load handel
t = (0:length(y)-1)/Fs;
plot(t,y)
title('Handel')
xlabel('Time (s)')
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Obtain the constant-Q transform of the signal using the sparse transform option. Because the
transform will be inverted, you must also return the Gabor frames and frequency shifts used in the
analysis.

[cfs,~,g,fshifts] = cqt(y,'SamplingFrequency',Fs,'TransformType','sparse');

Invert the constant-Q transform and demonstrate perfect reconstruction by showing the maximum
absolute reconstruction error and the relative energy error in dB.

xrec = icqt(cfs,g,fshifts);
maxAbsError = max(abs(xrec-y))

maxAbsError = 7.6328e-16

relEnergyError = 20*log10(norm(xrec-y)/norm(y))

relEnergyError = -301.4461

Input Arguments
cfs — Constant-Q coefficients
matrix | cell array | structure array

Constant-Q coefficients of a signal or multichannel signal, specified as a matrix, cell array, or
structure array. cfs must be the output of cqt.

1 Functions

1-624



g — Nonstationary Gabor constant-Q analysis filters
cell array

Nonstationary Gabor constant-Q analysis filters used to obtain the coefficients cfs, specified as a cell
array. cfs must be the output of cqt.

fshifts — Frequency bin shifts
real-valued vector

Frequency bin shifts for the constant-Q bandpass filters in g, specified as a real-valued vector.
fshifts must be the output of cqt.

sigtype — Signal type
'real' (default) | 'complex'

Signal type of the original signal, specified as 'real' or 'complex'. Use sigtype to designate
whether the original signal was real-valued or complex-valued. If unspecified, sigtype defaults to
'real'.

Output Arguments
xrec — Inverse constant-Q transform
vector | matrix

Inverse constant-Q transform, returned as a vector or matrix. If the input to cqt was a single signal,
then xrec is a vector. If the input to cqt was a multichannel signal, then xrec is a matrix.

gdual — Dual frames
cell array

Dual frames used in the synthesis of xrec, returned as a cell array the same size as g. The dual
frames are the canonical dual frames derived from the analysis filters.

Algorithms
The theory of nonstationary Gabor (NSG) frames for frequency-adaptive analysis and efficient
algorithms for analysis and synthesis using NSG frames are due to Dörfler, Holighaus, Grill, and
Velasco [1],[2]. The algorithms used in cqt and icqt were developed by Dörfler, Holighaus, Grill, and
Velasco and are described in [1],[2]. In [3], Schörkhuber, Klapuri, Holighaus, and Dörfler develop and
provide algorithms for a phase-corrected CQT transform which matches the CQT coefficients that
would be obtained by naïve convolution. The Large Time-Frequency Analysis Toolbox (https://
github.com/ltfat) provides an extensive suite of algorithms for nonstationary Gabor frames [4].

Version History
Introduced in R2018a

References
[1] Holighaus, Nicki, M. Dörfler, G. A. Velasco, and T. Grill. “A Framework for Invertible, Real-Time

Constant-Q Transforms.” IEEE Transactions on Audio, Speech, and Language Processing 21,
no. 4 (April 2013): 775–85. https://doi.org/10.1109/TASL.2012.2234114.
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[2] Velasco, G. A., N. Holighaus, M. Dörfler, and T. Grill. "Constructing an invertible constant-Q
transform with nonstationary Gabor frames." In Proceedings of the 14th International
Conference on Digital Audio Effects (DAFx-11). Paris, France: 2011.

[3] Schörkhuber, C., A. Klapuri, N. Holighaus, and M. Dörfler. "A MATLAB Toolbox for Efficient Perfect
Reconstruction Time-Frequency Transforms with Log-Frequency Resolution." Submitted to
the AES 53rd International Conference on Semantic Audio. London, UK: 2014.

[4] Průša, Z., P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs. The Large Time-Frequency
Analysis Toolbox 2.0. Sound, Music, and Motion, Lecture Notes in Computer Science 2014, pp
419-442.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• To minimize compilation time, define the nonstationary Gabor constant-Q analysis filters g as
variable size using coder.typeof. If you define the filters g as fixed size, compilation time is
significant with minimal gain in execution efficiency.

See Also
cqt

Topics
“Nonstationary Gabor Frames and the Constant-Q Transform”
“Time-Frequency Gallery”
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icwt
Inverse continuous 1-D wavelet transform

Syntax
xrec = icwt(cfs)
xrec = icwt(cfs,wname)
xrec = icwt( ___ ,f,freqrange)
xrec = icwt( ___ ,period,periodrange)
xrec = icwt( ___ ,Name=Value)

Description
xrec = icwt(cfs) inverts the continuous wavelet transform (CWT) coefficient matrix cfs using
Morlet's single integral formula. icwt assumes that you obtained the CWT using cwt with the default
analytic Morse (3,60) wavelet. This wavelet has a symmetry of 3 and a time bandwidth of 60. icwt
also assumes that the CWT uses default scales.

xrec = icwt(cfs,wname) uses the analytic wavelet wname to invert the CWT. The specified
wavelet must be the same wavelet used in cwt.

xrec = icwt( ___ ,f,freqrange) inverts the CWT over the frequency range specified in
freqrange. f is the scale-to-frequency conversion obtained from cwt.

xrec = icwt( ___ ,period,periodrange) inverts the CWT over the range of periods specified in
periodrange. p is an array of durations obtained from cwt with a duration input. The period is the
cwt output obtained using a duration input. The period range must be increasing and contained in
period.

xrec = icwt( ___ ,Name=Value) specifies one or more additional name-value arguments. For
example, xrec = icwt(cfs,TimeBandwidth=40,VoicesPerOctave=20) specifies a time-
bandwidth product of 40 and 20 voices per octave.

Examples

Inverse Continuous Wavelet Transform of Speech Signal

Obtain the CWT of a speech sample and invert the CWT using the default analytic Morse wavelet.

load mtlb
cfs = cwt(mtlb);
xrec = icwt(cfs);

Inverse Continuous Wavelet Transform Using Specified Wavelet

Obtain the continuous wavelet transform of a speech sample and reconstruct the sample using the
bump wavelet instead of the default Morse wavelet.
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load mtlb
dt = 1/Fs;
t = 0:dt:numel(mtlb)*dt-dt;

Obtain the CWT.

bumpmtlb = cwt(mtlb,Fs,"bump");

Obtain the inverse CWT. Add the signal mean to the output.

xrec = icwt(bumpmtlb,"bump",SignalMean=mean(mtlb));

Plot the original and reconstructed signals.

plot(t,mtlb)
xlabel("Seconds")
ylabel("Amplitude")
hold on
plot(t,xrec,"r")
hold off
axis tight
legend("Original","Reconstruction")

If your computer has a sound card, you can listen to the original and reconstructed signals.

% To play the original signal, uncomment the next two lines
% p = audioplayer(mtlb,Fs);
% play(p)
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% To play the reconstructed signal, uncomment the next two lines
% px = audioplayer(xrec,Fs);
% play(px)

Reconstruct Frequency-Localized Data

Reconstruct a frequency-localized approximation to the Kobe earthquake data by extracting
information from the CWT. The sampling frequency is 1 Hz. The extracted information corresponds to
frequencies in the range [0.030 0.070] Hz.

load kobe

Obtain the CWT. Then, obtain the inverse CWT and add the signal mean back into the reconstructed
data. The CWT does not preserve the signal mean.

[cfs,f] = cwt(kobe,1);
xrec = icwt(cfs,[],f,[0.030 0.070],SignalMean=mean(kobe));

Plot the original and reconstructed data.

subplot(2,1,1)
plot(kobe)
grid on
title("Original Data")
ylabel("Amplitude")
axis tight

subplot(2,1,2)
plot(xrec)
grid on
title("Bandpass Filtered Reconstruction [0.030 0.070] Hz");
xlabel("Time (s)")
ylabel("Amplitude")
axis tight
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Reconstruct Data from Specific Time Period

Use the inverse continuous wavelet transform to reconstruct an approximation to El Nino data based
on 2 to 8 year periods.

Load the El Nino data and obtain its CWT. The data is sampled monthly. To obtain the periods in
years, specify the sampling interval as 1/12 of a year.

load ninoairdata
[cfs,period] = cwt(nino,years(1/12));

Obtain the inverse CWT for periods of 2 to 8 years.

xrec = icwt(cfs,[],period,[years(2) years(8)]);

Plot the CWT of the reconstructed data and compare it to the CWT of the original data.

cwt(nino,years(1/12))
title("Original Data")
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figure
cwt(xrec,years(1/12))
title("Approximation Based on 2-8 Year Periods")
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Compare the original data with the reconstructed data in time.

figure
subplot(2,1,1)
plot(datayear,nino) 
grid on
ax = gca;
ax.XTickLabel = '';
axis tight
title("Original Data")

subplot(2,1,2)
plot(datayear,xrec) 
grid on
axis tight
xlabel("Year")
title("El Nino Data - 2-8 Year Periods")
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Reconstruct Complex Data with Time-varying Trend

Add a trend to the continuous wavelet transform of a complex-valued dataset and reconstruct.

Obtain the CWT of the NPG2006 dataset.

load npg2006.mat
cfs = cwt(npg2006.cx);

Create a time-varying trend derived from the data.

trend = smoothdata(npg2006.cx,"movmean",100);

Obtain the inverse CWT and add the trend. Plot the original data and the reconstructed data.

xrec = icwt(cfs,SignalMean=trend);
plot([real(xrec)' real(npg2006.cx)])
grid on
title("Real Values")
legend("Trend","Original")
axis tight

 icwt

1-633



figure
plot([imag(xrec)' imag(npg2006.cx)])
grid on
title("Imaginary Values")
legend("Trend","Original")
axis tight
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Reconstruct Signal Using Analysis Filter Bank

Load an ECG waveform. Create a CWT filter bank with periodic boundary handling that you can apply
to the waveform.

load wecg
fb = cwtfilterbank(SignalLength=length(wecg),Boundary="periodic");

Obtain the two-sided frequency responses for the wavelet and scaling filters in the filter bank.

psif = freqz(fb,FrequencyRange="twosided",IncludeLowpass=true);

Use the filter bank to obtain the CWT of the waveform. Also obtain the scaling coefficients for the
transform.

[cfs,~,~,scalcfs] = wt(fb,wecg);

Use the analysis filter bank to reconstruct the input. The approximate synthesis filters, or dual frame,
are used to invert the transform.

xrecAN = icwt(cfs,[],ScalingCoefficients=scalcfs,...
    AnalysisFilterBank=psif);

Reconstruct the input using the default Morlet single integral formula.
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xrecSI = icwt(cfs,[],ScalingCoefficients=scalcfs);

Compare the maximum reconstruction errors.

errAN = norm(xrecAN'-wecg,Inf)

errAN = 6.6613e-16

errSI = norm(xrecSI'-wecg,Inf)

errSI = 0.4037

Plot both reconstructions.

subplot(2,1,1)
plot([xrecAN' wecg])
axis tight
    legend("Synthesis Filters","Original",Location="eastoutside")
subplot(2,1,2)
plot([xrecSI' wecg])
axis tight
legend("Single Integral","Original",Location="eastoutside")

Input Arguments
cfs — Continuous wavelet transform coefficients
matrix
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Continuous wavelet transform coefficients, specified as a matrix of complex values. cfs is the output
from the cwt function.

If cfs is a 2-D matrix, icwt assumes that the CWT was obtained from a real-valued signal. If cfs is a
3-D matrix, icwt assumes that the CWT was obtained from a complex-valued signal. For a 3-D matrix,
the first page of the cfs is the CWT of the positive (counterclockwise) component and the second
page of cfs is the negative (clockwise) component. The pages represent the analytic and anti-analytic
parts of the CWT, respectively.
Data Types: single | double
Complex Number Support: Yes

wname — Analytic wavelet
'morse" (default) | "amor" | "bump"

Analytic wavelet used to invert the CWT, specified as one of these:

• "morse" — Morse wavelet
• "amor" — Morlet wavelet
• "bump" — bump wavelet

The specified wavelet must be the same wavelet used to obtain the CWT. The default Morse wavelet
uses a symmetry parameter, γ, that is 3 and a time bandwidth of 60.

f — CWT frequencies
vector

CWT frequencies, specified as a vector. The number of elements in the frequency vector must equal
to the number of rows in the input CWT coefficient matrix, cfs. If you specify f, you must also
specify freqrange.
Data Types: single | double

freqrange — Frequency range
two-element vector | 2-by-2 matrix

Frequency range for which to return inverse continuous wavelet transform values, specified as a two-
element vector or 2-by-2 matrix.

• If cfs is a 2-D matrix, freqrange must be a two-element vector.
• If cfs is a 3-D matrix, freqrange can be a two-element vector or a 2-by-2 matrix.

• If freqrange is a vector, icwt inverts the CWT over the same frequency range in both the
positive (analytic) and negative (anti-analytic) components of cfs.

• If freqrange is a 2-by-2 matrix, the first row contains the frequency range for the positive
part of cfs (first page) and the second row contains the frequency range for the negative part
of cfs (second page).

For a vector, the elements of freqrange must be strictly increasing and contained in the range of the
frequency vector f. For a matrix, each row of freqrange must be strictly increasing and contained
in the range of f. f is the scale-to-frequency conversion obtained in CWT. For the inversion of a
complex-valued signal, you can specify one row of freqrange as a vector of zeros. If the first row of
freqrange is a vector of zeros, only the negative (anti-analytic part) is used in the inversion.

If you specify freqrange, you must also specify f.
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For example [0 0; 1/10 1/4] inverts the negative (clockwise) component over the frequency
range [1/10 1/4]. The positive (counterclockwise) component is first set to all zeros before
performing the inversion. Similarly, [1/10 1/4; 0 0] inverts the CWT by selecting the frequency
range [1/10 1/4] from the positive (counterclockwise) component and setting the negative
component to all zeros.
Data Types: single | double

period — Time periods
vector

Time periods corresponding to the rows of CWT coefficient matrix cfs, specified as a vector. period
is the output of cwt, when the CWT is obtained using a duration input.
Data Types: duration

periodrange — Period range
two-element vector | 2-by-2 matrix

Period range for which to return inverse continuous wavelet transform values, specified as a two-
element vector or 2-by-2 matrix.

• If cfs is a 2-D matrix, periodrange must be a two-element vector of durations.
• If cfs is a 3-D matrix, periodrange can be a two-element vector of durations or 2-by-2 matrix of

durations.

• If periodrange is a vector of durations, icwt inverts the CWT over the same frequency range
in both the positive (analytic) and negative (anti-analytic) components of cfs.

• If periodrange is a 2-by-2 matrix of durations, the first row contains the period range for the
positive part of cfs (first page) and the second row contains the period range for the negative
part of cfs (second page).

For a vector, the elements of periodrange must be strictly increasing and contained in the range of
the period vector period. The elements of periodrange and period must have the same units. For
a matrix, each row of periodrange must be strictly increasing and contained in the range of the
period vector P. For the inversion of a complex-valued signal, you can specify one row of
periodrange as a vector of zero durations. If the first row of periodrange is a vector of zero
durations, only the negative (anti-analytic part) is used in the inversion.

If you specify periodrange, you must also specify period.

For example [seconds(0) seconds(0); seconds(1/10) seconds(1/4)] inverts the
negative(clockwise) component over the period range [seconds(1/10) seconds(1/4)]. The
positive (counterclockwise) component is first set to all zeros before performing the inversion.
Similarly, [seconds(1/10) seconds(1/4); seconds(0) seconds(0)] inverts the CWT by
selecting the period range [1/10 1/4] from the positive (counterclockwise) component and setting
the negative component to all zeros.
Data Types: duration

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Example: xrec = icwt(cfs,"bump",VoicesPerOctave=10) returns the inverse CWT of cfs
using the bump wavelet and 10 voices per octave.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: xrec = icwt(cfs,"WaveletParameters",[3 40],"SignalMean",sigmean) inverts
the CWT using the Morse (3,40) wavelet and signal mean sigmean.

TimeBandwidth — Time-bandwidth of Morse wavelet
60 (default) | scalar greater than 3 and less than or equal to 120

Time bandwidth of the Morse wavelet, specified as a scalar greater than 3 and less than or equal to
120. The specified time bandwidth must be the same time-bandwidth value used in the cwt. The
symmetry of the Morse wavelet is assumed to be 3.

If you specify TimeBandwidth, you cannot specify WaveletParameters.

This syntax is not valid if you specify the AnalysisFilterBank name-value argument.
Data Types: single | double

WaveletParameters — Symmetry and time bandwidth of Morse wavelet
[3,60] (default) | two-element vector of scalars

Symmetry and time bandwidth of Morse wavelet, specified as a two-element vector of scalars. The
first element of the vector is the symmetry, γ, and the second element is the time-bandwidth. The
specified wavelet parameters must be the same values used in the CWT.

If you specify WaveletParameters, you cannot specify TimeBandwidth.

This syntax is not valid if you specify the AnalysisFilterBank name-value argument.
Data Types: single | double

SignalMean — Signal mean
scalar | vector

Signal mean to add to the icwt output, specified as a scalar or vector. If the signal mean is a vector,
it must be the same length as the column size of the wavelet coefficient matrix cfs.

• If cfs is a 2-D matrix, the signal mean must be a real-valued scalar or vector.
• If cfs is a 3-D matrix, the signal mean must be a complex-valued scalar or vector.

Because cwt does not preserve the signal mean, the inverse CWT is a zero-mean signal by default.
Adding a non-zero signal mean to a frequency- or period-limited reconstruction adds a zero-frequency
component to the reconstruction.

This syntax is not valid if you specify the AnalysisFilterBank name-value argument.
Data Types: single | double

ScalingCoefficients — Scaling coefficients
real- or complex-valued vector

Scaling coefficients to use in the inverse CWT, specified as a real- or complex-valued vector, obtained
as an optional output of cwt. The length of ScalingCoefficients is equal to the column size of
cfs.
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• If you only specify ScalingCoefficients without the AnalysisFilterBank name-value
argument, the single-integral approximation is used to obtain the inverse CWT.

• If you specify ScalingCoefficients with the AnalysisFilterBank name-value argument, the
synthesis filters are used to obtain the inverse CWT.

You cannot specify both SignalMean and ScalingCoefficients name-value arguments.
Data Types: single | double

AnalysisFilterBank — Analysis filters
real-valued matrix

Bank of analysis filters used in inverting the CWT, specified as a matrix. The approximate synthesis
filters, or dual frame, are used in the inversion. In most cases, use of the approximate synthesis filters
results in a more accurate signal reconstruction. The wavelet name input is ignored if you specify the
analysis filters.

To use the analysis filters, you must obtain the CWT with ExtendSignal set to false in cwt, or
equivalently, Boundary set to "periodic" in cwtfilterbank. Obtain the analysis filters from the
freqz object function of the filter bank with FrequencyRange="twosided" and
IncludeLowpass=true.
Data Types: single | double

VoicesPerOctave — Number of voices per octave
10 (default) | integer from 1 to 48

Number of voices per octave used in inverting the CWT, specified as an integer from 1 to 48. The
CWT scales are discretized using the specified number of voices per octave. The number of voices per
octave must be the same value used to obtain the CWT.

You cannot specify the number of voices per octave if you specify either the frequency, f, or duration,
period. This syntax is not valid if you specify the AnalysisFilterBank name-value argument.
Data Types: single | double

Output Arguments
xrec — Inverse 1-D continuous wavelet transform
real- or complex-valued row vector

Inverse 1-D continuous wavelet transform, returned as a real- or complex-valued row vector.
Data Types: single | double

More About
Inverse Continuous Wavelet Transform — Single Integral Formula

By default, icwt computes the inverse CWT based on a discretized version of the single integral
formula due to Morlet [5]. For a brief description of the theoretical foundation for the single integral
formula, see “Inverse Continuous Wavelet Transform”. For additional theoretical information, see
section 2.4 of [6]. The discretized version of this integral is presented in [7].
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Version History
Introduced in R2016b

R2022a: icwt behavior change
Behavior changed in R2022a

If you invert the CWT over a specified frequency range or range of periods, you must precede those
inputs either by a wavelet name or an empty input for the default Morse wavelet.

Functionality Result Use Instead Compatibility
Considerations

xrec =
icwt(cfs,f,freqran
ge)

Errors xrec = icwt(cfs,
[],f,freqrange) or
xrec =
icwt(cfs,"morse",f
,freqrange)

You do not have to
specify the default
Morse wavelet if you
are only setting
Name=Value
arguments. For
example, xrec =
icwt(cfs,TimeBandw
idth=40).

xrec =
icwt(cfs,f,freqran
ge,Name=Value)

Errors xrec = icwt(cfs,
[],f,freqrange,Nam
e=Value) or xrec =
icwt(cfs,"morse",f
,freqrange,Name=Va
lue)

 

xrec =
icwt(cfs,period,pe
riodrange)

Errors xrec = icwt(cfs,
[],period,periodra
nge) or xrec =
icwt(cfs,"morse",p
eriod,periodrange)

 

xrec =
icwt(cfs,period,pe
riodrange,Name=Val
ue)

Errors xrec = icwt(cfs,
[],period,periodra
nge,Name=Value) or
xrec =
icwt(cfs,"morse",p
eriod,periodrange,
Name=Value)

 

R2022a: Data type of wavelet and scaling coefficients must match for icwt
Behavior changed in R2022a

If you specify ScalingCoefficients, the scaling coefficients must have the same data type as the
wavelet coefficients cfs. Both sets of coefficients must be either single or double precision.

Note that the wavelet and scaling coefficient outputs of cwt and the wt method of cwtfilterbank
always have the same data type.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cwt | cwtfilterbank | cwtfreqbounds | wcoherence | wsst

Topics
“Continuous and Discrete Wavelet Transforms”
“CWT-Based Time-Frequency Analysis”
“Morse Wavelets”
“Time-Frequency Gallery”
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idddtree
Inverse dual-tree and double-density 1-D wavelet transform

Syntax
xrec = idddtree(wt)

Description
xrec = idddtree(wt) returns the inverse wavelet transform of the wavelet decomposition
(analysis filter bank), wt. wt is the output of dddtree.

Examples

Perfect Reconstruction Using Dual-Tree Double-Density Wavelet Filter Bank

Demonstrate perfect reconstruction of a signal using a dual-tree double-density wavelet transform.

Load the noisy Doppler signal. Obtain the dual-tree double-density wavelet transform down to level 5.
Invert the transform and demonstrate perfect reconstruction.

load noisdopp;
wt = dddtree('cplxdddt',noisdopp,5,'FSdoubledualfilt',...
     'doubledualfilt');
xrec = idddtree(wt);
max(abs(noisdopp-xrec))

ans = 1.9291e-12

Input Arguments
wt — Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree with these fields:

type — Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'cplxdt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'cplxdt', or
'cplxdddt'. The type,'dwt', gives a critically sampled discrete wavelet transform. The other types
are oversampled wavelet transforms. 'ddt' is a double-density wavelet transform, 'cplxdt' is a
dual-tree complex wavelet transform, and 'cplxdddt' is a double-density dual-tree complex wavelet
transform.

level — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer.
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filters — Decomposition (analysis) and reconstruction (synthesis) filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these
fields:

Fdf — First-stage analysis filters
matrix | cell array

First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms,
or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-
by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is
the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3
matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns
are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array
contains the first-stage analysis filters for the corresponding tree.

Df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column
of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For
an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the analysis filters for the corresponding tree.

Frf — First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column
of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For
an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the first-stage synthesis filters for the corresponding tree.

Rf — Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The
matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column
of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For
an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and
third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the synthesis filters for the corresponding tree.

cfs — Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and
structure of the matrix elements of the cell array depend on the type of wavelet transform as follows:
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• 'dwt' — cfs{j}

• j = 1,2,... level is the level.
• cfs{level+1} are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,k)

• j = 1,2,... level is the level.
• k = 1,2 is the wavelet filter.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,m)

• j = 1,2,... level is the level.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,k,m)

• j = 1,2 level is the level.
• k = 1,2 is the wavelet filter.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Output Arguments
xrec — Synthesized 1-D signal
vector

Synthesized 1-D signal, returned as a vector. The row or column orientation of xrec depends on the
row or column orientation of the 1-D signal input to dddtree.
Data Types: double

Version History
Introduced in R2013b

See Also
dddtree | dddtreecfs | plotdt

Topics
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
“Critically Sampled and Oversampled Wavelet Filter Banks”

 idddtree

1-645



idddtree2
Inverse dual-tree and double-density 2-D wavelet transform

Syntax
xrec = idddtree2(wt)

Description
xrec = idddtree2(wt) returns the inverse wavelet transform of the 2-D decomposition (analysis
filter bank), wt. wt is the output of dddtree2.

Examples

Perfect Reconstruction Using Complex Oriented Dual-Tree Wavelet Filter Bank

Demonstrate perfect reconstruction of an image using a complex oriented dual-tree wavelet
transform.

Load the image and obtain the complex oriented dual-tree wavelet transform down to level 5 using
dddtree2. Reconstruct the image using idddtree2 and demonstrate perfect reconstruction.

load woman;
wt = dddtree2('cplxdt',X,5,'dtf2');
xrec = idddtree2(wt);
max(max(abs(X-xrec)))

ans = 7.3328e-12

Input Arguments
wt — Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree2 with these fields:

type — Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'realdt',
'cplxdt', 'realdddt', or 'cplxdddt'. 'dwt' is the critically sampled DWT. 'ddt' produces a
double-density wavelet transform with one scaling and two wavelet filters for both row and column
filtering. 'realdt' and 'cplxdt' produce oriented dual-tree wavelet transforms consisting of two
and four separable wavelet transforms. 'realdddt' and 'cplxdddt' produce double-density dual-
tree wavelet transforms consisting of two and four separable wavelet transforms.

level — Level of the wavelet decomposition
positive integer
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Level of the wavelet decomposition, specified as a positive integer.

filters — Decomposition (analysis) and reconstruction (synthesis) filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these
fields:

Fdf — First-stage analysis filters
matrix | cell array

First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms,
or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices
are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the
matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-
by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third
columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell
array contains the first-stage analysis filters for the corresponding tree.

Df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the analysis filters for the corresponding tree.

Frf — First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf — Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage analysis filters for the corresponding tree.

cfs — Wavelet transform coefficients
cell array of matrices
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Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and
structure of the matrix elements of the cell array depend on the type of wavelet transform as follows:

• 'dwt' — cfs{j}(:,:,d)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,d)

• j = 1,2,... level is the level.
• d = 1,2,3,4,5,6,7,8 is the orientation.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realddt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients..

• 'realdddt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Output Arguments
xrec — Synthesized 2-D image
matrix

Synthesized image, returned as a matrix.

1 Functions

1-648



Data Types: double

Version History
Introduced in R2013b

See Also
dddtree2 | dddtreecfs

Topics
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
“Critically Sampled and Oversampled Wavelet Filter Banks”
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idualtree
Kingsbury Q-shift 1-D inverse dual-tree complex wavelet transform

Syntax
xrec = idualtree(A,D)
xrec = idualtree( ___ ,Name,Value)

Description
xrec = idualtree(A,D) returns the inverse 1-D complex dual-tree transform of the final-level
approximation coefficients, A, and cell array of wavelet coefficients, D. A and D are outputs of
dualtree. For the reconstruction, idualtree uses two sets of filters:

• Orthogonal Q-shift filter of length 10
• Near-symmetric biorthogonal filter pair with lengths 7 (scaling synthesis filter) and 5 (wavelet

synthesis filter)

xrec = idualtree( ___ ,Name,Value) specifies additional options using name-value pair
arguments. For example, 'LowpassGain',0.1 applies a gain of 0.1 to the final-level approximation
coefficients.

Examples

Inverse 1-D Dual-Tree Complex Wavelet Transform

Load a signal, and obtain its dual-tree transform.

load noisdopp
[a,d] = dualtree(noisdopp);

Reconstruct an approximation using all but the two finest-detail wavelet subbands.

dgain = ones(numel(d),1);
dgain(1:2) = 0;
xrec = idualtree(a,d,'DetailGain',dgain);
plot(noisdopp)
hold on
plot(xrec,'LineWidth',2);
legend('Original','Reconstruction')
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Input Arguments
A — Final-level approximation coefficients
real-valued vector | real-valued matrix

Final-level approximation coefficients, specified as a real-valued vector or real-valued matrix. The
approximation coefficients are the output of dualtree.
Data Types: double | single

D — Wavelet coefficients
cell array

Approximation coefficients, specified as a cell array. The wavelet coefficients are the output of
dualtree.
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: 'LevelOneFilter','antonini','LowpassGain',0.5

LevelOneFilter — Biorthogonal filter
'nearsym5_7' (default) | 'nearsym13_19' | 'antonini' | 'legall'

Biorthogonal filter to use in the first-level synthesis, specified by one of the values listed here. For
perfect reconstruction, the first-level synthesis filters must match the first-level analysis filters used
in dualtree.

• 'legall' — LeGall 5/3 filter
• 'nearsym13_19' — (13,19)-tap near-orthogonal filter
• 'nearsym5_7' — (5,7)-tap near-orthogonal filter
• 'antonini' — (9,7)-tap Antonini filter

FilterLength — Orthogonal Hilbert Q-shift synthesis filter pair length
10 (default) | 6 | 14 | 16 | 18

Orthogonal Hilbert Q-shift synthesis filter pair length to use for levels 2 and higher, specified as one
of the listed values. For perfect reconstruction, the filter length must match the filter length used in
dualtree.

DetailGain — Wavelet coefficients subband gains
real-valued vector

Wavelet coefficients subband gains, specified as a real-valued vector of length L, where L is the
number of elements in D. The elements of DetailGain are real numbers in the interval [0, 1]. The kth

element of DetailGain is the gain (weighting) applied to the kth wavelet subband. By default,
DetailGain is a vector of L ones.

LowpassGain — Gain
1 (default) | real number

Gain to apply to final-level approximation (lowpass, scaling) coefficients, specified as a real number in
the interval [0, 1].

Version History
Introduced in R2020a

References
[1] Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies. “Image Coding Using Wavelet

Transform.” IEEE Transactions on Image Processing 1, no. 2 (April 1992): 205–20. https://
doi.org/10.1109/83.136597.

[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Le Gall, D., and A. Tabatabai. “Sub-Band Coding of Digital Images Using Symmetric Short Kernel
Filters and Arithmetic Coding Techniques.” In ICASSP-88., International Conference on
Acoustics, Speech, and Signal Processing, 761–64. New York, NY, USA: IEEE, 1988. https://
doi.org/10.1109/ICASSP.1988.196696.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dualtree | qbiorthfilt | qorthwavf | dualtree3 | dualtree2

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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idualtree2
Kingsbury Q-shift 2-D inverse dual-tree complex wavelet transform

Syntax
imrec = idualtree2(A,D)
imrec = idualtree2( ___ ,Name,Value)

Description
imrec = idualtree2(A,D) returns the inverse 2-D complex dual-tree transform of the final-level
approximation coefficients, A, and cell array of wavelet coefficients, D. A and D are outputs of
dualtree2. For the reconstruction, idualtree2 uses two sets of filters:

• Orthogonal Q-shift filter of length 10
• Near-symmetric biorthogonal filter pair with lengths 7 (scaling synthesis filter) and 5 (wavelet

synthesis filter)

imrec = idualtree2( ___ ,Name,Value) specifies additional options using name-value pair
arguments. For example, 'LowpassGain',0.1 applies a gain of 0.1 to the final-level approximation
coefficients.

Examples

Inverse 2-D Dual-Tree Wavelet Transform Using Specific Subbands

This example shows how to reconstruct an approximation based on a subset of the wavelet subbands.

Load a 128-by-128 grayscale image.

load xbox
imagesc(xbox)
colormap gray
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Obtain the dual-tree wavelet transform of the image down to level 2

lev = 2;
[a,d] = dualtree2(xbox,'Level',lev);

Since there are six wavelet subbands in each level of the decomposition, create a 2-by-6 matrix of
zeros.

dgains = zeros(lev,6);

To reconstruct an approximation based on the 2nd and 5th wavelet subbands, set the second and fifth
rows of dgains equal to 1. The 2nd and 5th wavelet subbands correspond to the highpass filtering of
the rows and columns of the image.

dgains(:,[2 5]) = 1;

Obtain two reconstructions using the specified wavelet subbands. Include the scaling (lowpass)
coefficients only in the first reconstruction.

imrec = idualtree2(a,d,'DetailGain',dgains);
imrec2 = idualtree2(a,d,'DetailGain',dgains,'LowpassGain',0);
figure
subplot(2,1,1)
imagesc(imrec)
title('With Lowpass Coefficients')
subplot(2,1,2)
imagesc(imrec2)
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title('Without Lowpass Coefficients')
colormap gray

Input Arguments
A — Final-level approximation coefficients
real-valued array

Final-level approximation coefficients, specified as a real-valued array. The approximation coefficients
are the output of dualtree2.
Data Types: double | single

D — Wavelet coefficients
cell array

Approximation coefficients, specified as a cell array. The wavelet coefficients are the output of
dualtree2.
Data Types: double | single

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

1 Functions

1-656



Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LevelOneFilter','antonini','LowpassGain',0.5

LevelOneFilter — Biorthogonal filter
'nearsym5_7' (default) | 'nearsym13_19' | 'antonini' | 'legall'

Biorthogonal filter to use in the first-level synthesis, specified by one of the values listed here. For
perfect reconstruction, the first-level synthesis filters must match the first-level analysis filters used
in dualtree2.

• 'legall' — LeGall 5/3 filter
• 'nearsym13_19' — (13,19)-tap near-orthogonal filter
• 'nearsym5_7' — (5,7)-tap near-orthogonal filter
• 'antonini' — (9,7)-tap Antonini filter

FilterLength — Orthogonal Hilbert Q-shift synthesis filter pair length
10 (default) | 6 | 14 | 16 | 18

Orthogonal Hilbert Q-shift synthesis filter pair length to use for levels 2 and higher, specified as one
of the listed values. For perfect reconstruction, the filter length must match the filter length used in
dualtree2.

DetailGain — Wavelet coefficients subband gains
real-valued matrix

Wavelet coefficients subband gains, specified as a real-valued matrix with a row dimension of L,
where L is the number of elements in D. There are six columns in DetailGain for each of the six
wavelet subbands. The elements of DetailGain are real numbers in the interval [0, 1]. The kth

column elements of DetailGain are the gains (weightings) applied to the kth wavelet subband. By
default, DetailGain is a L-by-6 matrix of ones.

LowpassGain — Gain
1 (default) | real number

Gain to apply to final-level approximation (lowpass, scaling) coefficients, specified as a real number in
the interval [0, 1].

Version History
Introduced in R2020a

References
[1] Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies. “Image Coding Using Wavelet

Transform.” IEEE Transactions on Image Processing 1, no. 2 (April 1992): 205–20. https://
doi.org/10.1109/83.136597.

[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Le Gall, D., and A. Tabatabai. “Sub-Band Coding of Digital Images Using Symmetric Short Kernel
Filters and Arithmetic Coding Techniques.” In ICASSP-88., International Conference on
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Acoustics, Speech, and Signal Processing, 761–64. New York, NY, USA: IEEE, 1988. https://
doi.org/10.1109/ICASSP.1988.196696.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dualtree2 | qbiorthfilt | qorthwavf | dualtree3 | dualtree

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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idualtree3
3-D dual-tree complex wavelet reconstruction

Syntax
xrec = idualtree3(a,d)
xrec = idualtree3(a,d,Name,Value)

Description
xrec = idualtree3(a,d) returns the inverse 3-D dual-tree complex wavelet transform of the
final-level approximation coefficients, a, and cell array of wavelet coefficients, d.

xrec = idualtree3(a,d,Name,Value) specifies options using name-value pair arguments.

Examples

Wavelet Coefficients

Generate all-zero sets of scaling and wavelet coefficients by computing the 3-D dual-tree complex
wavelet transform of an array of zeros.

zr = zeros(64,64,64);

[a,d] = dualtree3(zr,4);

Find the real (4,5) wavelet coefficient of the 19th subband of the third level by assigning 1 to the
corresponding array element and inverting the transform.

d{3}(4,5,19) = 1;

xr = idualtree3(a,d);

Find the corresponding imaginary coefficient assigning the imaginary unit to the array element and
then inverting the transform.

[a,d] = dualtree3(zr,4);

d{3}(4,5,19) = 1j;

xi = idualtree3(a,d);

Display the 18th page of the real and imaginary reconstructions.

subplot(1,2,1)
surf(xr(:,:,18))
view(0,0)
zlim([-0.02 0.02])
shading interp

subplot(1,2,2)
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surf(xi(:,:,18))
view(0,0)
zlim([-0.02 0.02])
shading interp

Input Arguments
a — Final-level scaling coefficients
real-valued matrix

Final-level scaling coefficients, specified as a real-valued matrix. a is an output of dualtree3.
Data Types: single | double

d — Wavelet coefficients
cell array

Wavelet coefficients, specified as a cell array. d is an output of dualtree3.
Data Types: single | double
Complex Number Support: Yes
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LevelOneFilter','legall','FilterLength',6 inverts a transform using LeGall
synthesis filters with scaling length 3 and wavelet length 5 at level 1, and length-6 Q-shift filters at
levels 2 and greater.

FilterLength — Hilbert Q-shift filter-pair length
10 (default) | 6 | 14 | 16 | 18

Hilbert Q-shift filter-pair length, specified as the comma-separated pair consisting of
'FilterLength' and one of 6, 10, 14, 16, or 18. The synthesis filters used by idualtree3 must
match the analysis filters used by dualtree3.
Data Types: double | single

LevelOneFilter — First-level biorthogonal analysis filter
'nearsym5_7' (default) | 'nearsym13_19' | 'antonini' | 'legall'

First-level biorthogonal analysis filter, specified as the comma-separated pair consisting of
'LevelOneFilter' and a character vector or string. By default, idualtree3 uses the near-
symmetric biorthogonal wavelet filter with lengths 7 (scaling synthesis filter) and 5 (wavelet synthesis
filter) in the reconstruction.
Data Types: char | string

OriginalDataSize — Size of the original data
three-element vector of even integers

Size of the original data, specified as the comma-separated pair consisting of 'OriginalDataSize'
and a three-element vector of even integers. This vector must match the size of the original input to
the 3-D dual-tree wavelet transform. When the first-level wavelet coefficients are not available, the
reconstructed data size can differ from the original input data size. If you call dualtree3 with the
'excludeL1' option, then 'OriginalDataSize' adjusts the size of xrec to match the size of the
original input data. If you do not use the 'excludeL1' option, then this argument is ignored.
Data Types: double | single

Output Arguments
xrec — Inverse 3-D dual-tree complex wavelet transform
3-D array

Inverse 3-D dual-tree complex wavelet transform, returned as a 3-D array.

Version History
Introduced in R2017a
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References
[1] Chen, H., and N. G. Kingsbury. “Efficient Registration of Nonrigid 3-D Bodies.” IEEE Transactions

on Image Processing. Vol 21, January 2012, pp. 262–272.

[2] Kingsbury, N. G. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Journal
of Applied and Computational Harmonic Analysis. Vol. 10, May 2001, pp. 234–253.

See Also
dualtree3 | wavedec3 | waverec3 | dddtree2 | dualtree2 | dualtree

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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idwpt
Multisignal 1-D inverse wavelet packet transform

Syntax
xrec = idwpt(wpt,l)
xrec = idwpt(wpt,l,wname)
xrec = idwpt(wpt,l,LoR,HiR)
xrec = idwpt( ___ , 'Boundary',ExtensionMode)

Description
xrec = idwpt(wpt,l) inverts the discrete wavelet packet transform (DWPT) of the terminal node
wavelet packet tree wpt using the bookkeeping vector l. The idwpt function assumes that you
obtained wpt and l using dwpt with the fk18 wavelet and default settings.

If the input to dwpt was one signal, xrec is a column vector. If the input was a multichannel signal,
xrec is a matrix, where each matrix column corresponds to a channel.

xrec = idwpt(wpt,l,wname) uses the wavelet specified by wname to invert the DWPT. wname
must be recognized by wavemngr. The specified wavelet must be the same wavelet used to obtain the
DWPT.

xrec = idwpt(wpt,l,LoR,HiR) uses the scaling (lowpass) filter, LoR, and wavelet (highpass)
filter, HiR. The synthesis filter pair LoR and HiR must be associated with the same wavelet used in
the DWPT.

xrec = idwpt( ___ , 'Boundary',ExtensionMode) specifies the mode to extend the signal.
ExtensionMode can be either 'reflection' (default) and 'periodic'. By setting
ExtensionMode to 'periodic' or 'reflection', the wavelet packet coefficients at each level are
extended based on the modes 'per' or 'sym' in dwtmode, respectively. ExtensionMode must be
the same mode used in the DWPT.

Examples

Inverse Wavelet Packet Transform

This example shows how to perform the inverse wavelet packet transform using synthesis filters.

Obtain the DWPT of an ECG signal using dwpt with default settings.

load wecg
[wpt,l] = dwpt(wecg);

By default, dwpt uses the fk18 wavelet. Obtain the synthesis (reconstruction) filters associated with
the wavelet.

[~,~,lor,hir] = wfilters('fk18');

Invert the DWPT using the synthesis filters and demonstrate perfect reconstruction.
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xrec = idwpt(wpt,l,lor,hir);
norm(wecg-xrec,'inf')

ans =

   4.9236e-11

Change Boundary Extension Mode

Obtain the DWPT of an ECG signal using dwpt and periodic extension.

load wecg
[wpt,l] = dwpt(wecg,'Boundary','periodic');

By default, idwpt uses symmetric extension. Invert the DWPT using periodic and symmetric
extension modes.

xrecA = idwpt(wpt,l,'Boundary','periodic');
xrecB = idwpt(wpt,l);

Demonstrate perfect reconstruction only when the extension modes of the forward and inverse DWPT
agree.

fprintf('Periodic/Periodic : %f\n',norm(wecg-xrecA,'inf'))

Periodic/Periodic : 0.000000

fprintf('Periodic/Symmetric: %f\n',norm(wecg-xrecB,'inf'))

Periodic/Symmetric: 1.477907

PR Biorthogonal Filters

This example shows how to take an expression of a biorthogonal filter pair and construct lowpass and
highpass filters to produce a perfect reconstruction (PR) pair in Wavelet Toolbox™.

The LeGall 5/3 filter is the wavelet used in JPEG2000 for lossless image compression. The lowpass
(scaling) filters for the LeGall 5/3 wavelet have five and three nonzero coefficients respectively. The
expressions for these two filters are:

H0(z) = 1/8(− z2 + 2z + 6 + 2z−1− z−2)

H1(z) = 1/2(z + 2 + z−1)

Create these filters.

H0 = 1/8*[-1 2 6 2 -1];
H1 = 1/2*[1 2 1];

Many of the discrete wavelet and wavelet packet transforms in Wavelet Toolbox rely on the filters
being both even-length and equal in length in order to produce the perfect reconstruction filter bank
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associated with these transforms. These transforms also require a specific normalization of the
coefficients in the filters for the algorithms to produce a PR filter bank. Use the biorfilt function
on the lowpass prototype functions to produce the PR wavelet filter bank.

[LoD,HiD,LoR,HiR] = biorfilt(H0,H1);

The sum of the lowpass analysis and synthesis filters is now equal to 2.

sum(LoD)

ans = 1.4142

sum(LoR)

ans = 1.4142

The wavelet filters sum, as required, to zero. The L2-norms of the lowpass analysis and highpass
synthesis filters are equal. The same holds for the lowpass synthesis and highpass analysis filters.

Now you can use these filters in discrete wavelet and wavelet packet transforms and achieve a PR
wavelet packet filter bank. To demonstrate this, load and plot an ECG signal.

load wecg
plot(wecg)
axis tight
grid on

Obtain the discrete wavelet packet transform of the ECG signal using the LeGall 5/3 filter set.
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[wpt,L] = dwpt(wecg,LoD,HiD);

Now use the reconstruction (synthesis) filters to reconstruct the signal and demonstrate perfect
reconstruction.

xrec = idwpt(wpt,L,LoR,HiR);
plot([wecg xrec])
axis tight, grid on;

norm(wecg-xrec,'Inf')

ans = 3.1086e-15

You can also use this filter bank in the 1-D and 2-D discrete wavelet transforms. Read and plot an
image.

im = imread('woodsculp256.jpg');
image(im); axis off;
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Obtain the 2-D wavelet transform using the LeGall 5/3 analysis filters.

[C,S] = wavedec2(im,3,LoD,HiD);

Reconstruct the image using the synthesis filters.

imrec = waverec2(C,S,LoR,HiR);
image(uint8(imrec)); axis off;
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The LeGall 5/3 filter is equivalent to the built-in 'bior2.2' wavelet in Wavelet Toolbox. Use the
'bior2.2' filters and compare with the LeGall 5/3 filters.

[LD,HD,LR,HR] = wfilters('bior2.2');
subplot(2,2,1)
hl = stem([LD' LoD']);
hl(1).MarkerFaceColor = [0 0 1];
hl(1).Marker = 'o';
hl(2).MarkerFaceColor = [1 0 0];
hl(2).Marker = '^';
grid on
title('Lowpass Analysis')
subplot(2,2,2)
hl = stem([HD' HiD']);
hl(1).MarkerFaceColor = [0 0 1];
hl(1).Marker = 'o';
hl(2).MarkerFaceColor = [1 0 0];
hl(2).Marker = '^';
grid on
title('Highpass Analysis')
subplot(2,2,3)
hl = stem([LR' LoR']);
hl(1).MarkerFaceColor = [0 0 1];
hl(1).Marker = 'o';
hl(2).MarkerFaceColor = [1 0 0];
hl(2).Marker = '^';
grid on
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title('Lowpass Synthesis')
subplot(2,2,4)
hl = stem([HR' HiR']);
hl(1).MarkerFaceColor = [0 0 1];
hl(1).Marker = 'o';
hl(2).MarkerFaceColor = [1 0 0];
hl(2).Marker = '^';
grid on
title('Highpass Synthesis')

Input Arguments
wpt — Terminal node wavelet packet tree
cell array

Terminal node wavelet packet tree, specified as a cell array. wpt is the output of dwpt with the
'FullTree' value set to false.
Example: [wpt,l] = dwpt(X,'Level',3,'FullTree',false) returns the terminal node
wavelet packet tree of the three-level wavelet packet decomposition of X.
Data Types: single | double

l — Bookkeeping vector
vector of positive integers
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Bookkeeping vector, specified as a vector of positive integers. The vector l is the output of dwpt. The
bookkeeping vector contains the length of the input signal and the number of coefficients by level,
and is required for perfect reconstruction.
Data Types: single | double

wname — Wavelet
'fk18' (default) | character vector | string scalar

Wavelet to use in the inverse DWPT, specified as a character vector or string scalar. wname must be
recognized by wavemngr. The specified wavelet must be the same wavelet used to obtain the DWPT.

You cannot specify both wname and a filter pair, LoD and HiD.
Example: xrec = idwpt(wpt,l,"sym4") specifies the sym4 wavelet.

LoR,HiR — Wavelet synthesis filters
real-valued vectors

Wavelet synthesis (reconstruction) filters to use in the inverse DWPT, specified as a pair of real-valued
vectors. LoR is the scaling (lowpass) synthesis filter, and HiR is the wavelet (highpass) synthesis filter.
The synthesis filter pair must be associated with the same wavelet as used in the DWPT. You cannot
specify both wname and a filter pair, LoR and HiR. See wfilters for additional information.

Note idwpt does not check that LoR and HiR satisfy the requirements for a perfect reconstruction
wavelet packet filter bank. To confirm your filter pair satisfies the requirements, use isorthwfb or
isbiorthwfb. See “PR Biorthogonal Filters” on page 1-664 for an example of how to take a
published biorthogonal filter and ensure that the analysis and synthesis filters produce a perfect
reconstruction wavelet packet filter bank using idwpt.

ExtensionMode — Wavelet packet transform boundary handling
'reflection' (default) | 'periodic'

Wavelet packet transform boundary handling, specified as 'reflection' or 'periodic'. When set
to 'reflection' or 'periodic', the wavelet packet coefficients are extended at each level based
on the 'sym' or 'per' mode in dwtmode, respectively. ExtensionMode must be the same mode
used in the DWPT. If unspecified, ExtensionMode defaults to 'reflection'.

Version History
Introduced in R2020a

References
[1] Wickerhauser, Mladen Victor. Adapted Wavelet Analysis from Theory to Software. Wellesley, MA:

A.K. Peters, 1994.

[2] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK:
Cambridge University Press, 2000.

[3] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
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3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

See Also
dwpt | imodwpt
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idwt
Single-level 1-D inverse discrete wavelet transform

Syntax
x = idwt(cA,cD,wname)
x = idwt(cA,cD,LoR,HiR)
x = idwt( ___ ,l)
x = idwt( ___ ,'mode',mode)

x = idwt(cA,[], ___ )
x = idwt([],cD, ___ )

Description
x = idwt(cA,cD,wname) returns the single-level one-dimensional wavelet reconstruction x based
on the approximation and detail coefficients cA and cD, respectively, using the wavelet specified by
wname. For more information, see dwt.

Let la be the length of cA (which also equals the length of cD), and lf the length of the
reconstruction filters associated with wname (see wfilters). If the DWT extension mode is set to
periodization, then the length of x is equal to 2la. Otherwise, the length of x is equal to 2la- 2lf+2.
For more information, see dwtmode.

x = idwt(cA,cD,LoR,HiR) uses the specified lowpass and highpass wavelet reconstruction filters
LoR and HiR, respectively.

x = idwt( ___ ,l) returns the length-l central portion of the reconstruction. This argument can be
added to any of the previous input syntaxes

x = idwt( ___ ,'mode',mode) uses the specified DWT extension mode mode. For more
information, see dwtmode. This argument can be added to any of the previous syntaxes.

x = idwt(cA,[], ___ ) returns the single-level reconstructed approximation coefficients based on
the approximation coefficients cA.

x = idwt([],cD, ___ ) returns the single-level reconstructed detail coefficients based on the detail
coefficients cD.

Examples

Inverse DWT Using Orthogonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with an orthonormal wavelet.

load noisdopp;
[A,D] = dwt(noisdopp,'sym4');
x = idwt(A,D,'sym4');
max(abs(noisdopp-x))
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ans = 3.2156e-12

Inverse DWT Using Biorthogonal Wavelet

Demonstrate perfect reconstruction using dwt and idwt with a biorthogonal wavelet.

load noisdopp;
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('bior3.5');
[A,D] = dwt(noisdopp,Lo_D,Hi_D);
x = idwt(A,D,Lo_R,Hi_R);
max(abs(noisdopp-x))

ans = 3.5527e-15

Input Arguments
cA — Approximation coefficients
vector

Approximation coefficients, specified as a vector. cA is expected to be the output of dwt.
Data Types: single | double

cD — Detail coefficients
vector

Detail coefficients, specified as a vector. cD is expected to be the output of dwt.
Data Types: single | double

wname — Wavelet
character vector | string scalar

Wavelet used to compute the single-level inverse discrete wavelet transform (IDWT), specified as a
character vector or string scalar. The wavelet must be recognized by wavemngr. The wavelet is from
one of the following wavelet families: Best-localized Daubechies, Beylkin, Coiflets, Daubechies, Fejér-
Korovkin, Haar, Han linear-phase moments, Morris minimum-bandwidth, Symlets, Vaidyanathan,
Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for the wavelets available in
each family.

The wavelet specified must be the same wavelet used to obtain the approximation and detail
coefficients.
Example: 'db4'

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.
Data Types: single | double
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l — Length of central portion
positive integer

Length of central portion of reconstruction, specified as a positive integer. If xrec =
idwt(cA,cD,wname), then l cannot exceed length(xrec).
Data Types: single | double

mode — DWT extension mode
character vector | string scalar

DWT extension mode used in the wavelet reconstruction, specified as a character vector or string
scalar. For possible extension modes, see dwtmode.

Algorithms
Starting from the approximation and detail coefficients at level j, cAj and cDj, the inverse discrete
wavelet transform reconstructs cAj−1, inverting the decomposition step by inserting zeros and
convolving the results with the reconstruction filters.

where

•

 — Insert zeros at even-indexed elements
•

 — Convolve with filter X
•

 — Take the central part of U with the convenient length

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.
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[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
dwt | dwtmode | wfilters
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idwt2
Single-level 2-D inverse discrete wavelet transform

Syntax
x = idwt2(cA,cH,cV,cD,wname)
x = idwt2(cA,cH,cV,cD,LoR,HiR)
x = idwt2( ___ ,s)
x = idwt2( ___ ,'mode',mode)

x = idwt2(cA,[],[],[], ___ )
x = idwt2([],cH,[],[], ___ )
x = idwt2([],[],cV,[], ___ )
x = idwt2([],[],[],cD, ___ )

Description
x = idwt2(cA,cH,cV,cD,wname) performs a single-level two-dimensional wavelet reconstruction
based on the approximation matrix cA and details matrices cH, cV, and cD (horizontal, vertical, and
diagonal, respectively) using the wavelet specified by wname. For additional information, see dwt2.

Let sa = size(cA) = size(cH) = size(cV) = size(cD), and let lf equal the length of the
reconstruction filters associated with wname. If the DWT extension mode is set to periodization, the
size of x, sx is equal to 2*sa. For other extension modes, sx = 2*sa-lf+2. For additional
information, see dwtmode.

x = idwt2(cA,cH,cV,cD,LoR,HiR) uses the specified lowpass and highpass wavelet
reconstruction filters LoR and HiR, respectively.

x = idwt2( ___ ,s) returns the size-s central portion of the reconstruction using any of the
previous syntaxes.

x = idwt2( ___ ,'mode',mode) computes the wavelet reconstruction using the specified
extension mode mode. For additional information, see dwtmode. This syntax can be used with any of
the previous syntaxes.

x = idwt2(cA,[],[],[], ___ ) returns the single-level reconstructed approximation coefficients
matrix x based on the approximation coefficients matrix cA.

x = idwt2([],cH,[],[], ___ ) returns the single-level reconstructed approximation coefficients
matrix x based on horizontal detail coefficients matrix cH.

x = idwt2([],[],cV,[], ___ ) returns the single-level reconstructed approximation coefficients
matrix x based on vertical detail coefficients matrix cV.

x = idwt2([],[],[],cD, ___ ) returns the single-level reconstructed approximation coefficients
matrix x based on diagonal detail coefficients matrix cD.

Examples
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Single-Level 2-D Wavelet Reconstruction

Load an image.

load woman
whos X

  Name        Size              Bytes  Class     Attributes

  X         256x256            524288  double              

The workspace variable X contains the image. Perform a single-level wavelet decomposition of X use
the db4 wavelet.

[cA1,cH1,cV1,cD1] = dwt2(X,'db4');

Invert the decomposition of X using the coefficients at level 1.

A0 = idwt2(cA1,cH1,cV1,cD1,'db4');

Check for perfect reconstruction.

max(abs(X(:)-A0(:)))

ans = 3.4174e-10

Wavelet Reconstruction of Detail Coefficients

Load an image.

load tartan
imagesc(X)
colormap(gray)
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Perform a single-level wavelet decomposition using the db4 wavelet.

[cA,cH,cV,cD] = dwt2(X,'db4');

Obtain the wavelet reconstruction using only the diagonal detail coefficients.

xrecD = idwt2([],[],[],cD,'db4');

Obtain a second wavelet reconstruction, this time using the horizontal and diagonal detail
coefficients.

xrecHD = idwt2([],cH,[],cD,'db4');

Display both reconstructions.

subplot(1,2,1)
imagesc(xrecD)
title('Diagonal')
subplot(1,2,2)
imagesc(xrecHD)
title('Horizontal-Diagonal')
colormap(gray)
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Input Arguments
cA — Approximation coefficients
array

Approximation coefficients, specified as an array. cA is expected to be the output of dwt2.
Data Types: double

cH — Horizontal detail coefficients
array

Horizontal detail coefficients, specified as an array. cD is expected to be the output of dwt2.
Data Types: double

cV — Vertical detail coefficients
array

Vertical detail coefficients, specified as an array. cV is expected to be the output of dwt2.
Data Types: double

cD — Diagonal detail coefficients
array

Diagonal detail coefficients, specified as an array. cD is expected to be the output of dwt2.
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Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. idwt2 supports only orthogonal or
biorthogonal wavelets. See wfilters for a list of orthogonal and biorthogonal wavelets.

The wavelet specified must be the same wavelet used to obtain the approximation and details
coefficients.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.
Data Types: double

s — Size of central portion
two-element vector

Size of central portion of reconstruction to return, specified as a two element vector of positive
integers. s must be less than sx, the size of x.
Data Types: double

mode — DWT extension mode
character vector | string scalar

DWT extension mode used in the wavelet reconstruction, specified as a character vector or string
scalar. For possible extension modes, see dwtmode.

Tips
• If cA, cH, cV, and cD are obtained from an indexed image analysis, they are M-by-N matrices. If

cA, cH, cV, and cD are obtained from a truecolor image analysis, they are M-by-N-by-3 arrays.

To learn more about image formats, see image and imfinfo.

Algorithms
The 2-D wavelet reconstruction algorithm for images is similar to the one-dimensional case. The two-
dimensional wavelet and scaling functions are obtained by taking the tensor products of the one-
dimensional wavelet and scaling functions. This kind of two-dimensional inverse DWT leads to a
reconstruction of approximation coefficients at level j from four components: the approximation at
level j+1, and the details in three orientations (horizontal, vertical, and diagonal). The following chart
describes the basic reconstruction steps for images.
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where

•

 — Upsample columns: insert zeros at odd-indexed columns
•

 — Upsample rows: insert zeros at odd-indexed rows
•

 — Convolve with filter X the rows of the entry
•

 — Convolve with filter X the columns of the entry

Version History
Introduced before R2006a

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
dwt2 | dwtmode | upwlev2
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idwt3
Single-level 3-D inverse discrete wavelet transform

Syntax
X = idwt3(WT)
C = idwt3(WT,TYPE)

Description
The idwt3 command performs a single-level three-dimensional wavelet reconstruction starting from
a single-level three-dimensional wavelet decomposition.

X = idwt3(WT) computes the single-level reconstructed 3-D array X, based on the three-
dimensional wavelet decomposition stored in the WT structure. This structure contains the following
fields.

sizeINI Size of the three-dimensional array X.
mode Name of the wavelet transform extension mode.
filters Structure with 4 fields, LoD, HiD, LoR, HiR, which contain the filters used

for DWT.
dec 2 x 2 x 2 cell array containing the coefficients of the decomposition.

dec{i,j,k}, i,j,k = 1 or 2 contains the coefficients obtained by low-pass
filtering (for i or j or k = 1) or high-pass filtering (for i or j or k = 2).

C = idwt3(WT,TYPE) computes the single-level reconstructed component based on the three-
dimensional wavelet decomposition. Valid values for TYPE are:

• A group of three characters 'xyz', one per direction, with 'x','y' and 'z' selected in the set
{'a','d','l','h'} or in the corresponding uppercase set {'A','D','L','H'}), where 'A' (or
'L') specifies low-pass filter and 'D' (or 'H') specifies highpass filter.

• The char 'd' (or 'h' or 'D' or 'H') which specifies the sum of all the components different from
the lowpass component.

Examples

Single-Level Three-Dimensional Wavelet Reconstruction

Define the original 3-D data.

X  = reshape(1:64,4,4,4)

X = 
X(:,:,1) =

     1     5     9    13
     2     6    10    14
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     3     7    11    15
     4     8    12    16

X(:,:,2) =

    17    21    25    29
    18    22    26    30
    19    23    27    31
    20    24    28    32

X(:,:,3) =

    33    37    41    45
    34    38    42    46
    35    39    43    47
    36    40    44    48

X(:,:,4) =

    49    53    57    61
    50    54    58    62
    51    55    59    63
    52    56    60    64

Decompose X using 'db1'.

wt = dwt3(X,'db1');

Reconstruct X from the coefficients. Verify that the reconstructed data agrees with the original data
to machine precision.

XR = idwt3(wt);

dff = max(abs(X-XR))

dff = 
dff(:,:,1) =

   1.0e-13 *

    0.0266    0.0355    0.0888    0.1066

dff(:,:,2) =

   1.0e-13 *

    0.1066    0.1066    0.2132    0.2132

dff(:,:,3) =

   1.0e-13 *
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    0.1421    0.1421    0.2132    0.2132

dff(:,:,4) =

   1.0e-13 *

    0.3553    0.3553    0.2842    0.2842

Compute the reconstructed approximation, which consists of the lowpass component.

A  = idwt3(wt,'aaa');

Compute the sum of all the components different from the lowpass component.

D  = idwt3(wt,'d');

Reconstruct the component associated with lowpass in the x and z directions and highpass in the y
direction.

ADA  = idwt3(wt,'ada');

Version History
Introduced in R2010a

See Also
dwt3 | wavedec3 | waverec3
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ihaart
Inverse 1-D Haar wavelet transform

Syntax
xrec = ihaart(a,d)
xrec = ihaart(a,d,level)
xrec = ihaart( ___ ,integerflag)

Description
xrec = ihaart(a,d) returns the inverse 1-D Haar transform, xrec, for the approximation
coefficients, a, and the wavelet coefficients, d. Both a and d are obtained from haart.

xrec = ihaart(a,d,level) returns the inverse 1-D Haar transform at the specified level.

xrec = ihaart( ___ ,integerflag) specifies how the inverse 1-D Haar transform handles
integer-valued data, using any of the previous syntaxes.

Examples

Inverse Haar Transform of Noisy Data

Obtain the Haar and inverse Haar transforms of noisy data.

Load the noisy data signal

 load noisdopp;

Obtain the Haar transform of the noisy signal.

 [a,d] = haart(noisdopp);

Reconstruct the data by inverting the Haar transform.

 xrec = ihaart(a,d);

Compare the original and reconstructed data by determining the maximum difference between them.
The difference is essentially zero, which indicates a near-perfect reconstruction.

 max(abs(xrec-noisdopp'))

ans = 4.4409e-15

Inverse Haar Transform of ECG Data

Obtain the Haar transform and inverse Haar transform of ECG heart rate data.

Load and plot the ECG data.
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load BabyECGData;
plot(times,HR)
xlabel('Hours')
ylabel('Heart Rate')
title('ECG Data')

Obtain the Haar transform and inverse Haar transform. Compare the reconstructed data at level 4 to
the original data.

[a,d] = haart(HR);
HaarHR = ihaart(a,d,4);
figure
plot(times,HaarHR)
xlabel('Hours')
ylabel('Heart Rate')
title('Haar Approximation of Heart Rate')
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Inverse Haar Transform of Integer Data

Obtain the Haar and inverse Haar transforms for a series of random integers.

Create the series.

x = randi(10,100,1);

Obtain the Haar and inverse Haar transforms.

[a,d] = haart(x,'integer');
xrec = ihaart(a,d,'integer');

Plot and compare the original and reconstructed data.

subplot(2,1,1)
stem(x); title('Original Data')
subplot(2,1,2)
stem(xrec)
title('Reconstructed Integer-to-Integer Data')
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Determine the maximum difference between the original data values and the reconstructed values.
The difference is zero, which indicates perfect reconstruction.

max(abs(x(:)-xrec(:)))

ans = 0

Input Arguments
a — Approximation coefficients
scalar | vector | matrix

Approximation coefficients, specified as a scalar, vector, or matrix of coefficients, depending on the
level to which the Haar transform was calculated. a is an output from the haart function.

Approximation, or scaling, coefficients are a lowpass representation of the input. At each level the
approximation coefficients are divided into coarser approximation and detail coefficients.
Data Types: single | double

d — Detail coefficients
scalar | vector | matrix | cell array

Detail coefficients, specified as a scalar, vector, matrix, or cell array of wavelet coefficients. d is an
output from the haart function. The number of detail coefficients depends on the selected level and
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the length of the input. If d is a cell array, the elements of d are ordered from finest to coarsest
resolution.

If d is a cell array, it can contain scalars, vectors, or matrices. The level of the Haar transform equals
the number of elements in d.

If d is a vector or matrix, the Haar transform was computed only down to one level coarser in
resolution.

If a and the elements of d are vectors, xrec is a vector. If a and the elements of d are matrices, xrec
is a matrix, where each column is the inverse Haar transform of the corresponding columns in a and
d.
Data Types: single | double

level — Maximum level
0 (default) | nonnegative integer

Maximum level to which to invert the Haar transform, specified as a nonnegative integer. If d is a cell
array, level is less than or equal to length(d)-1. If d is a vector or matrix, level must equal 0 or
be unspecified. The level must be less than the level used to obtain a and d from haart.

integerflag — Integer-valued data handling
'noninteger' (default) | 'integer'

Integer-valued data handling, specified as either 'noninteger' or 'integer'. 'noninteger'
does not preserve integer-valued data, and 'integer' preserves it. The 'integer' option applies
only if all elements of a and d are integer-valued. You must have used 'integer' with haart to
obtain integer-valued a and d inputs. The inverse 1-D Haar transform algorithm, however, uses
floating-point arithmetic.

Output Arguments
xrec — Inverse 1-D Haar wavelet transform
vector | matrix

Inverse 1-D Haar wavelet transform, returned as a vector or matrix. If a and the elements of d are
vectors, xrec is a vector. If a and the elements of d are matrices, xrec is a matrix, where each
column is the inverse 1-D Haar transform of the corresponding columns in a and d.
Data Types: single | double

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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See Also
haart | ihaart2 | haart2

Topics
“Haar Transforms for Time Series Data and Images”

 ihaart

1-691



ihaart2
Inverse 2-D Haar wavelet transform

Syntax
xrec = ihaart2(a,h,v,d)
xrec = ihaart2(a,h,v,d,level)
xrec = ihaart2( ___ ,integerflag)

Description
xrec = ihaart2(a,h,v,d) returns the inverse 2-D Haar transform, xrec, for the approximation
coefficients, a, and the horizontal, vertical, and diagonal detail coefficients, h, v, and d. All the inputs,
a, h, v, and d, are outputs of haart2.

xrec = ihaart2(a,h,v,d,level) returns the inverse 2-D Haar transform at the specified level.

xrec = ihaart2( ___ ,integerflag) specifies how the inverse 2-D Haar transform handles
integer-valued data, using any of the previous syntaxes.

Examples

Inverse 2-D Haar Transform of an Image

Obtain the inverse 2-D Haar transform of image and view the reconstructed image.

Load the image and obtain its 2-D Haar transform.

im = imread('mandrill.png');
[a,h,v,d] = haart2(im);

Use the inverse 2-D Haar transform to reconstruct the image.

xrec = ihaart2(a,h,v,d);

Compare the original and reconstructed images.

imagesc(im)
title('Original RGB Image')
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figure
imagesc(uint8(xrec))
title('Reconstructed RGB Image')
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Inverse 2-D Haar Transform of Image Limited to Specified Level

Obtain the 2-D Haar transform of an image limiting the transform to 2 levels.

Load and view the image of a cameraman.

im = imread('cameraman.tif');
imagesc(im)
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Obtain the 2-D Haar transform using the default maximum number of levels.

[a,h,v,d] = haart2(im);

Reconstruct the image using the inverse 2-D Haar transform and view the image. Notice the near-
perfect reconstruction.

xrec = ihaart2(a,h,v,d);
imagesc(xrec)
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Reconstruct and view the image using the inverse 2-D Haar transform, limited to level 2. Level 2
corresponds to the fourth scale because scale is defined as 2 j, where j is the level.

xrec1 = ihaart2(a,h,v,d,2);
imagesc(xrec1)
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Using fewer levels returns the average of the original image at level 2.

Inverse 2-D Haar Transform of Image Limited to Integer Data

Obtain the 2-D Haar transform of an image limiting the transform to integer data.

Load the image of a cameraman.

im = imread('cameraman.tif');

Obtain the 2-D Haar transform using the 'integer' flag.

[a,h,v,d]=haart2(im,'integer');

Reconstruct the image using the inverse 2-D Haar transform and view the image.

xrec = ihaart2(a,h,v,d,'integer');
imagesc(xrec)
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Use integer data when you need to reduce the amount of memory used compared to noninteger data.

Input Arguments
a — Approximation coefficients
scalar | matrix

Approximation coefficients, specified as a scalar or matrix of coefficients, depending on the level to
which the 2-D Haar transform was calculated. a is an output from the haart2 function.
Approximation, or scaling, coefficients are a lowpass representation of the input. If a and the
elements of h, v, and d, are vectors, xrec is a vector. If a and the elements of h, v, and d are
matrices, xrec is a matrix, where each column is the inverse 2-D Haar transform of the
corresponding columns in a and h, v, or d.
Data Types: single | double

h — Horizontal detail coefficients
matrix | cell array

Horizontal detail coefficients by level, specified as a matrix or cell array of matrices. h is an output
from the haart2 function. If h is a matrix, the 2-D Haar transform was computed only down to one
level coarser in resolution.
Data Types: single | double
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v — Vertical detail coefficients
matrix or | cell array

Vertical detail coefficients by level, specified as a matrix or cell array of matrices. v is an output from
the haart2 function. If v is a matrix, the 2-D Haar transform was computed only down to one level
coarser in resolution.
Data Types: single | double

d — Diagonal detail coefficients
matrix or | cell array

Diagonal detail coefficients by level, specified as a matrix or cell array of matrices. d is an output
from the haart2 function. If d is a matrix, the 2-D Haar transform was computed only down to one
level coarser in resolution.
Data Types: single | double

level — Maximum level
0 (default) | nonnegative integer

Maximum level to which to invert the Haar transform, specified as a nonnegative integer. If h is a cell
array, level is less than or equal to length(h)-1. If h is a vector or matrix, level must equal 0 or
be unspecified.

integerflag — Integer-valued data handling
'noninteger' (default) | 'integer'

Integer-valued data handling, specified as either 'noninteger' or 'integer'. 'noninteger'
does not preserve integer-valued data in the 2-D Haar transform, and 'integer' preserves it. The
'integer' option applies only if all elements of inputs, a, h, v, and d, are integer-valued. The
inverse 2-D Haar transform algorithm, however, uses floating-point arithmetic.

Output Arguments
xrec — Inverse 2-D Haar wavelet transform
matrix

2-D Haar wavelet transform, returned as a matrix.
Data Types: single | double

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
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See Also
haart | ihaart | haart2

Topics
“Haar Transforms for Time Series Data and Images”
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ilwt
Inverse 1-D lifting wavelet transform

Syntax
xr = ilwt(ca,cd)
xr = ilwt(ca,cd,Name,Value)

Description
xr = ilwt(ca,cd) returns the 1-D inverse wavelet transform based on the approximation
coefficients, ca, and cell array of detail coefficients, cd. By default, ilwt assumes you used the lifting
scheme associated with the db1 wavelet to obtain ca and cd. If you do not modify the coefficients, xr
is a perfect reconstruction of the signal.

xr = ilwt(ca,cd,Name,Value) specifies options using one or more name-value arguments. For
example, xr = ilwt(ca,cd,'Wavelet','db2') specifies the orthogonal wavelet db2.

For perfect reconstruction, all name-value arguments must match those used in lwt to obtain ca and
cd.

Examples

Inverse LWT of Integer-Valued Signal

Create a lifting scheme associated with the db3 wavelet. Specify an integer-valued signal whose
length is a power of 2.

lsc = liftingScheme('Wavelet','db3');
n = 8;
sig = 1:2^n;

Use the lifting scheme to obtain the integer-valued LWT of the signal down to the maximum
decomposition level.

[ca,cd] = lwt(sig,'LiftingScheme',lsc,'Int2Int',true);

Confirm the detail coefficients cd are a cell array whose length is equal to the exponent of 2.

length(cd)

ans = 8

Obtain the inverse LWT up to level 0. Confirm perfect reconstruction.

xrec0 = ilwt(ca,cd,'LiftingScheme',lsc,'Int2Int',true,'Level',0);
max(abs(xrec0(:)-sig(:)))

ans = 0

Obtain the inverse LWT up to level 1.
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xrec1 = ilwt(ca,cd,'LiftingScheme',lsc,'Int2Int',true,'Level',1);

Obtain the level 1 decomposition of the signal. Confirm the approximation coefficients are equal to
xrec1.

[ca,cd] = lwt(sig,'LiftingScheme',lsc,'Int2Int',true,'Level',1);
max(abs(ca(:)-xrec1(:)))

ans = 0

Inverse LWT of Multichannel Signal

Load the 23 channel EEG data Espiga3. The channels are arranged column-wise.

load Espiga3
size(Espiga3)

ans = 1×2

   995    23

Obtain the LWT of the multichannel signal using the db4 wavelet down to the default maximum
decomposition level.

wv = 'db4';
[ca,cd] = lwt(Espiga3,'Wavelet',wv);

Reconstruct the multichannel signal.

xrec = ilwt(ca,cd,'Wavelet',wv);

Because the original signal has an odd number of samples in each channel, confirm the
reconstruction has one more row than the original signal.

size(xrec)

ans = 1×2

   996    23

Confirm the last row in the reconstruction is equal to the previous row.

max(abs(xrec(end-1,:)-xrec(end,:)))

ans = 5.6843e-14

Delete the last row from the reconstruction. Confirm the result is equal to the original signal.

xrec(end,:) = [];
max(abs(Espiga3(:)-xrec(:)))

ans = 4.5475e-13
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Input Arguments
ca — Approximation coefficients
scalar | vector | matrix

Approximation (lowpass) coefficients at the coarsest level, specified as a scalar, vector, or matrix. The
coefficients are the output of lwt.

If ca and the elements of cd are matrices, xr is a matrix where each column is the inverse wavelet
transform of the corresponding columns in ca and cd.
Data Types: single | double
Complex Number Support: Yes

cd — Detail coefficients
cell array

Detail coefficients, specified as an L-by-1 cell array, where L is the level of the transform. The
elements of cd are in order of decreasing resolution. The coefficients are the output of lwt.

If ca and the elements of cd are matrices, xr is a matrix where each column is the inverse wavelet
transform of the corresponding columns in ca and cd.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: xr = ilwt(ca,cd,'LiftingScheme',lsc,'Level',1) uses the lsc lifting scheme to
perform an inverse wavelet transform up to level 1.

Wavelet — Wavelet
'db1' (default) | character vector | string scalar

Orthogonal or biorthogonal wavelet to use in the inverse LWT, specified as a character vector or
string scalar. See the Wavelet property of liftingScheme for the list of supported wavelets. For
perfect reconstruction, the specified wavelet must be the same wavelet that was used to obtain the
coefficients ca and cd.

You cannot specify 'Wavelet' and 'LiftingScheme' name-value arguments at the same time.
Example: xr = ilwt(ca,cd,'Wavelet','bior3.5') uses the bior3.5 biorthogonal wavelet.
Data Types: char | string

LiftingScheme — Lifting scheme
liftingScheme object

Lifting scheme to use in the inverse LWT, specified as a liftingScheme object. For perfect
reconstruction, the specified lifting scheme must be the same lifting scheme that was used to obtain
the coefficients ca and cd.
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You cannot specify 'Wavelet' and 'LiftingScheme' name-value arguments at the same time.
Example: xr = ilwt(ca,cd,'LiftingScheme',lScheme) uses the lScheme lifting scheme.

Level — Reconstruction level
0 (default) | positive integer

Reconstruction level, specified as a nonnegative integer less than or equal to length(cd)-1. If
unspecified, the reconstruction level defaults to 0 and xr is a perfect reconstruction of the signal.
Example: xr = ilwt(ca,cd,'Level',1) reconstructs the signal up to level 1.
Data Types: double

Extension — Extension mode
'periodic' (default) | 'zeropad' | 'symmetric'

Extension mode to use in the inverse LWT, specified as a 'periodic' (default), 'zeropad', or
'symmetric'. The value of 'Extension' specifies how to extend the signal at the boundaries.
Example: xr = ilwt(ca,cd,'Extension','symmetric') specifies the symmetric extension
mode.

Int2Int — Integer-valued data handling
false or 0 (default) | true or 1

Integer-valued data handling, specified as a numeric or logical 1 (true) or 0 (false).

• 1 (true) — Preserve integer-valued data
• 0 (false) — Do not preserve integer-valued data

Specify the 'Int2Int' name-value argument only if all elements of the input are integers.
Example: xr = ilwt(ca,cd,'Int2Int',true) preserves integer-valued data.

Output Arguments
xr — Inverse wavelet transform
vector | matrix

Inverse wavelet transform of ca and cd, returned as a vector or matrix. If ca is a scalar or vector, and
the elements of cd are vectors, xr is a vector. If ca and the elements of cd are matrices, xr is a
matrix where each column is the inverse wavelet transform of the corresponding columns in ca and
cd.
Data Types: single | double

Version History
Introduced in R2021a

R2021a: ilwt input syntax has changed
Behavior changed in R2021a

The ilwt input syntax has changed. Use name-value arguments instead.
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Functionality Result Use Instead Compatibility
Considerations

X = ilwt(CA,CD,W) Errors X =
ilwt(CA,CD,'Wavele
t',W)

You can also set the
LiftingScheme name-
value argument to
obtain the inverse LWT.

X =
ilwt(CA,CD,W,LEVEL
)

Errors X =
ilwt(CA,CD,'Wavele
t',W,'Level',LEVEL
)

You can also set the
ExtensionMode and
Int2Int name-value
arguments.

X =
ilwt(AD_In_Place,W
)

Errors NA In-place transforms are
no longer supported.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
liftingScheme | haart | lwt | ihaart | lwtcoef
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ilwt2
Inverse 2-D lifting wavelet transform

Syntax
xr = ilwt2(ll,lh,hl,hh)
xr = ilwt2(ll,lh,hl,hh,Name=Value)

Description
xr = ilwt2(ll,lh,hl,hh) returns the 2-D inverse wavelet transform based on the approximation
coefficients, ll, and the horizontal (lh), vertical (hl), and diagonal (hh) wavelet coefficients. By
default, ilwt2 assumes that you used the lifting scheme associated with the db1 wavelet to obtain
the coefficients. If you have not modified the coefficients, xr is a perfect reconstruction of the signal.

xr = ilwt2(ll,lh,hl,hh,Name=Value) specifies options using one or more name-value
arguments. For example, ilwt2(ll,lh,hl,hh,LiftingScheme=lscheme,Level=3) specifies the
lscheme lifting scheme and the inverse transform up to level 3.

Examples

Inverse 2-D Lifting Wavelet Transform

Load and display the 128-by-128 xbox image.

load xbox
imagesc(xbox)
title("Original Image")
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Obtain the 2-D LWT of the image using default settings. Preserve integer values.

[ll,lh,hl,hh] = lwt2(xbox,Int2Int=true);

Obtain the inverse LWT up to level 1. Confirm the size of the reconstruction is 64-by-64.

xr = ilwt2(ll,lh,hl,hh,Level=1,Int2Int=true);
size(xr)

ans = 1×2

    64    64

imagesc(xr)
title("Level 1 Reconstruction")
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Obtain the inverse LWT using default settings. Confirm perfect reconstruction.

xr = ilwt2(ll,lh,hl,hh,Int2Int=true);
max(abs(xr(:)-xbox(:)))

ans = 0

Inverse LWT of 2-D Multisignal to Specified Level

Load the 3-D wmri data set. The data consists of 27 128-by-128 magnetic resonance images (MRI)
arranged in a 128-by-128-by-27 array.

load wmri

Display some of the slices along the Z-orientation of the original data set.

map = pink(90);
idxImages = 1:3:size(X,3);
figure("DefaultAxesXTick",[],"DefaultAxesYTick",[],...
    "DefaultAxesFontSize",8,"Color","w")
colormap(map)
for k = 1:9
    j = idxImages(k);
    subplot(3,3,k)
    image(X(:,:,j))
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    str = sprintf("Z = %d",j);
    title(str)
end

By default, lwt2 performs the wavelet decomposition along the rows and columns of the input data.
Use lwt2 to obtain the 2-D LWT of each 128-by-128 slice in the 3-D data set using the lifting scheme
associated with the bior3.5 wavelet. Preserve the integer-valued data.

lscheme = liftingScheme(Wavelet="bior3.5");
[ll,lh,hl,hh] = lwt2(X,LiftingScheme=lscheme,Int2Int=true);

Inspect the dimensions of a detail coefficients cell array. Confirm the coefficients at each level is a 3-D
array, and the size of the third dimension is 27.

hh

hh=7×1 cell array
    {64x64x27 double}
    {32x32x27 double}
    {16x16x27 double}
    { 8x8x27  double}
    { 4x4x27  double}
    { 2x2x27  double}
    { 1x1x27  double}

Obtain the inverse 2-D LWT up to level 1. Confirm the size of the 3-D reconstruction is 64-by-64-
by-27.
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xr = ilwt2(ll,lh,hl,hh,LiftingScheme=lscheme,Int2Int=true,Level=1);
size(xr)

ans = 1×3

    64    64    27

Choose any slice from the original data set, and perform the same LWT operations on that slice.
Confirm the reconstruction is equal to the corresponding slice in the 3-D reconstruction array.

num = 13;
slice = X(:,:,num);
[lls,lhs,hls,hhs] = lwt2(slice,LiftingScheme=lscheme,Int2Int=true);
xrs = ilwt2(lls,lhs,hls,hhs,LiftingScheme=lscheme,Int2Int=true,Level=1);
max(max(abs(xrs-xr(:,:,num))))

ans = 0

Compare the reconstruction of the slice with the original version.

figure
colormap(map)
subplot(1,2,1)
image(X(:,:,num))
title("Original")
subplot(1,2,2)
image(xrs)
title("Level 1 Reconstruction")
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Input Arguments
ll — Approximation coefficients
scalar | vector | matrix

Approximation coefficients at the coarsest scale, specified as a scalar, vector, or matrix. The
coefficients are the output of lwt2.
Data Types: single | double

lh — Horizontal detail coefficients
cell array

Horizontal detail coefficients by level, specified as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of lh are in order of decreasing resolution. The coefficients are the
output of lwt2.
Data Types: single | double

hl — Vertical detail coefficients
cell array

Vertical detail coefficients by level, specified as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of hl are in order of decreasing resolution. The coefficients are the
output of lwt2.
Data Types: single | double

hh — Diagonal detail coefficients
cell array

Diagonal detail coefficients by level, specified as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of hh are in order of decreasing resolution. The coefficients are the
output of lwt2.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: xr = ilwt2(ll,lh,hl,hh,Wavelet="db2",Int2Int=true)

Wavelet — Wavelet
"db1" (default) | character vector | string scalar

Orthogonal or biorthogonal wavelet to use in the inverse LWT, specified as a character vector or
string scalar. See the Wavelet property of liftingScheme for the list of supported wavelets. For
perfect reconstruction, you must specify the same wavelet that you used to obtain the coefficients ll,
lh, hl, and hh.

You cannot specify Wavelet and LiftingScheme at the same time.
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Example: xr = ilwt2(ll,lh,hl,hh,Wavelet="bior3.5") uses the bior3.5 biorthogonal
wavelet.
Data Types: char | string

LiftingScheme — Lifting scheme
liftingScheme object

Lifting scheme to use in the inverse LWT, specified as a liftingScheme object. For perfect
reconstruction, you must specify the same lifting scheme that you used to obtain the coefficients ll,
lh, hl, and hh.

You cannot specify LiftingScheme and Wavelet at the same time.
Example: xr = ilwt2(ll,lh,hl,hh,LiftingScheme=lScheme) uses the lScheme lifting
scheme.

Level — Reconstruction level
0 (default) | positive integer

Reconstruction level, specified as a nonnegative integer less than or equal to length(hh)-1. If you
do not specify a level, the function sets the reconstruction level to 0 and xr is a perfect
reconstruction of the signal.
Example: xr = ilwt2(ll,lh,hl,hh,Level=2) reconstructs the signal up to level 2.
Data Types: double

Extension — Extension mode
"periodic" (default) | "zeropad" | "symmetric"

Extension mode to use in the inverse LWT, specified as one of these:

• "periodic" — Periodized extension
• "zeropad" — Zero extension
• "symmetric" — Symmetric extension

This argument specifies how to extend the signal at the boundaries.
Example: xr = ilwt2(ll,lh,hl,hh,Extension="zeropad") specifies zero extension.

Int2Int — Handling integer-valued data
false or 0 (default) | true or 1

Integer-valued data handling, specified as one of these:

• 1 (true) — Preserve integer-valued data
• 0 (false) — Do not preserve integer-valued data

Specify Int2Int only if all coefficients are integers.
Example: xr = ilwt2(ll,lh,hl,hh,Int2Int=true) preserves integer-valued data.

Output Arguments
xr — Inverse wavelet transform
matrix
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Inverse wavelet transform, returned as a matrix. xr has the same dimensionality as the input used by
the lwt2 function to generate the approximation and details coefficients.

Version History
Introduced in R2021b

R2021b: ilwt2 input syntax has changed
Behavior changed in R2021b

The ilwt2 input syntax has changed. Use name-value arguments instead.

Functionality Result Use Instead Compatibility
Considerations

X =
ilwt2(CA,CH,CV,CD,
W)

Errors X =
ilwt2(CA,CH,CV,CD,
Wavelet=W)

You can also set the
LiftingScheme name-
value argument to
obtain the inverse LWT.

X =
ilwt2(CA,CH,CV,CD,
W,LEVEL)

Errors X =
ilwt2(CA,CH,CV,CD,
Wavelet=W,Level=LE
VEL)

You can also set the
Extension and
Int2Int name-value
arguments.

X =
ilwt2(AD_In_Place,
W)

Errors NA In-place transforms are
no longer supported.

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.

[2] Sweldens, Wim. “The Lifting Scheme: A Construction of Second Generation Wavelets.” SIAM
Journal on Mathematical Analysis 29, no. 2 (March 1998): 511–46. https://doi.org/10.1137/
S0036141095289051.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
lwt2 | lwtcoef2 | haart2 | ihaart2 | liftingScheme
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imlpt
Inverse multiscale local 1-D polynomial transform

Syntax
y = imlpt(coefs,T,coefsPerLevel,scalingMoments)
y = imlpt( ___ ,DualMoments=dm)

Description
y = imlpt(coefs,T,coefsPerLevel,scalingMoments) returns the inverse multiscale local
polynomial 1-D transform (MLPT) of coefs. The inputs to imlpt must be the outputs of mlpt.

y = imlpt( ___ ,DualMoments=dm) specifies the number of dual vanishing moments in the lifting
scheme.

Before R2021a, use a comma to separate the name and value, and enclose the name in quotes.

Example: 'DualMoments',2 specifies two vanishing moments.

Examples

Multiscale Local 1-D Polynomial Transform and Inverse Transform

Create a signal with nonuniform sampling and verify good reconstruction when performing the mlpt
and imlpt.

Create and plot a sine wave with non-uniform sampling.

timeVector = 0:0.01:1;
sineWave = sin(2*pi*timeVector)';

samplesToErase = randi(100,100,1);
sineWave(samplesToErase) = [];
timeVector(samplesToErase) = [];

figure(1)
plot(timeVector,sineWave,'o')
hold on
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Perform the multiscale local 1-D polynomial transform (mlpt) on the signal. Visualize the coefficients.

[coefs,T,coefsPerLevel,scalingMoments] = mlpt(sineWave,timeVector);

figure(2)
stem(coefs)
title('Wavelet Coefficients')

Perform the inverse multiscale local 1-D polynomial transform (imlpt) on the coefficients. Visualize
the reconstructed signal.
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y = imlpt(coefs,T,coefsPerLevel,scalingMoments);

figure(1)
plot(T,y,'*')
legend('Original Signal','Reconstructed Signal')
hold off

Look at the total error to verify good reconstruction.

reconstructionError = sum(abs(y-sineWave))

reconstructionError = 1.7552e-15

Specify Nondefault Dual Moments

Specify nondefault dual moments by using the mlpt function. Compare the results of analysis and
synthesis using the default and nondefault dual moments.

Create an input signal and visualize it.

T = (1:16)';
x = T.^2;
plot(x)
hold on
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Perform the forward and inverse transform for the input signal using the default and nondefault dual
moments.

[w2,t2,nj2,scalingmoments2] = mlpt(x,T);
y2 = imlpt(w2,t2,nj2,scalingmoments2);

[w3,t3,nj3,scalingmoments3] = mlpt(x,T,DualMoments=3);
y3 = imlpt(w3,t3,nj3,scalingmoments3,DualMoments=3);

Plot the reconstructed signal and verify perfect reconstruction using both the default and nondefault
dual moments.

plot(y2,'o')
plot(y3,'*')
legend('Original Signal', ...
       'DualMoments = 3', ...
       'DualMoments = 2 (Default)');

fprintf('\nMean Reconstruction Error:\n');

Mean Reconstruction Error:

fprintf('  - Nondefault dual moments: %0.2f\n',mean(abs(y3-x)));

  - Nondefault dual moments: 0.00

fprintf('  - Default dual moments: %0.2f\n\n',mean(abs(y2-x)));

  - Default dual moments: 0.00
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hold off

Input Arguments
coefs — MLPT coefficients
vector | matrix

MLPT coefficients, specified as a vector or matrix of MLPT coefficients returned by the mlpt
function.
Data Types: double

T — Sampling instants corresponding to output
vector | duration array

Sampling instants corresponding to y, specified as a vector or duration array of increasing values
returned by the mlpt function.
Data Types: double | duration

coefsPerLevel — Coefficients per resolution level
vector

Coefficients per resolution level, specified as a vector containing the number of coefficients at each
resolution level in coefs. coefsPerLevel is an output argument of the mlpt function.
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The elements of coefsPerLevel are organized as follows:

• coefsPerLevel(1) — Number of approximation coefficients at the coarsest resolution level.
• coefsPerLevel(i) — Number of detail coefficients at resolution level i, where i = numLevel

– i + 2 for i = 2, ..., numLevel + 1. numLevel is the number of resolution levels used to
calculate the MLPT. numLevel is inferred from coefsPerLevel: numLevel =
length(coefsPerLevel-1).

The smaller the index i, the lower the resolution. The MLPT is two times redundant in the number of
detail coefficients, but not in the number of approximation coefficients.
Data Types: double

scalingMoments — Scaling function moments
matrix

Scaling function moments, specified as a length(coefs)-by-P matrix, where P is the number of
primal moments specified by the MLPT.
Data Types: double

dm — Dual vanishing moments
2 (default) | 3 | 4

Number of dual vanishing moments in the lifting scheme. The number of dual moments must match
the number used by mlpt.
Data Types: double

Output Arguments
y — Reconstructed signal
vector | matrix

Reconstructed signal, returned as a vector or matrix, depending on the inputs to the mlpt function.
Data Types: double

Algorithms
Maarten Jansen developed the theoretical foundation of the multiscale local polynomial transform
(MLPT) and algorithms for its efficient computation [1][2][3]. The MLPT uses a lifting scheme,
wherein a kernel function smooths fine-scale coefficients with a given bandwidth to obtain the
coarser resolution coefficients. The mlpt function uses only local polynomial interpolation, but the
technique developed by Jansen is more general and admits many other kernel types with adjustable
bandwidths [2].

Version History
Introduced in R2017a
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References
[1] Jansen, Maarten. “Multiscale Local Polynomial Smoothing in a Lifted Pyramid for Non-Equispaced

Data.” IEEE Transactions on Signal Processing 61, no. 3 (February 2013): 545–55. https://
doi.org/10.1109/TSP.2012.2225059.

[2] Jansen, Maarten, and Mohamed Amghar. “Multiscale Local Polynomial Decompositions Using
Bandwidths as Scales.” Statistics and Computing 27, no. 5 (September 2017): 1383–99.
https://doi.org/10.1007/s11222-016-9692-8.

[3] Jansen, Maarten, and Patrick Oonincx. Second Generation Wavelets and Applications. London ;
New York: Springer, 2005.

See Also
mlpt | mlptdenoise | mlptrecon

Topics
Smoothing Nonuniformly Sampled Data
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imodwpt
Inverse maximal overlap discrete wavelet packet transform

Syntax
xrec = imodwpt(coefs)
xrec = imodwpt(coefs,wname)
xrec = imodwpt(coefs,lo,hi)

Description
xrec = imodwpt(coefs) returns the inverse maximal overlap discrete wavelet packet transform
(inverse MODWPT), in xrec. The inverse transform is for the terminal node coefficient matrix
(coefs) obtained using modwpt with the default length 18 Fejér-Korovkin ("fk18") wavelet.

xrec = imodwpt(coefs,wname) returns the inverse MODWPT using the wavelet specified by
wname.

xrec = imodwpt(coefs,lo,hi) returns the inverse MODWPT using the orthogonal scaling filter,
lo, and wavelet filter, hi.

Examples

Perfect Reconstruction with the Inverse MODWPT

Obtain the MODWPT of an ECG waveform and demonstrate perfect reconstruction using the inverse
MODWPT.

load wecg;
wpt = modwpt(wecg);
xrec = imodwpt(wpt);
subplot(2,1,1)
plot(wecg);
title('Original ECG Waveform');
subplot(2,1,2)
plot(xrec);
title('Reconstructed ECG Waveform');
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Find the largest absolute difference between the original signal and the reconstruction. The
difference is on the order of 10−11, which demonstrates perfect reconstruction.

max(abs(wecg-xrec'))

ans = 1.7902e-11

Inverse MODWPT Using Daubechies Extremal Phase Wavelet

Obtain the MODWPT of Southern Oscillation Index data using the Daubechies extremal phase
wavelet with two vanishing moments ('db2'). Reconstruct the signal using the inverse MODWPT.

load soi;
wsoi = modwpt(soi,'db2');
xrec = imodwpt(wsoi,'db2');

Inverse MODWPT Using Scaling and Wavelet Filters

Obtain the MODWPT of Southern Oscillation Index data using specified scaling and wavelets filters
with the Daubechies extremal phase wavelet with two vanishing moments ('db2').

load soi;
[lo,hi] = wfilters('db2');
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wpt = modwpt(soi,lo,hi);
xrec = imodwpt(wpt,lo,hi);

Plot the original SOI waveform and the reconstructed waveform.

subplot(2,1,1)
plot(soi)
title('Original SOI Waveform');
subplot(2,1,2)
plot(xrec)
title('Reconstructed SOI Waveform')

Input Arguments
coefs — Terminal node coefficients
matrix

Terminal node coefficients of a wavelet packet tree, specified as a matrix. You must obtain the
coefficient matrix from modwpt using the 'FullTree',false option. 'FullTree',false is the
default value of modwpt.
Data Types: single | double

wname — Synthesizing wavelet
"fk18" (default) | character vector | string scalar
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Synthesizing wavelet used to invert the MODWPT, specified as a character vector or string scalar.
wname must be the same wavelet used in the analysis with modwpt.

lo,hi — Filters
even-length real-valued vectors

Filters, specified as a pair of even-length real-valued vectors. lo is the orthogonal scaling filter and
hi is the orthogonal wavelet filter. lo and hi must be the same filter pair used in the analysis with
modwpt. You cannot specify both wname and a scaling-wavelet filter pair.
Data Types: single | double

Output Arguments
xrec — Inverse maximal overlap discrete wavelet packet transform
row vector

Inverse maximal overlap discrete wavelet packet transform, returned as a row vector. The inverse
transform is the reconstructed version of the original signal based on the MODWPT terminal node
coefficients. xrec has the same number of columns as the input coefs matrix.

Version History
Introduced in R2016a

R2023a: Supports single-precision data

The imodwpt function supports single-precision data.

References
[1] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.

[2] Walden, A. T., and A. Contreras Cristan. “The Phase–Corrected Undecimated Discrete Wavelet
Packet Transform and Its Application to Interpreting the Timing of Events.” Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454,
no. 1976 (August 8, 1998): 2243–66. https://doi.org/10.1098/rspa.1998.0257.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.
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See Also
modwpt | modwptdetails | dwpt
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imodwt
Inverse maximal overlap discrete wavelet transform

Syntax
xrec = imodwt(w)
xrec = imodwt(w,wname)
xrec = imodwt(w,Lo,Hi)
xrec = imodwt( ___ ,lev)
xrec = imodwt( ___ ,'reflection')

Description
xrec = imodwt(w) reconstructs the signal based on the maximal overlap discrete wavelet
transform (MODWT) coefficients in w. By default, imodwt assumes that you obtained w using the
'sym4' wavelet with periodic boundary handling. If you do not modify the coefficients, xrec is a
perfect reconstruction of the signal.

xrec = imodwt(w,wname) reconstructs the signal using the orthogonal wavelet wname. wname
must be the same wavelet used to analyze the signal input to modwt.

xrec = imodwt(w,Lo,Hi) reconstructs the signal using the orthogonal scaling filter Lo and the
wavelet filter Hi. The Lo and Hi filters must be the same filters used to analyze the signal input to
modwt.

xrec = imodwt( ___ ,lev) reconstructs the signal up to level lev. xrec is a projection onto the
scaling space at level lev. The default level is 0, which results in perfect reconstruction if you do not
modify the coefficients.

xrec = imodwt( ___ ,'reflection') uses the reflection boundary condition in the
reconstruction. If you specify 'reflection', imodwt assumes that the length of the original signal
length is one half the number of columns in the input coefficient matrix. By default, imodwt assumes
periodic signal extension at the boundary.

You must enter the entire character vector 'reflection'. If you added a wavelet named
'reflection' using the wavelet manager, you must rename that wavelet prior to using this option.
'reflection' may be placed in any position in the input argument list after x.

Examples

Perfect Reconstruction with the Inverse MODWT

Obtain the MODWT of an ECG signal and demonstrate perfect reconstruction.

Load the ECG signal data and obtain the MODWT.

load wecg;

Obtain the MODWT and the Inverse MODWT.
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w = modwt(wecg);
xrec = imodwt(w);

Use the L-infinity norm to show that the difference between the original signal and the reconstruction
is extremely small. The largest absolute difference between the original signal and the reconstruction
is on the order of 10−12, which demonstrates perfect reconstruction.

norm(abs(xrec'-wecg),Inf)

ans = 2.3253e-12

Inverse MODWT with Specified Wavelet

Obtain the MODWT of Deutsche Mark-U.S. Dollar exchange rate data and demonstrate perfect
reconstruction.

Load the Deutsche Mark-U.S. Dollar exchange rate data.

load DM_USD;

Obtain the MODWT and the Inverse MODWT using the 'db2' wavelet.

wdm = modwt(DM_USD,'db2');
xrec = imodwt(wdm,'db2');

Use the L-infinity norm to show that the difference between the original signal and the reconstruction
is extremely small. The largest absolute difference between the original signal and the reconstruction
is on the order of 10−13, which demonstrates perfect reconstruction.

norm(abs(xrec'-DM_USD),Inf)

ans = 1.6362e-13

Inverse MODWT with Specified Filters

Obtain the MODWT of an ECG signal using the Fejér-Korovkin filters.

Load the ECG data.

load wecg

Create the 8-coefficient Fejér-Korovkin filters. Use the filters to obtain the MODWT of the ECG data.

[~,~,Lo,Hi] = wfilters("fk8");
wtecg = modwt(wecg,Lo,Hi);

Obtain the inverse MODWT using the filters.

xrec = imodwt(wtecg,Lo,Hi);

Obtain a second inverse MODWT using the wavelet name. Confirm both inverse transforms are equal.
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xrec2 = imodwt(wtecg,"fk8");
max(abs(xrec-xrec2))

ans = 0

Plot the original data and one of the reconstructions.

subplot(2,1,1)
plot(wecg)
title("ECG Signal")
subplot(2,1,2)
plot(xrec)
title("Reconstruction")

Obtain Projection onto Scaling Space

Obtain the MODWT of an ECG signal down to the maximum level and obtain the projection of the
ECG signal onto the scaling space at level 3.

Load the ECG data.

load wecg;

Obtain the MODWT.

wtecg = modwt(wecg);
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Obtain the projection of the ECG signal onto V3, the scaling space at level three by using the imodwt
function.

v3proj = imodwt(wtecg,3);

Plot the original signal and the projection.

subplot(2,1,1)
plot(wecg)
title('Original Signal')
subplot(2,1,2)
plot(v3proj)
title('Projection onto V3')

Note that the spikes characteristic of the R waves in the ECG are missing in the V3 approximation.
You can see the missing details by examining the wavelet coefficients at level three.

Plot the level-three wavelet coefficients.

figure
plot(wtecg(3,:))
title('Level-Three Wavelet Coefficients')
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Inverse MODWT with Reflection Boundary

Obtain the inverse MODWT using reflection boundary handling for Southern Oscillation Index data.
The sampling period is one day. imodwt with the 'reflection' option assumes that the input
matrix, which is the modwt output, is twice the length of the original signal length. imodwt reflection
boundary handling reduces the number of wavelet and scaling coefficients at each scale by half.

load soi;
wsoi = modwt(soi,4,'reflection');
xrecsoi = imodwt(wsoi,'reflection');

Use the L-infinity norm to show that the difference between the original signal and the reconstruction
is extremely small. The largest absolute difference between the original signal and the reconstruction
is on the order of 10−11, which demonstrates perfect reconstruction.

norm(abs(xrecsoi'-soi),Inf)

ans = 1.6433e-11

1 Functions

1-730



Inverse MODWT of Multisignal

Load the 23 channel EEG data Espiga3 [2]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Obtain the maximal overlap discrete wavelet transform down to the maximum level.

w = modwt(Espiga3);

Reconstruct the multichannel signal. Plot the original data and reconstruction.

xrec = imodwt(w);
subplot(2,1,1)
plot(Espiga3)
title('Original Data')
subplot(2,1,2)
plot(xrec)
title('Reconstruction')

Input Arguments
w — MODWT transform
matrix | 3-D array
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MODWT transform of a signal or multisignal down to level L, specified as a matrix or 3-D array,
respectively. w is an L+1-by-N matrix for the MODWT of an N-point signal, and an L+1-by-N-by-NC
array for the MODWT of an N-by-NC multisignal. By default, imodwt assumes that you obtained the
MODWT using the 'sym4' wavelet with periodic boundary handling.
Data Types: single | double

wname — Synthesis wavelet
"sym4" (default) | character vector | string scalar

Synthesis wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal.
Orthogonal wavelets are designated as type 1 wavelets in the wavelet manager, wavemngr.

Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin ("beyl"),
Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han linear-phase
moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and Vaidyanathan ("vaid").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1). For example, wavemngr("type","db6") returns 1.

The synthesis wavelet must be the same wavelet used in the analysis with modwt.

Lo,Hi — Filters
even-length real-valued vectors

Filters, specified as a pair of even-length real-valued vectors. Lo is the scaling filter, and Hi is the
wavelet filter. Lo and Hi must be the same filters used in the analysis with modwt. The filters must
satisfy the conditions for an orthogonal wavelet. The lengths of Lo and Hi must be equal. See
wfilters for additional information. You cannot specify both wname and a filter pair Lo,Hi.

Note By default, the wfilters function returns two pairs of filters associated with an orthogonal or
biorthogonal wavelet you specify. To agree with the usual convention in the implementation of MODWT
in numerical packages, when you specify an orthogonal wavelet wname, the imodwt function
internally uses the second pair of filters returned by wfilters. For example,

xrec = imodwt(wt,"db2");
is equivalent to

[~,~,Lo,Hi] = wfilters("db2"); xrec = imodwt(wt,Lo,Hi);
This convention is different from the one followed by most Wavelet Toolbox discrete wavelet
transform functions when decomposing a signal. Most functions internally use the first pair of filters.

Data Types: single | double

lev — Reconstruction level
0 (default) | nonnegative integer

Reconstruction level, specified as a nonnegative integer between 0 and size(w,1)-2. The level must
be less than the level used to obtain w from modwt. If lev is 0 and you do not modify the coefficients,
imodwt produces a perfect reconstruction of the signal.
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Output Arguments
xrec — Reconstructed signal
vector | matrix

Reconstructed version of the original signal or multisignal based on the MODWT and the level of
reconstruction, returned as a vector or matrix.

Version History
Introduced in R2015b

References
[1] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.

[2] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Wavelet Signal Analyzer | Signal Multiresolution Analyzer

Functions
modwt | modwtmra
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Topics
“Practical Introduction to Multiresolution Analysis”
“Time-Frequency Gallery”
“Wavelet Analysis of Financial Data”
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ind2depo
Node index to node depth-position

Syntax
[D,P] = ind2depo(ORD,[D P])

Description
ind2depo is a tree-management utility.

For a tree of order ORD, [D,P] = ind2depo(ORD,N) computes the depths D and the positions P (at
these depths D) for the nodes with indices N.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

N must be a column vector of integers (N ≥ 0).

Note that [D,P] = ind2depo(ORD,[D P]).

Examples

Depth and Position in Wavelet Packet Tree

Create a binary wavelet packet tree with three levels.

Ord = 2;
Lev = 3;
T = ntree(Ord,Lev);

Plot the binary wavelet packet tree.

plot(T)
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Obtain the indices of the nodes in linear order.

idx = allnodes(T);

Convert the indices to depth-position format.

[depth,pos] = ind2depo(Ord,idx);
table(depth,pos)

ans=15×2 table
    depth    pos
    _____    ___

      0       0 
      1       0 
      1       1 
      2       0 
      2       1 
      2       2 
      2       3 
      3       0 
      3       1 
      3       2 

1 Functions

1-736



      3       3 
      3       4 
      3       5 
      3       6 
      3       7 

Version History
Introduced before R2006a

See Also
depo2ind
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intwave
Integrate wavelet function psi (ψ)

Syntax
[INTEG,XVAL] = intwave('wname',PREC)
[INTDEC,XVAL,INTREC] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC,0)
[INTEG,XVAL] = intwave('wname')
[INTEG,XVAL] = intwave('wname',8)
intwave('wname',0)
intwave('wname',8,IN3)
intwave('wname')
intwave('wname',8)

Description
[INTEG,XVAL] = intwave('wname',PREC) computes the integral, INTEG, of the wavelet function

ψ (from −∞ to XVAL values):  for x in XVAL.

The function ψ is approximated on the 2PREC points grid XVAL where PREC is a positive integer.
'wname' is a character vector containing the name of the wavelet ψ (see wfilters for more
information).

Output argument INTEG is a real or complex vector depending on the wavelet type.

For biorthogonal wavelets,

[INTDEC,XVAL,INTREC] = intwave('wname',PREC) computes the integrals, INTDEC and
INTREC, of the wavelet decomposition function ψdec and the wavelet reconstruction function ψrec.

[INTEG,XVAL] = intwave('wname',PREC) is equivalent to [INTEG,XVAL] =
intwave('wname',PREC,0).

[INTEG,XVAL] = intwave('wname') is equivalent to [INTEG,XVAL] = intwave('wname',8).

When used with three arguments, intwave('wname',IN2,IN3), PREC = max(IN2,IN3), plots
are given.

When IN2 is equal to the special value 0, intwave('wname',0) is equivalent to
intwave('wname',8,IN3).

intwave('wname') is equivalent to intwave('wname',8).

intwave is used only for continuous analysis (see cwt for more information).

Examples
% Set wavelet name. 
wname = 'db4';
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% Plot wavelet function. 
[phi,psi,xval] = wavefun(wname,7);
subplot(211); plot(xval,psi); title('Wavelet'); 

% Compute and plot wavelet integrals approximations 
% on a dyadic grid. 
[integ,xval] = intwave(wname,7); 
subplot(212); plot(xval,integ); 
title(['Wavelet integrals over [-Inf x] ' ... 
       'for each value of xval']);

Algorithms
First, the wavelet function is approximated on a grid of 2PREC points using wavefun. A piecewise
constant interpolation is used to compute the integrals using cumsum.

Version History
Introduced before R2006a

See Also
wavefun

 intwave
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inverse
Laurent matrix inverse

Syntax
R = inverse(M)

Description
R = inverse(M) returns the inverse of the Laurent matrix M if M has a nonzero monomial
determinant.

Examples

Laurent Matrix Inverse

Create the Laurent polynomials:

• a(z) = z + 1
• b(z) = z2 + z + z−1

• c(z) = z
• d(z) = z2 + z−1

lpA = laurentPolynomial(Coefficients=[1 1],MaxOrder=1);
lpB = laurentPolynomial(Coefficients=[1 1 0 1],MaxOrder=2);
lpC = laurentPolynomial(Coefficients=[1],MaxOrder=1);
lpD = laurentPolynomial(Coefficients=[1 0 0 1],MaxOrder=2);

Create the matrix lmat = 
a z b z
c z d z

. Obtain the determinant of lmat.

lmat = laurentMatrix(Elements={lpA,lpB;lpC,lpD});
det(lmat)

ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: -1

The determinant is a nonzero monomial. Obtain the inverse of lmat. Inspect the elements of the
inverse.

lmatinv = inverse(lmat);
lmatinv.Elements{1,1}

ans = 
  laurentPolynomial with properties:
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    Coefficients: [1 0 0 1]
        MaxOrder: 3

lmatinv.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: [-1 -1 0 -1]
        MaxOrder: 3

lmatinv.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: -1
        MaxOrder: 2

lmatinv.Elements{2,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: [1 1]
        MaxOrder: 2

Confirm the product of lmat and its inverse is equal to the identity matrix.

matprod = lmat*lmatinv;
matprod.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: 0

matprod.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 0
        MaxOrder: 0

matprod.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 0
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        MaxOrder: 0

matprod.Elements{2,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: 0

Input Arguments
M — Laurent matrix
laurentMatrix object

Laurent matrix, specified as a laurentMatrix object.

Output Arguments
R — Inverse
laurentMatrix object

Inverse of a Laurent matrix, returned as a laurentMatrix object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
det

Objects
laurentMatrix | laurentPolynomial
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isBiorthogonal
Determine if DWT filter bank is biorthogonal

Syntax
tf = isBiorthogonal(fb)
tf = isBiorthogonal(fb,tol)

Description
tf = isBiorthogonal(fb) returns true if the discrete wavelet transform (DWT) filter bank fb is
a biorthogonal filter bank and false otherwise.

To determine if a DWT filter bank is orthogonal, use isOrthogonal.

tf = isBiorthogonal(fb,tol) uses the positive real-valued tolerance tol to determine the
biorthogonality of the filter bank fb. tol is a small positive number in the interval (0, 10-2]. If
unspecified, tol defaults to 10-5.

Examples

Biorthogonality Test of DWT Filter Bank

Check whether a filter bank is biorthogonal.

fb = dwtfilterbank('Wavelet','bior4.4');
isBiorthogonal(fb)

ans = logical
   1

Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

tol — Tolerance
10-5 (default) | positive scalar

Tolerance to use to determine biorthogonality of the filter bank, specified as a positive scalar in the
interval (0,10-2]. The sum of both scaling filters must be within tol of √2 and the sum of both
wavelet filters must be less than tol.
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Version History
Introduced in R2018a

See Also
dwtfilterbank | isOrthogonal | isbiorthwfb
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isbiorthwfb
Determine if filter bank is biorthogonal wavelet filter bank

Syntax
tf = isbiorthwfb(LoR,LoD)
tf = isbiorthwfb(LoR,LoD,HiR,HiD)
tf = isbiorthwfb( ___ ,Tolerance=tol)
[tf,checks] = isbiorthwfb( ___ )

Description
tf = isbiorthwfb(LoR,LoD) returns true if the two-channel filter bank formed from the lowpass
filters LoR and LoD satisfy the necessary and sufficient conditions to be a two-channel biorthogonal
perfect reconstruction (PR) wavelet filter bank. isbiorthwfb forms the dual highpass (wavelet)
filters using the qmf function:

• HiD = qmf(LoR)
• HiR = qmf(LoD)

For a list of the necessary and sufficient conditions that the lowpass and highpass filters must satisfy,
see “Biorthogonal Perfect Reconstruction Wavelet Filter Bank” on page 1-747.

tf = isbiorthwfb(LoR,LoD,HiR,HiD) uses the four filters LoR, LoD, HiR, and HiD to determine
whether the four filters jointly satisfy the necessary and sufficient conditions to be a two-channel
biorthogonal PR wavelet filter bank.

tf = isbiorthwfb( ___ ,Tolerance=tol) uses the positive real scalar tolerance tol to
determine whether the filters satisfy the necessary and sufficient conditions to be a two-channel
biorthogonal PR wavelet filter bank.

[tf,checks] = isbiorthwfb( ___ ) returns a table with all orthogonality checks.

Examples

Perform Biorthogonality Checks on Filter Bank

Use wfilters to obtain the biorthogonal spline wavelet filters with 3 vanishing moments in the
analysis filters and 1 vanishing moment in the synthesis filters. The sum of the coefficients in each
lowpass filter equals 2.

[LoD,HiD,LoR,HiR] = wfilters("bior3.1");
sum(LoD)-sqrt(2)

ans = 2.2204e-16

sum(LoR)-sqrt(2)

ans = 2.2204e-16
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Test the biorthogonality of the filters.

[tf,checks] = isbiorthwfb(LoR,LoD,HiR,HiD)

tf = logical
   1

checks=7×3 table
                                                       Pass-Fail    Maximum Error    Test Tolerance
                                                       _________    _____________    ______________

    Dual filter lengths correct                          pass                 0                 0  
    Filter sums                                          pass        2.2204e-16        1.4901e-08  
    Zero lag lowpass dual filter cross-correlation       pass        2.2204e-16        1.4901e-08  
    Zero lag highpass dual filter cross-correlation      pass        2.2204e-16        1.4901e-08  
    Even lag lowpass dual filter cross-correlation       pass                 0        1.4901e-08  
    Even lag highpass dual filter cross-correlation      pass                 0        1.4901e-08  
    Even lag lowpass-highpass cross-correlation          pass                 0        1.4901e-08  

Use biorwavf to obtain just the lowpass analysis and synthesis filters of the same wavelet. The sum
of the coefficients in each filter equals 1.

[df,rf] = biorwavf("bior3.1");
sum(df)

ans = 1

sum(rf)

ans = 1

Test the biorthogonality of the filters.

[tf,checks] = isbiorthwfb(rf,df)

tf = logical
   1

checks=7×3 table
                                                       Pass-Fail    Maximum Error    Test Tolerance
                                                       _________    _____________    ______________

    Dual filter lengths correct                          pass                 0                 0  
    Filter sums                                          pass        2.2204e-16        1.4901e-08  
    Zero lag lowpass dual filter cross-correlation       pass        2.2204e-16        1.4901e-08  
    Zero lag highpass dual filter cross-correlation      pass        2.2204e-16        1.4901e-08  
    Even lag lowpass dual filter cross-correlation       pass                 0        1.4901e-08  
    Even lag highpass dual filter cross-correlation      pass                 0        1.4901e-08  
    Even lag lowpass-highpass cross-correlation          pass                 0        1.4901e-08  

Input Arguments
LoR,LoD — Lowpass filters
vectors
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Lowpass filters, specified as a pair of real-valued vectors. One vector is a lowpass analysis filter, and
the other vector is a lowpass synthesis filter. LoR and LoD are not required to have equal or even
length. isbiorthwfb equalizes the lengths internally using biorfilt. LoR and LoD should sum to 1
or √2.
Data Types: single | double

HiR,HiD — Highpass filters
vectors

Highpass filters, specified as a pair of real-valued vectors. isbiorthwfb assumes that the two pairs
of vectors LoR–HiR and LoD–HiD form dual filter pairs.
Data Types: single | double

tol — Tolerance
sqrt(eps(underlyingType(LoR))) (default) | scalar

Tolerance used in the filter bank checks, specified as a positive real scalar.

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical. The isbiorthwfb function returns a
1 if the filters satisfy all the conditions listed in “Biorthogonal Perfect Reconstruction Wavelet Filter
Bank” on page 1-747 within the specified tolerance.

checks — Biorthogonality checks
table

Biorthogonality checks, returned as a table. The table shows pass or fail for each check as well as
the maximum error and specified test tolerance where applicable. A test tolerance of 0 indicates that
the check is a logical pass or fail.

More About
Biorthogonal Perfect Reconstruction Wavelet Filter Bank

The lowpass and highpass analysis filters G and H, respectively, and lowpass and highpass synthesis
filters G and H, respectively, form a biorthogonal perfect reconstruction (PR) wavelet filter bank if the
filters satisfy certain conditions. This is a diagrammatic representation of the two-channel filter bank.
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Here, G(n) = (− 1)nH(1− n) and G(n) = (− 1)nH(1− n).

The filters G, H,, G, and H, form a biorthogonal PR wavelet filter bank if the following conditions are
satisfied.

• Dual filter lengths correct — The length of G equals the length of H,, and the length of G
equals the length of H,.

• Filter sums — For both lowpass filters, the sum of the coefficients equals √2. For both highpass
filters, the sum of the coefficients equals 0.

• Zero lag lowpass dual filter cross-correlation — The zero lag cross-correlation of
the lowpass filter G and its dual equals 1: ∑

n
g(n)g(n) = 1

• Zero lag highpass dual filter cross-correlation — The zero lag cross-correlation of
the highpass filter H, and its dual equals 1: ∑

n
h(n)h(n) = 1

• Even lag lowpass dual filter cross-correlation — The even nonzero lag cross-
correlation of the lowpass filter and its dual equals 0: ∑

n
g(n)g(n + 2k) = 0 for k ≠ 0.

• Even lag highpass dual filter cross-correlation — The even nonzero lag cross-
correlation of the highpass filter and its dual equals 0 ∑

n
h(n)h(n + 2k) = 0 for k ≠ 0.

• Even lag lowpass-highpass cross-correlation — The even lag cross-correlation of the
lowpass and dual highpass filters equals 0. Similarly, the even lag cross-correlation of the highpass
and dual lowpass filters equals 0: ∑

n
g(n)h(n + 2k) = ∑

n
h(n)g(n + 2k) = 0

Version History
Introduced in R2022b

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.
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[2] Burrus, C. S., Ramesh A. Gopinath, and Haitao Guo. Introduction to Wavelets and Wavelet
Transforms: A Primer. Upper Saddle River, N.J: Prentice Hall, 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
isorthwfb | wavemngr | wfilters

Topics
“Orthogonal and Biorthogonal Filter Banks”
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isheart2
Inverse shearlet transform

Syntax
imrec = isheart2(sls,cfs)

Description
imrec = isheart2(sls,cfs) returns the inverse shearlet transform or shearlet synthesis based
on the shearlet system sls and the shearlet transform coefficients cfs. The isheart2 function
assumes sls is the same shearlet system used to obtain the transform coefficients cfs.

Examples

Perfect Reconstruction of Shearlet Transform

Load an image and create a shearlet system that can be applied to the image.

load shapes
[numRows,numCols] = size(shapes);
sls = shearletSystem('ImageSize',[numRows numCols],'NumScales',4)

sls = 
  shearletSystem with properties:

         ImageSize: [512 512]
         NumScales: 4
    PreserveEnergy: 0
     TransformType: 'real'
    FilterBoundary: 'periodic'
         Precision: 'double'

Obtain the shearlet coefficients of the image.

cfs = sheart2(sls,shapes);

Take the inverse transform of the coefficients. Check for perfect reconstruction.

imrec = isheart2(sls,cfs);
norm(imrec-shapes,'fro')

ans = 8.2562e-14

Input Arguments
sls — Shearlet system
shearletSystem object
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Shearlet system, specified as a shearletSystem object.

cfs — Shearlet transform coefficients
3-D array

Shearlet transform coefficients, specified as a real- or complex-valued 3-D array. The 3-D array cfs is
an M-by-N-by-K matrix where M and N are equal to the row and column dimensions of the original
image. The size of the third dimension, K, is equal to the number of shearlets including the lowpass
filter, K = numshears(sls) + 1.

The isheart2 function assumes sls is the same shearlet system used to obtain the transform
coefficients cfs.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
imrec — Inverse shearlet transform
real-valued matrix

Inverse shearlet transform or shearlet synthesis, based on the shearlet system sls and the shearlet
transform coefficients cfs. The size of imrec is equal to the size of the original image. The data type
of imrec matches the Precision value of the shearlet system.
Data Types: single | double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sheart2 | shearletSystem

Topics
“Shearlet Systems”
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isnode
Existing node test

Syntax
R = isnode(T,N)

Description
isnode is a tree-management utility.

R = isnode(T,N) returns 1's for nodes N, which exist in the tree T, and 0's for others.

N can be a column vector containing the indices of nodes or a matrix, that contains the depths and
positions of nodes.

In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the position of the i-th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create initial tree. 
ord = 2; 
t = ntree(ord,3);    % binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% Check node index. 
isnode(t,[1;3;25])

ans =
    1 
    1 
    0

% Check node Depth_Position.
isnode(t,[1 0;3 1;4 5])

ans =
    1 
    1 
    0

Version History
Introduced before R2006a

See Also
istnode | wtreemgr
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isOrthogonal
Determine if DWT filter bank is orthogonal

Syntax
tf = isOrthogonal(fb)
tf = isOrthogonal(fb,tol)

Description
tf = isOrthogonal(fb) returns true if the discrete wavelet transform (DWT) filter bank fb is an
orthogonal filter bank and false otherwise.

To determine if a DWT filter bank is biorthogonal, use isBiorthogonal.

tf = isOrthogonal(fb,tol) uses the positive real-valued tolerance tol to determine the
orthogonality of the filter bank fb. tol is a small positive number in the interval (0,10-2]. If
unspecified, tol defaults to 10-5.

Examples

Orthogonality Test of DWT Filter Bank

Create a DWT filter bank using the Daubechies db6 wavelet. Confirm the filter bank is orthogonal.

fb = dwtfilterbank('Wavelet','db6');
isOrthogonal(fb)

ans = logical
   1

Plot the time-domain and centered scaling functions for each level in the filter bank.

[phi,t] = scalingfunctions(fb);
psi = wavelets(fb);
plot(t,phi')
grid on
xlim([-200 200])
title('Scaling Functions')
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Confirm the scaling functions have norm square equal to 1.

sum(phi.^2,2)

ans = 6×1

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000

Plot the time-domain and centered wavelets corresponding to the wavelet passband filters.

plot(t,psi')
grid on
xlim([-200 200])
title('Wavelets')
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Confirm the wavelets have norm square equal to 1.

sum(psi.^2,2)

ans = 6×1

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000

Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

tol — Tolerance
10-5 (default) | positive scalar

Tolerance to use to determine orthogonality of the filter bank, specified as a positive scalar in the
interval (0,10-2].
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Version History
Introduced in R2018a

See Also
dwtfilterbank | isBiorthogonal | isorthwfb
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isorthwfb
Determine if filter bank is orthogonal wavelet filter bank

Syntax
tf = isorthwfb(Lo)
tf = isorthwfb(Lo,Hi)
tf = isorthwfb( ___ ,Tolerance=tol)
[tf,checks] = isorthwfb( ___ )

Description
tf = isorthwfb(Lo) returns true if the two-channel filter bank formed from the lowpass (scaling)
filter Lo satisfies the necessary and sufficient conditions to be a two-channel orthonormal perfect
reconstruction (PR) wavelet filter bank. isorthwfb forms the highpass (wavelet) filter using the qmf
function: Hi = qmf(Lo).

For a list of the necessary and sufficient conditions that the lowpass and highpass filters must satisfy,
see “Orthonormal Perfect Reconstruction Wavelet Filter Bank” on page 1-760.

tf = isorthwfb(Lo,Hi) uses the highpass (wavelet) filter Hi to determine whether Lo and Hi
jointly satisfy the necessary and sufficient conditions to be a two-channel orthonormal PR wavelet
filter bank.

isorthwfb assumes that Lo and Hi form an orthogonal quadrature mirror filter pair. To return
accurate results, ensure that you provide either both analysis filters or both synthesis filters.

tf = isorthwfb( ___ ,Tolerance=tol) uses the positive real scalar tolerance tol to determine
whether the filters satisfy the necessary and sufficient conditions to be a two-channel orthonormal PR
wavelet filter bank.

[tf,checks] = isorthwfb( ___ ) returns a table with all orthogonality checks.

Examples

Perform Orthogonality Checks on Filter Bank

Check the orthogonality conditions for the lowpass (scaling) filter associated with Daubechies least-
asymmetric wavelet of order 5. Confirm all the checks pass.

scalf = symwavf("sym5");
[tf,checks] = isorthwfb(scalf)

tf = logical
   1

checks=7×3 table
                                          Pass-Fail    Maximum Error    Test Tolerance
                                          _________    _____________    ______________
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    Equal-length filters                    pass                 0                 0  
    Even-length filters                     pass                 0                 0  
    Unit-norm filters                       pass        8.6264e-14        1.4901e-08  
    Filter sums                             pass        3.3374e-12        1.4901e-08  
    Even and odd downsampled sums           pass         1.669e-12        1.4901e-08  
    Zero autocorrelation at even lags       pass        1.2896e-13        1.4901e-08  
    Zero crosscorrelation at even lags      pass        6.9389e-18        1.4901e-08  

Obtain the lowpass and highpass synthesis filters associated with the Coiflet of order 5. Confirm the
two-channel filter bank formed from the filter pair satisfies the necessary and sufficient conditions to
be a two-channel orthonormal PR wavelet filter bank.

[~,~,LoR,HiR] = wfilters("coif5");
[tf2,checks2] = isorthwfb(LoR,HiR)

tf2 = logical
   1

checks2=7×3 table
                                          Pass-Fail    Maximum Error    Test Tolerance
                                          _________    _____________    ______________

    Equal-length filters                    pass                 0                 0  
    Even-length filters                     pass                 0                 0  
    Unit-norm filters                       pass        1.0399e-10        1.4901e-08  
    Filter sums                             pass        4.2426e-10        1.4901e-08  
    Even and odd downsampled sums           pass        2.1213e-10        1.4901e-08  
    Zero autocorrelation at even lags       pass        4.1627e-09        1.4901e-08  
    Zero crosscorrelation at even lags      pass        3.2192e-19        1.4901e-08  

Input Arguments
Lo — Lowpass filter
vector

Lowpass (scaling) filter, specified as a real-valued vector. Lo must have an even number of samples.
Lo should sum to 1 with an L2 norm of 1/√2, or sum to √2 with an L2 norm of 1.
Example: Lo = dbwavf("db4")
Data Types: single | double

Hi — Highpass filter
vector

Highpass (wavelet) filter, specified as a real-valued vector. Hi and Lo must have the same number of
samples and be even-length vectors.
Example: Hi = qmf(Lo), where Lo = dbwavf("db6").
Data Types: single | double

tol — Tolerance
sqrt(eps(underlyingType(Lo))) (default) | scalar
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Tolerance used in filter bank checks, specified as a positive real scalar.

Output Arguments
tf — True or false result
1 | 0 | logical array

True or false result, returned as a 1 or 0 of data type logical. The isorthwfb function returns a 1
if the filters satisfy all the conditions listed in “Orthonormal Perfect Reconstruction Wavelet Filter
Bank” on page 1-760 within the specified tolerance.

checks — Orthogonality checks
table

Orthogonality checks, returned as a table. The table shows pass or fail for each check as well as
the maximum error and specified test tolerance where applicable. A test tolerance of 0 indicates that
the check is a logical pass or fail.

More About
Orthonormal Perfect Reconstruction Wavelet Filter Bank

A lowpass filter G and highpass filter H form an orthonormal perfect reconstruction (PR) wavelet
filter bank if the filters satisfy certain conditions. The lowpass and highpass analysis filters G and H,
respectively, are time reverses of the lowpass and highpass synthesis filters G and H, respectively.
This is a diagrammatic representation of the two-channel filter bank.

The lowpass and highpass filters form an orthonormal PR wavelet filter bank if all of the following
conditions are satisfied.

• Equal-length filters — The lowpass and highpass filters have an equal number of
coefficients.

• Even-length filters — The lowpass and highpass filters have an even number of coefficients.
• Unit-norm filters — The L2 norm of each filter is equal to 1.
• Filter sums — The sum of the lowpass filter coefficients equals √2, and the sum of the highpass
filter coefficients equals 0.

• Even and odd downsampled sums — The lowpass filter G satisfies the fundamental condition:
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∑
i = 1

N/2
g2i = ∑

i = 1

N/2
g2i− 1,

where gk is the kth filter coefficient of G and N is the length of G. In other words, the sum of the
even-indexed filter coefficients and the sum of the odd-indexed coefficients both equal 1/√2.

• Zero autocorrelation at even lags — The autocorrelation of the lowpass and highpass
filters at all even nonzero lags equals 0.

• Zero crosscorrelation at even lags — The cross-correlation of the lowpass and highpass
filters at all even lags equals 0.

Algorithms
Before performing the orthogonality checks, the isorthwfb function normalizes the lowpass filter so
its coefficients sum to √2.

Version History
Introduced in R2022b

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.

[2] Burrus, C. S., Ramesh A. Gopinath, and Haitao Guo. Introduction to Wavelets and Wavelet
Transforms: A Primer. Upper Saddle River, N.J: Prentice Hall, 1998.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
isbiorthwfb | wavemngr | wfilters

Topics
“Orthogonal and Biorthogonal Filter Banks”
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istnode
Terminal nodes indices test

Syntax
R = istnode(T,N)

Description
istnode is a tree-management utility.

R = istnode(T,N) returns ranks (in left to right terminal nodes ordering) for terminal nodes N
belonging to the tree T, and 0's for others.

N can be a column vector containing the indices of nodes or a matrix that contains the depths and
positions of nodes.

In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the position of the i-th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create initial tree. 
ord = 2; 
t = ntree(ord,3); % binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Inde
% (see the plot function)x.
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% Find terminal nodes and return indices for terminal 
% nodes in the tree.
istnode(t,[14])
ans =
    6

istnode(t,[15])
ans =
    0

istnode(t,[1;7;14;25])
ans =
    0 
    1 
    6 
    0 

istnode(t,[1 0;3 1;4 5])
ans =
    0
    2
    0

Version History
Introduced before R2006a

See Also
isnode | wtreemgr
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iswt
Inverse discrete stationary wavelet transform 1-D

Syntax
x = iswt(swc,wname)
x = iswt(swa,swd,wname)

x = iswt(swc,LoR,HiR)
x = iswt(swa,swd,LoR,HiR)

Description
x = iswt(swc,wname) reconstructs the 1-D signal x based on the multilevel stationary wavelet
decomposition swc using the wavelet specified by wname. swc is expected to be the output of the swt
function. The wname wavelet must be the same wavelet used to obtain the swc structure.

x = iswt(swa,swd,wname) uses the approximation coefficients swa and detail coefficients swd to
reconstruct the 1-D signal. The real-valued matrices swa and swd are expected to be the outputs of
the swt function.

The syntax iswt(swa(end,:),swd,wname) is equivalent to iswt(swa,swd,wname).

x = iswt(swc,LoR,HiR) uses the scaling filter LoR and wavelet filter HiR. The filters are expected
to be the reconstruction filters associated with the wavelet used to create the swc structure. For
more information, see wfilters.

x = iswt(swa,swd,LoR,HiR) uses the scaling filter LoR and wavelet filter HiR. The filters are
expected to be the reconstruction filters associated with the wavelet used to create the swc
structure. For more information, see wfilters.

The syntax iswt(swa(end,:),swd,LoR,HiR) is equivalent to iswt(swa,swd,LoR,HiR).

Examples

Multilevel Stationary Wavelet Reconstruction

Demonstrate perfect reconstruction using swt and iswt with a biorthogonal wavelet.

load noisbloc
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('bior3.5');
[swa,swd] = swt(noisbloc,3,Lo_D,Hi_D);
recon = iswt(swa,swd,Lo_R,Hi_R);
norm(noisbloc-recon)

ans = 1.1145e-13
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Input Arguments
swc — Multilevel stationary wavelet decomposition
real-valued matrix

Multilevel stationary wavelet decomposition, specified as a real-valued matrix. swc is the output of
swt.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. iswt supports only Type 1 (orthogonal) or
Type 2 (biorthogonal) wavelets. See wfilters for a list of orthogonal and biorthogonal wavelets.

swa — Approximation coefficients
real-valued matrix

Approximation coefficients, specified as a real-valued matrix. swa is the output of swt.
Data Types: double

swd — Detail coefficients
real-valued matrix

Detail coefficients, specified as a real-valued matrix. swd is the output of swt.
Data Types: double

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
scaling (lowpass) reconstruction filter, and HiR is the wavelet (highpass) reconstruction filter. The
lengths of LoR and HiR must be equal. See wfilters for additional information.
Data Types: double

Version History
Introduced before R2006a

References
[1] Nason, G. P., and B. W. Silverman. “The Stationary Wavelet Transform and Some Statistical

Applications.” In Wavelets and Statistics, edited by Anestis Antoniadis and Georges
Oppenheim, 103:281–99. New York, NY: Springer New York, 1995. https://doi.org/
10.1007/978-1-4612-2544-7_17.

[2] Coifman, R. R., and D. L. Donoho. “Translation-Invariant De-Noising.” In Wavelets and Statistics,
edited by Anestis Antoniadis and Georges Oppenheim, 103:125–50. New York, NY: Springer
New York, 1995. https://doi.org/10.1007/978-1-4612-2544-7_9.
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[3] Pesquet, J.-C., H. Krim, and H. Carfantan. “Time-Invariant Orthonormal Wavelet Representations.”
IEEE Transactions on Signal Processing 44, no. 8 (August 1996): 1964–70. https://doi.org/
10.1109/78.533717.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

See Also
idwt | swt | waverec
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iswt2
Inverse discrete stationary 2-D wavelet transform

Syntax
X = iswt2(swc,wname)
X = iswt2(swc,LoR,HiR)

X = iswt2(A,H,V,D,wname)
X = iswt2(A,H,V,D,LoR,HiR)

Description
X = iswt2(swc,wname) returns the inverse discrete stationary 2-D wavelet transform of the
wavelet decomposition swc using the wavelet wname. The decomposition swc is the output of swt2.

Note swt2 uses double-precision arithmetic internally and returns double-precision coefficient
matrices. swt2 warns if there is a loss of precision when converting to double.

X = iswt2(swc,LoR,HiR) uses the specified lowpass and highpass wavelet reconstruction filters
LoR and HiR, respectively.

X = iswt2(A,H,V,D,wname) uses the approximation coefficients array A and detail coefficient
arrays H, V, and D. The arrays H, V, and D contain the horizontal, vertical, and diagonal detail
coefficients, respectively. The arrays are the output of swt2.

• If the decomposition swc or the coefficient arrays A, H, V, and D were generated from a multilevel
decomposition of a 2-D matrix, the syntax X = iswt2(A(:,:,end),H,V,D,wname) reconstructs
the 2-D matrix.

• If the decomposition swc or the coefficient arrays A, H, V, and D were generated from a single-
level decomposition of a 3-D array, the syntax X = iswt2(A(:,:,1,:),H,V,D,wname)
reconstructs the 3-D array.

X = iswt2(A,H,V,D,LoR,HiR) uses the lowpass and highpass wavelet reconstruction filters LoR
and HiR, respectively.

• If the decomposition swc or the coefficient arrays A, H, V, and D were generated from a multilevel
decomposition of a 2-D matrix, the syntax X = iswt2(A(:,:,end),H,V,D,LoR,HiR)
reconstructs the 2-D matrix.

• If the decomposition swc or the coefficient arrays A, H, V, and D were generated from a single-
level decomposition of a 3-D array, the syntax X = iswt2(A(:,:,1,:),H,V,D,LoR,HiR)
reconstructs the 3-D array.

Examples
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Multilevel 2-D Stationary Wavelet Reconstruction

Show perfect reconstruction using swt2 and iswt2 with an orthogonal wavelet.

load woman
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db6');
[ca,chd,cvd,cdd] = swt2(X,3,Lo_D,Hi_D);
recon = iswt2(ca,chd,cvd,cdd,Lo_R,Hi_R);
norm(X-recon)

ans = 1.0126e-08

Inverse Stationary Wavelet Transform of RGB Image

This example shows how to reconstruct an RGB image from a multilevel stationary wavelet
decomposition using approximation and detail coefficient arrays.

Load an RGB image. An RGB image is also referred to as a truecolor image. The image is a 3-D array
of type uint8. Since swt2 requires that the first and second dimensions both be divisible by a power
of 2, extract a portion of the image and view it.

imdata = imread('ngc6543a.jpg');
x = imdata(1:512,1:512,:);
image(x)
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Obtain the level 4 stationary wavelet decomposition of the image using the db4 wavelet. Return the
approximation coefficients and horizontal, vertical, and detail coefficients as separate arrays.

[a,h,v,d] = swt2(x,4,'db4');

Reconstruct an image using the green and blue components of the approximation coefficients.
Display the reconstruction.

a2 = zeros(size(a));
a2(:,:,2:3,4)=a(:,:,2:3,4);
xrec = iswt2(a2,0*h,0*v,0*d,'db4');
xrec2 = (xrec-min(xrec(:)))/(max(xrec(:))-min(xrec(:)));
image(xrec2)
title('Reconstruction')

Input Arguments
swc — Stationary wavelet decomposition
3-D array | 4-D array

Stationary wavelet decomposition, specified as a 3-D or 4-D array. The decomposition contains the
approximation and detail coefficients of the 2-D stationary wavelet transform (SWT). The stationary
wavelet decomposition is the output of swt2.
Data Types: double

 iswt2

1-769



wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. iswt2 supports only Type 1
(orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters for a list of orthogonal and
biorthogonal wavelets. The specified wavelet must be the same wavelet used to obtain the
approximation and detail coefficients.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.

A — Approximation coefficients
2-D matrix | 3-D array | 4-D array

Approximation coefficients, specified as a multidimensional array. The array is the output of swt2.
Data Types: double

H,V,D — Detail coefficients
2-D matrix | 3-D array | 4-D array

Detail coefficients, specified as multidimensional arrays of equal size. H, V, and D contain the
horizontal, vertical, and diagonal detail coefficients, respectively. The arrays are the output of swt2.
Data Types: double

Output Arguments
X — Reconstruction
2-D matrix | 3-D array

Reconstruction, returned as a 2-D matrix or 3-D array.

If swc or (A,H,V,D) are obtained from an indexed image analysis or a truecolor (RGB) image analysis,
then X is an m-by-n matrix or an m-by-n-by-3 array, respectively.

Version History
Introduced before R2006a

R2017b: Distinguish Single-Level Truecolor Image from Multilevel Indexed Image
Decompositions
Behavior changed in R2017b

To distinguish a single-level decomposition of a truecolor image from a multilevel decomposition of an
indexed image, the approximation and detail coefficient arrays of truecolor images are 4-D arrays.

• Migrate from Previous Releases to R2017b

Depending on the original input data type and level of wavelet decomposition, you might have to
take different steps to make swt2 coefficient arrays from previous releases compatible with
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R2017b coefficient arrays. The steps depend on whether you have a single coefficient array or
separate approximation and detail coefficient arrays.

Single Coefficient Array Multiple Coefficient Arrays
Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Truecolor image

• Single-level: If swc is the output of swt2 from a
previous release, execute:

swc1 = double(swc);
• Multi-level: If swc is the output of swt2 from a

previous release, execute:

swc1 = double(swc);

Input: Truecolor image

• Single-level: If ca, chd, cvd, and cdd are outputs
of swt2 from a previous release, execute:

ca1 = double(ca);
chd1 = double(chd);
cvd1 = double(cvd);
cdd1 = double(cdd);
ca2 = reshape(ca1,[m,n,1,3]);
chd2 = reshape(chd1,[m,n,1,3]);
cvd2 = reshape(cvd1,[m,n,1,3]);
cdd2 = reshape(cdd1,[m,n,1,3]);

• Multi-level: If ca, chd, cvd, and cdd are outputs
of swt2 from a previous release, execute:

ca1 = double(ca);
chd1 = double(chd);
cvd1 = double(cvd);
cdd1 = double(cdd);

• Migrate from R2017b to Previous Releases

Depending on the original input data type and level of wavelet decomposition, you might have to
take different steps to make R2017b swt2 coefficient arrays compatible with the coefficient arrays
from previous releases. The steps depend on whether you have a single coefficient array or
separate approximation and detail coefficient arrays.

Single Coefficient Array Multiple Coefficient Arrays
Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Truecolor image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Truecolor image

• Single-level: If ca, chd, cvd, and cdd are outputs
of swt2 from R2017b, execute:

ca1 = single(squeeze(ca));
chd1 = single(squeeze(chd));
cvd1 = single(squeeze(cvd));
cdd1 = single(squeeze(cdd));

• Multi-level: No compatibility issues
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wavelet name must be constant.

See Also
idwt2 | swt2 | waverec2
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itqwt
Inverse tunable Q-factor wavelet transform

Syntax
xrec = itqwt(wt,n)
xrec = itqwt(wt,n,Name=Value)

Description
xrec = itqwt(wt,n) returns the inverse tunable Q-factor transform (TQWT) of the analysis
coefficients in wt. wt is a cell array containing the wavelet subband and lowpass coefficients obtained
from tqwt using the default quality factor of 1. n is the original signal length specified as a positive
scalar.

xrec = itqwt(wt,n,Name=Value) specifies one or more additional name-value arguments. For
example, xrec = itqwt(x,1024,QualityFactor=2) specifies a quality factor of 2.

Examples

Inverse Tunable Q-factor Wavelet Transform

Load an ECG signal. Obtain the tunable Q-factor wavelet transform to the default maximum
decomposition level using a quality factor of 3.

load wecg
qf = 3;
wt = tqwt(wecg,QualityFactor=qf);

Reconstruct the data from the subband coefficients and confirm perfect reconstruction.

xrec = itqwt(wt,length(wecg),QualityFactor=qf);
max(abs(xrec-wecg))

ans = 5.5511e-16

Return the inverse TQWT at the coarsest scale.

xrec = itqwt(wt,length(wecg),QualityFactor=qf,Level=length(wt)-2);
plot(wecg)
hold on
plot(xrec,LineWidth=2)
hold off
axis tight
legend("Original Signal","Reconstruction")
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Input Arguments
wt — Tunable Q-factor wavelet transform
cell array

Tunable Q-factor wavelet transform, specified as a cell array. The elements of wt contain the wavelet
subband and lowpass coefficients. wt is expected to be the output of tqwt.
Data Types: single | double
Complex Number Support: Yes

n — Original signal length
positive integer

Original signal length in samples, specified as a positive integer. If n is odd, n+1 is used internally to
invert the TQWT and the first n samples are returned.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: xrec = itqwt(wt,2048,Level=3,QualityFactor=2)
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Level — Reconstruction level
0 (default) | nonnegative integer

Reconstruction level of analysis coefficients, specified as a nonnegative integer less than or equal to
length(wt)-2. If unspecified, itqwt reconstructs the TQWT up to the resolution level of the
original signal.
Example: xrec = itqwt(x,Level=1) returns the inverse TQWT at level 1.
Data Types: single | double

QualityFactor — Quality factor
1 (default) | positive scalar

Quality factor, specified as a positive scalar greater than or equal to 1. The quality factor must match
the value used in the TQWT.
Example: xrec = itqwt(x,QualityFactor=2) specifies a quality factor of 2.
Data Types: single | double

Output Arguments
xrec — Inverse tunable-Q wavelet transform
vector | matrix | 3-D array

Inverse tunable-Q wavelet transform, returned as a vector, matrix, or 3-D array.
Data Types: single | double

Tips
• To reconstruct only the scaling coefficients, specify a reconstruction level of length(wt)-1.

Version History
Introduced in R2021b

References
[1] Selesnick, Ivan W. “Wavelet Transform With Tunable Q-Factor.” IEEE Transactions on Signal

Processing 59, no. 8 (August 2011): 3560–75. https://doi.org/10.1109/TSP.2011.2143711.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The TQWT array wt is the only supported input argument.
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See Also
Apps
Signal Multiresolution Analyzer

Functions
tqwt | tqwtmra

Topics
“Time-Frequency Gallery”
“Tunable Q-factor Wavelet Transform”
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iwsst
Inverse wavelet synchrosqueezed transform

Syntax
xrec = iwsst(sst)
xrec = iwsst(sst,f,freqrange)
xrec = iwsst(sst,iridge)
xrec = iwsst( ___ ,wav)
xrec = iwsst( ___ ,iridge,'NumFrequencyBins',numBins)

Description
xrec = iwsst(sst) inverts the input synchrosqueezed transform, sst, and returns the inverse in
vector xrec. To obtain the sst input, use the wsst function. The iwsst function assumes that you
obtain sst using the analytic Morlet wavelet.

Note The wavelet transform does not preserve a nonzero mean. After inverting the synchrosqueezed
transform, you must add back the original signal mean.

xrec = iwsst(sst,f,freqrange) inverts the synchrosqueezed transform for a specified range of
frequencies, freqrange, contained in the frequency vector, f. The frequency vector, f, is the output
of wsst.

xrec = iwsst(sst,iridge) inverts the synchrosqueezed transform along the time-frequency
ridges specified by iridge, the index column vector. iridge is the output of wsstridge. The xrec
output is the same size as iridge.

xrec = iwsst( ___ ,wav) uses the analytic wavelet specified by wav to invert the synchrosqueezed
transform. This wavelet must be the same wavelet as used in wsst. You can include any of the input
arguments from previous syntaxes.

xrec = iwsst( ___ ,iridge,'NumFrequencyBins',numBins) returns the inverse
synchrosqueezed transform with numBins-many additional frequency bins included on either side of
each iridge index bin.

Examples

Inverse Synchrosqueezed Transform of Chirp

Obtain the wavelet synchrosqueezed transform of a quadratic chirp using default values. Then
reconstruct the signal using the inverse wavelet synchrosqueezed transform.

load quadchirp;
sst = wsst(quadchirp);
xrec = iwsst(sst);
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Synchrosqueezed and Inverse Synchrosqueezed Transform of Chirp

Obtain the wavelet synchrosqueezed transform of a quadratic chirp sampled at 1000 Hz. Then
reconstruct the chirp.

Load the chirp and obtain the synchrosqueezed transform.

load quadchirp;
sstchirp = wsst(quadchirp,'ExtendSignal',true);

Extract the maximum energy time-frequency ridge and reconstruct the signal mode along the ridge.

[~,iridge] = wsstridge(sstchirp);
xrec = iwsst(sstchirp,iridge);

Plot and zoom in on the original and reconstructed signal.

plot(tquad,xrec,'r');
hold on;
plot(tquad,quadchirp,'b--');
xlabel('Time'); ylabel('Amplitude');
set(gca,'ylim',[-1.5 1.5]);
legend('Reconstruction','Original');
grid on;
title('Reconstruction of Chirp Along Maximum Time-Frequency Ridge');
zoom xon
zoom(50)
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Inverse Synchrosqueezed Transform of Range of Frequencies

Obtain the inverse synchrosqueezed transform for a specified frequency range of a two-component
signal. The input is a combination of an amplitude-modulated and a frequency-modulated signal.

Create the signal.

t = 0:0.001:0.1;
x1 = (2+0.5*cos(2*pi*10*t)).*cos(2*pi*200*t+10*sin(2*pi*5*t));
x2 = cos(2*pi*50*t);
sig = x1+x2;

Obtain the wavelet synchrosqueezed transform and plot the resulting two frequency components.

[sst,f] = wsst(sig,1000,'ExtendSignal',true);
contour(t,f,abs(sst));
grid on;
title('Wavelet Synchrosqueezed Transform');
ylabel('Frequency');
xlabel('Time');
hold on
plot(t,140*ones(size(t)),'r--');
plot(t,260*ones(size(t)),'r--');

Obtain the inverse synchrosqueezed transform for frequencies from 140 Hz to 260 Hz. Plot the result.
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xrec = iwsst(sst,f,[140,260]);
subplot(2,1,1);
plot(t,x1);
title('Original Signal');
subplot(2,1,2);
plot(t,xrec,'r');
title('Reconstructed Signal');

Synchrosqueezed and Inverse Synchrosqueezed Transform of Speech Signal

Obtain the wavelet synchrosqueezed transform and inverse synchrosqueezed transform of a speech
sample using the bump wavelet.

Load the speech signal and obtain the synchrosqueezed transform and inverse synchrosqueezed
transform.

load mtlb
dt = 1/Fs;
t = 0:dt:numel(mtlb)*dt-dt;
Txmtlb = wsst(mtlb,'bump');
xrec = iwsst(Txmtlb,'bump');

Obtain the L-infinity norm of the difference between the original waveform and the reconstruction.
Plot the results.
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Linf = norm(abs(mtlb-xrec),Inf);
plot(t,mtlb)
hold on
xlabel('Seconds')
ylabel('Amplitude')
plot(t,xrec,'r')
title({'Reconstruction of Wavelet Synchrosqueezed Transform';...
    ['Largest Absolute Difference: ' num2str(Linf,'%1.2f')]})

Synchrosqueezed Transform Using Specified Number of Bins for Chirp

This example shows how to invert the wavelet synchrosqueezed transform using a specified number
of frequency bins for a quadratic chirp. The chirp is sampled at 1000 Hz.

load quadchirp;
sstchirp = wsst(quadchirp,'ExtendSignal',true);

Extract the maximum energy time-frequency ridge using 10 bins on each side of the iridge index and
reconstruct the signal mode along the ridge.

[~,iridge] = wsstridge(sstchirp);
xrec = iwsst(sstchirp,iridge,'NumFrequencyBins',10);

Plot the original and reconstructed signal.
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plot(tquad,xrec,'r');
hold on;
plot(tquad,quadchirp,'b--');
xlabel('Time'); ylabel('Amplitude');
set(gca,'ylim',[-1.5 1.5]);
legend('Reconstruction','Original');
grid on;
title('Reconstruction of Chirp Along Maximum Time-Frequency Ridge');

Input Arguments
sst — Synchrosqueezed transform
matrix

Synchrosqueezed transform, specified as a matrix. sst is the output from the wsst function.

f — Synchrosqueezed transform frequencies
vector

Synchrosqueezed transform frequencies corresponding to the rows of the synchrosqueezed
transform, specified as a vector. The number of elements in the frequency vector is equal to the
number of rows in the sst input. If you specify f, you must also specify freqrange.

freqrange — Frequency range
two-element vector
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Frequency range for which to return inverse synchrosqueezed transform values, specified as a two-
element vector. The values of freqrange must be in the range of the values of the frequencies, f.
The first and second elements of freqrange define the start and end of the frequency range, where
the frequency values in that range must be positive and strictly increasing. If you specify freqrange,
you must also specify f.

iridge — Time-frequency ridge row indices
vector or matrix

Time-frequency ridge row indices of the synchrosqueezed transform specified as a vector or matrix.
iridge is the output of the wsstridge function. If iridge is a matrix, iwsst inverts the
synchrosqueezed transform along the first column of iridge. Then, it iteratively reconstructs along
subsequent columns of iridge. The sizes of iridge and the xrec output are the same.

wav — Analytic wavelet
'amor' (default) | 'bump'

Analytic wavelet used to compute the inverse synchrosqueezed transform, specified as one of the
following:

• 'amor' — Analytic Morlet wavelet
• 'bump' — Bump wavelet

You must use the same wavelet in the reconstruction that you used to compute the synchrosqueezed
transform, sst.

numBins — Number of additional frequency bins
16 (default) | positive integer

Number of additional frequency bins to include on either side of each iridge index bin, specified as
a positive integer. If the number of additional bins exceeds the number of frequency bins available at
a particular time step, iwsst truncates the reconstruction at the first or last frequency bin. The
default, 16, is one half the default number of voices per octave.

To specify this argument, you also specify iridge, which is the output of wsstridge. You cannot
include a frequency f and frequency range freqrange, if you include the number of frequency bins.

Output Arguments
xrec — Inverse synchrosqueezed transform
vector or matrix

Inverse synchrosqueezed transform, returned as a vector or matrix. If you do not specify an iridge
input, xrec is a column vector with the same number of rows as sst. If you specify an iridge input,
xrec is the same size as iridge.

Version History
Introduced in R2016a
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See Also
wsst | wsstridge

Topics
“Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing”
“Wavelet Synchrosqueezing”
“Time-Frequency Gallery”
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labelDefinitionsHierarchy
Get hierarchical list of label and sublabel names

Syntax
str = labelDefinitionsHierarchy(lbldefs)
str = labelDefinitionsHierarchy(lss)

Description
str = labelDefinitionsHierarchy(lbldefs) returns a character array with a hierarchical list
of label and sublabel names contained in lbldefs, a vector of signalLabelDefinition objects.

str = labelDefinitionsHierarchy(lss) returns a character array with a hierarchical list of
label and sublabel names contained in the labeledSignalSet object lss.

Examples

Label Hierarchy

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Visualize the label hierarchy of the set.

labelDefinitionsHierarchy(lss)

ans = 
    'WhaleType
       Sublabels: []
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: TrillPeaks
     '
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Input Arguments
lbldefs — Signal label definitions
signalLabelDefinition object | vector of signalLabelDefinition objects

Signal label definitions, specified as a signalLabelDefinition object or a vector of
signalLabelDefinition objects.
Example:
signalLabelDefinition("Asleep",'LabelType','roi','LabelDataType','logical')
can label a region of a signal in which a patient is asleep.

lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

Output Arguments
str — List of label and sublabel names
character array

List of label and sublabel names, returned as a character array.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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labelDefinitionsSummary
Get summary table of signal label definitions

Syntax
T = labelDefinitionsSummary(lbldefs)
T = labelDefinitionsSummary(lss)

T = labelDefinitionsSummary( ___ ,lblname)
T = labelDefinitionsSummary( ___ ,lblname,'sublbls')

Description
T = labelDefinitionsSummary(lbldefs) returns a table, T, with the properties of the label
definitions contained in lbldefs, a vector of signalLabelDefinition objects.

T = labelDefinitionsSummary(lss) returns a table, T, with the properties of the label
definitions contained in the labeledSignalSet object lss.

T = labelDefinitionsSummary( ___ ,lblname) returns a table with the properties of the label
lblname.

T = labelDefinitionsSummary( ___ ,lblname,'sublbls') returns a table of the properties of
the sublabels defined for lblname.

Examples

Label Properties

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Visualize the label properties of the set.

labelDefinitionsSummary(lss)
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ans=3×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag            Description         
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ____________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                
    "MoanRegions"     "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {0x0 double               }    ""     "Regions where moans occur" 
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"

Visualize the properties of the TrillRegions label.

labelDefinitionsSummary(lss,"TrillRegions")

ans=1×9 table
      LabelName       LabelType    LabelDataType    Categories    ValidationFunction    DefaultValue             Sublabels             Tag            Description         
    ______________    _________    _____________    __________    __________________    ____________    ___________________________    ___    ____________________________

    "TrillRegions"      "roi"        "logical"      {["N/A"]}        {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"

Visualize the properties of the TrillRegions sublabels.

labelDefinitionsSummary(lss,"TrillRegions",'sublbls')

ans=1×8 table
     LabelName      LabelType    LabelDataType    Categories    ValidationFunction    DefaultValue    Tag     Description 
    ____________    _________    _____________    __________    __________________    ____________    ___    _____________

    "TrillPeaks"     "point"       "numeric"      {["N/A"]}        {0x0 double}       {0x0 double}    ""     "Trill peaks"

Input Arguments
lbldefs — Signal label definitions
signalLabelDefinition object | vector of signalLabelDefinition objects

Signal label definitions, specified as a signalLabelDefinition object or a vector of
signalLabelDefinition objects.
Example:
signalLabelDefinition("Asleep",'LabelType','roi','LabelDataType','logical')
can label a region of a signal in which a patient is asleep.

lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:
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• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

Output Arguments
T — Summary table
table

Summary table with the properties of a label.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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labeledSignalSet
Create labeled signal set

Description
Use labeledSignalSet to store labeled signals along with label definitions. Create signal label
definitions using signalLabelDefinition.

Creation

Syntax
lss = labeledSignalSet

lss = labeledSignalSet(src)
lss = labeledSignalSet(src,lbldefs)

lss = labeledSignalSet(src,lbldefs,'MemberNames',mnames)
lss = labeledSignalSet(src,lbldefs,Name,Value)

Description

lss = labeledSignalSet creates an empty labeled signal set. Use addMembers to add signals to
the set. Use addLabelDefinitions to add label definitions to the set.

lss = labeledSignalSet(src) creates a labeled signal set for the input data source src. Use
addLabelDefinitions to add label definitions to the set.

lss = labeledSignalSet(src,lbldefs) creates a labeled signal set for the input data source
src using the signal label definitions lbldefs. Use signalLabelDefinition to create signal label
definitions.

lss = labeledSignalSet(src,lbldefs,'MemberNames',mnames) creates a labeled signal set
for the input data source src and specifies names for the members of the set. Use setMemberNames
to modify the member names. lbldefs is optional.

lss = labeledSignalSet(src,lbldefs,Name,Value) sets “Properties” on page 1-792 using
name-value arguments. You can specify multiple name-value arguments. Enclose each property name
in quotes. lbldefs is optional.

Input Arguments

src — Input data source
matrix | cell array | timetable | signalDatastore object | audioDatastore object

Input data source, specified as a matrix, a cell array, a timetable, a signalDatastore object, or an
audioDatastore object. src implicitly specifies the number of members of the set, the number of
signals in each member, and the data in each signal.
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Example: {randn(10,3),randn(17,9)} has two members. The first member contains three 10-
sample signals. The second member contains nine 17-sample signals.
Example: {{randn(10,1)},{randn(17,1),randn(27,1)}} has two members. The first member
contains one 10-sample signal. The second member contains a 17-sample signal and a 27-sample
signal.
Example:
{{timetable(seconds(1:10)',randn(10,3)),timetable(seconds(1:7)',randn(7,2))},
{timetable(seconds(1:3)',randn(3,1))}} has two members. The first member contains three
signals sampled at 1 Hz for 10 seconds and two signals sampled at 1 Hz for 7 seconds. The second
member contains one signal sampled at 1 Hz for 3 seconds.

Example: signalDatastore Object Pointing to Files

Specify the path to a set of sample sound signals included as MAT-files with MATLAB®. Each file
contains a signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
    {'laughter.mat'}
    {'mtlb.mat'    }
    {'splat.mat'   }
    {'train.mat'   }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat,
which differs from the other files in that the signal variable is not called y.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sdss = subset(sds,~strcmp(nms,"mtlb.mat"));

Use the subset datastore as the source for a labeledSignalSet object.

lss = labeledSignalSet(sdss)

lss = 
  labeledSignalSet with properties:

             Source: [1x1 signalDatastore]
         NumMembers: 6
    TimeInformation: "inherent"
             Labels: [6x0 table]
        Description: ""

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

lbldefs — Label definitions
vector of signalLabelDefinition objects
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Label definitions, specified as a vector of signalLabelDefinition objects.

mnames — Member names
character vector | string scalar | cell array of character vectors | string array

Member names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Example: labeledSignalSet({randn(100,1) randn(10,1)},'MemberNames',{'llama'
'alpaca'}) specifies a set of random signals with two members, 'llama' and 'alpaca'.

Properties
Description — Labeled signal set description
character vector | string scalar

Labeled signal set description, specified as a character vector or string scalar.
Example: 'Description','Sleep test patients by sex and age'
Data Types: char | string

SampleRate — Sample rate values
positive scalar | vector

This property is read-only.

Sample rate values, specified as a positive scalar or a vector. This property is valid only when the data
source does not contain inherent time information.

• Set SampleRate to a positive numeric scalar to specify the same sample rate for all signals in the
labeled set.

• Set SampleRate to a vector to specify that each member of the labeled set has signals sampled at
the same rate, but the sample rates differ from member to member. The vector must have a
number of elements equal to the number of members of the set. If a member of a set has signals
with different sample rates, then specify the sample rates using timetables.

Example: 'SampleRate',[1e2 1e3] specifies that the signals in the first member of a set are
sampled at a rate of 100 Hz and the signals in the second member are sampled at 1 kHz.

SampleTime — Sample time values
positive scalar | vector | duration scalar | duration vector

This property is read-only.

Sample time values, specified as a positive scalar, a vector, a duration scalar, or a duration vector.
This property is valid only when the data source does not contain inherent time information.

• Set SampleTime to a numeric or duration scalar to specify the same sample time for all signals
in the labeled set.

• Set SampleTime to a numeric or duration vector to specify that each member of the labeled set
has signals with the same time interval between samples, but the intervals differ from member to
member. The vector must have a number of elements equal to the number of members of the set.
If a member of a set has signals with different sample times, then specify the sample times using
timetables.

1 Functions

1-792



Example: 'SampleTime',seconds([1e-2 1e-3]) specifies that the signals in the first member of
a set have 0.01 second between samples, and the signals in the second member have 1 millisecond
between samples.

TimeValues — Time values
vector | duration vector | matrix | cell array

This property is read-only.

Time values, specified as a vector, a duration vector, a matrix, or a cell array. This property is valid
only when the data source does not contain inherent time information. Time values must be unique
and increasing.

• Set TimeValues to a numeric or duration vector to specify the same time values for all signals
in the labeled set. The vector must have the same length as all the signals in the set.

• Set TimeValues to a numeric or duration matrix or cell array to specify that each member of
the labeled set has signals with the same time values, but the time values differ from member to
member.

• If TimeValues is a matrix, then it must have a number of columns equal to the number of
members of the set. All signals in the set must have a length equal to the number of rows of the
matrix.

• If TimeValues is a cell array, then it must contain a number of vectors equal to the number of
members of the set. All signals in a member must have a length equal to the number of
elements of the corresponding vector in the cell array.

If a member of a set has signals with different time values, then specify the time values using
timetables.
Example: 'TimeValues',[1:1000;0:1/500:2-1/500]' specifies that the signals in the first
member of a set are sampled 1 Hz for 1000 seconds. The signals in the second member are sampled
at 500 Hz for 2 seconds.
Example: 'TimeValues',seconds([1:1000;0:1/500:2-1/500]') specifies that the signals in
the first member of a set are sampled 1 Hz for 1000 seconds. The signals in the second member are
sampled at 500 Hz for 2 seconds.
Example: 'TimeValues',{1:1000,0:1/500:2-1/500} specifies that the signals in the first
member of a set are sampled 1 Hz for 1000 seconds. The signals in the second member are sampled
at 500 Hz for 2 seconds.
Example: 'TimeValues',{seconds(1:1000),seconds(0:1/500:2-1/500)} specifies that the
signals in the first member of a set are sampled 1 Hz for 1000 seconds. The signals in the second
member are sampled at 500 Hz for 2 seconds.

NumMembers — Number of members in set
positive integer

This property is read-only.

Number of members in set, specified as a positive integer.

Labels — Labels table
table

This property is read-only.
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Labels table, specified as a MATLAB table. Each variable of Labels corresponds to a label defined for
the set. Each row of Labels corresponds to a member of the data source. The row names of Labels
are the member names.
Data Types: table

TimeInformation — Time information of source
'none' | 'sampleRate' | 'sampleTime' | 'timeValues' | 'inherent'

Time information of source, specified as one of the following:

• 'none' — The signals in the source have no time information.
• 'sampleRate' — The signals in the source are sampled at a specified rate.
• 'sampleTime' — The signals in the source have a specified time interval between samples.
• 'timeValues — The signals in the source have a time value corresponding to each sample.
• 'inherent' — The signals in the source contain inherent time information. MATLAB timetables

are an example of such signals.

Data Types: char | string

Source — Data source of labeled signal set
matrix | cell array | timetable

This property is read-only.

Data source of labeled signal set, specified as a matrix, a timetable, a cell array, or an audio
datastore.

• If Source is a numeric matrix, then the labeled signal set has one member that contains a number
of signals equal to the number of matrix columns.

Example: labeledSignalSet(randn(10,3)) has one member that contains three 10-sample
signals.

• If Source is a cell array of matrices, then the labeled signal set has a number of members equal
to the number of matrices in the cell array. Each member contains a number of signals equal to
the number of columns of the corresponding matrix.

Example: labeledSignalSet({randn(10,3),randn(17,9)}) has two members. The first
member contains three 10-sample signals. The second member contains nine 17-sample signals.

• If Source is a cell array, and each element of the cell array is a cell array of numeric vectors, then
the labeled signal set has a number of members equal to the number of cell array elements. Each
signal within a member can have any length.

Example: labeledSignalSet({{randn(10,1)},{randn(17,1),randn(27,1)}}) has two
members. The first member contains one 10-sample signal. The second member contains a 17-
sample signal and a 27-sample signal.

• If Source is a timetable with variables containing numeric values, then the labeled signal set has
one member that contains a number of signals equal to the number of variables. The time values
of the timetable must be of type duration, unique, and increasing.

Example: labeledSignalSet(timetable(seconds(1:10)',randn(10,3))) has one
member that contains three signals sampled at 1 Hz for 10 seconds.
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• If Source is a cell array of timetables, and each timetable has an arbitrary number of variables
with numeric values, then the labeled signal set has a number of members equal to the number of
timetables. Each member contains a number of signals equal to the number of variables in the
corresponding timetable.

Example:
labeledSignalSet({timetable(seconds(1:10)',randn(10,3)),timetable(seconds(1
:5)',randn(5,13))}) has two members. The first member contains three signals sampled at 1
Hz for 10 seconds. The second member contains 13 signals sampled at 1 Hz for 5 seconds.

• If Source is a cell array, and each element of the cell array is a cell array of timetables, then the
labeled signal set has a number of members equal to the number of cell array elements. Each
member can have any number of timetables, and each timetable within a member can have any
number of variables.

Example:
labeledSignalSet({{timetable(seconds(1:10)',randn(10,3)),timetable(seconds(
1:7)',randn(7,2))},{timetable(seconds(1:3)',randn(3,1))}}) has two members.
The first member contains three signals sampled at 1 Hz for 10 seconds and two signals sampled
at 1 Hz for 7 seconds. The second member contains one signal sampled at 1 Hz for 3 seconds.

• If the input data source, src, is an audio datastore, then the labeled signal set has a number of
members equal to the number of files to which the datastore points. The Source property
contains a cell array of character vectors with the file names. Each member contains all the
signals returned by the read of the corresponding datastore file.

Object Functions
addLabelDefinitions Add label definitions to labeled signal set
addMembers Add members to labeled signal set
countLabelValues Count label values
createDatastores Create datastores pointing to signal and label data
createFeatureData Create feature table or matrix and response vectors
editLabelDefinition Edit label definition properties
getAlternateFileSystemRoots Get alternate file system roots when data source of labeled signal set

is a datastore
getLabelDefinitions Get label definitions in labeled signal set
getLabeledSignal Get labeled signals from labeled signal set
getLabelIndices Get label indices pointing to label definitions in labeled signal set
getLabelNames Get label names in labeled signal set
getLabelValues Get label values from labeled signal set
getMemberNames Get member names in labeled signal set
getSignal Get signals from labeled signal set
head Get top rows of labels table
labelDefinitionsHierarchy Get hierarchical list of label and sublabel names
labelDefinitionsSummary Get summary table of signal label definitions
merge Merge two or more labeled signal sets
removeLabelDefinition Remove label definition from labeled signal set
removeMembers Remove members from labeled signal set
removePointValue Remove row from point label
removeRegionValue Remove row from ROI label
resetLabelValues Reset labels to default values
setAlternateFileSystemRoots Set alternate file system roots when data source of labeled signal set

is a datastore
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setLabelValue Set label value in labeled signal set
setMemberNames Set member names in labeled signal set
subset Get new labeled signal set with subset of members

Examples

Label Definitions for Whale Songs

Consider a set of whale sound recordings. The recorded whale sounds consist of trills and moans.
Trills sound like series of clicks. Moans are low-frequency cries similar to the sound made by a ship's
horn. You want to look at each signal and label it to identify the whale type, the trill regions, and the
moan regions. For each trill region, you also want to label the signal peaks higher than a certain
threshold.

Signal Label Definitions

Define an attribute label to store whale types. The possible categories are blue whale, humpback
whale, and white whale.

dWhaleType = signalLabelDefinition('WhaleType',...
   'LabelType','attribute',...
   'LabelDataType','categorical',...
   'Categories',{'blue','humpback','white'},...
   'Description','Whale type'); 

Define a region-of-interest (ROI) label to capture moan regions. Define another ROI label to capture
trill regions.

dMoans = signalLabelDefinition('MoanRegions',...
   'LabelType','roi',...
   'LabelDataType','logical',...
   'Description','Regions where moans occur');

dTrills = signalLabelDefinition('TrillRegions',...
   'LabelType','roi',...
   'LabelDataType','logical',...
   'Description','Regions where trills occur');        

Finally, define a point label to capture the trill peaks. Set this label as a sublabel of the dTrills
definition.

dTrillPeaks = signalLabelDefinition('TrillPeaks',...
   'LabelType','point',...
   'LabelDataType','numeric',...
   'Description','Trill peaks');

dTrills.Sublabels = dTrillPeaks;

Labeled Signal Set

Create a labeledSignalSet with the whale signals and the label definitions. Add label values to
identify the whale type, the moan and trill regions, and the peaks of the trills.

load labelwhalesignals
lbldefs = [dWhaleType dMoans dTrills];
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lss = labeledSignalSet({whale1 whale2},lbldefs,'MemberNames',{'Whale1','Whale2'}, ...
   'SampleRate',Fs,'Description','Characterize whale song regions');     

Visualize the label hierarchy and label properties using labelDefinitionsHierarchy and
labelDefinitionsSummary.

labelDefinitionsHierarchy(lss)

ans = 
    'WhaleType
       Sublabels: []
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: TrillPeaks
     '

labelDefinitionsSummary(lss)

ans=3×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag            Description         
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ____________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                
    "MoanRegions"     "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {0x0 double               }    ""     "Regions where moans occur" 
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"

The signals in the loaded data correspond to songs of two blue whales. Set the 'WhaleType' values
for both signals.

setLabelValue(lss,1,'WhaleType','blue');
setLabelValue(lss,2,'WhaleType','blue');

Visualize the 'Labels' property. The table has the newly added 'WhaleType' values for both
signals.

lss.Labels      

ans=2×3 table
              WhaleType    MoanRegions    TrillRegions
              _________    ___________    ____________

    Whale1      blue       {0x2 table}    {0x3 table} 
    Whale2      blue       {0x2 table}    {0x3 table} 

Visualize Region Labels

Visualize the whale songs to identify the trill and moan regions.

subplot(2,1,1)
plot((0:length(whale1)-1)/Fs,whale1)
ylabel('Whale 1')

subplot(2,1,2)
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plot((0:length(whale2)-1)/Fs,whale2)
ylabel('Whale 2')

Moan regions are sustained low-frequency wails.

• whale1 has moans centered at about 7 seconds, 12 seconds, and 17 seconds.
• whale2 has moans centered at about 3 seconds, 7 seconds, and 16 seconds.

Add the moan regions to the labeled set. Specify the ROI limits in seconds and the label values.

moanRegionsWhale1 = [6.1 7.7; 11.4 13.1; 16.5 18.1];
mrsz1 = [size(moanRegionsWhale1,1) 1];
setLabelValue(lss,1,'MoanRegions',moanRegionsWhale1,true(mrsz1));

moanRegionsWhale2 = [2.5 3.5; 5.8 8; 15.4 16.7];
mrsz2 = [size(moanRegionsWhale2,1) 1];
setLabelValue(lss,2,'MoanRegions',moanRegionsWhale2,true(mrsz2));

Trill regions have distinct bursts of sound punctuated by silence.

• whale1 has a trill centered at about 2 seconds.
• whale2 has a trill centered at about 12 seconds.

Add the trill regions to the labeled set.

trillRegionWhale1 = [1.4 3.1];
trsz1 = [size(trillRegionWhale1,1) 1];
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setLabelValue(lss,1,'TrillRegions',trillRegionWhale1,true(trsz1));

trillRegionWhale2 = [11.1 13];
trsz2 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,2,'TrillRegions',trillRegionWhale2,true(trsz2));

Create a signalMask (Signal Processing Toolbox) object for each whale song and use it to visualize
and label the different regions. For better visualization, change the label values from logical to
categorical.

mr1 = getLabelValues(lss,1,'MoanRegions');
mr1.Value = categorical(repmat("moan",mrsz1));
tr1 = getLabelValues(lss,1,'TrillRegions');
tr1.Value = categorical(repmat("trill",trsz1));

msk1 = signalMask([mr1;tr1],'SampleRate',Fs);

subplot(2,1,1)
plotsigroi(msk1,whale1)
ylabel('Whale 1')
hold on

mr2 = getLabelValues(lss,2,'MoanRegions');
mr2.Value = categorical(repmat("moan",mrsz2));
tr2 = getLabelValues(lss,2,'TrillRegions');
tr2.Value = categorical(repmat("trill",trsz2));

msk2 = signalMask([mr2;tr2],'SampleRate',Fs);

subplot(2,1,2)
plotsigroi(msk2,whale2)
ylabel('Whale 2')
hold on
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Visualize Point Labels

Label three peaks for each trill region. For point labels, you specify the point locations and the label
values. In this example, the point locations are in seconds.

peakLocsWhale1 = [1.553 1.626 1.7];
peakValsWhale1 = [0.211 0.254 0.211];

setLabelValue(lss,1,{'TrillRegions','TrillPeaks'}, ...
   peakLocsWhale1,peakValsWhale1,'LabelRowIndex',1);

subplot(2,1,1)
plot(peakLocsWhale1,peakValsWhale1,'v')
hold off

peakLocsWhale2 = [11.214 11.288 11.437];
peakValsWhale2 = [0.119 0.14 0.15];

setLabelValue(lss,2,{'TrillRegions','TrillPeaks'}, ...
   peakLocsWhale2,peakValsWhale2,'LabelRowIndex',1);

subplot(2,1,2)
plot(peakLocsWhale2,peakValsWhale2,'v')
hold off

1 Functions

1-800



Explore Label Values

Explore the label values using getLabelValues.

getLabelValues(lss)

ans=2×3 table
              WhaleType    MoanRegions    TrillRegions
              _________    ___________    ____________

    Whale1      blue       {3x2 table}    {1x3 table} 
    Whale2      blue       {3x2 table}    {1x3 table} 

Retrieve the moan regions for the first member of the labeled set.

getLabelValues(lss,1,'MoanRegions')

ans=3×2 table
     ROILimits      Value
    ____________    _____

     6.1     7.7    {[1]}
    11.4    13.1    {[1]}
    16.5    18.1    {[1]}

Use a second output argument to list the sublabels of a label.
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[value,valueWithSublabel] = getLabelValues(lss,1,'TrillRegions')

value=1×2 table
    ROILimits     Value
    __________    _____

    1.4    3.1    {[1]}

valueWithSublabel=1×3 table
    ROILimits     Value     Sublabels 
                           TrillPeaks 
    __________    _____    ___________

    1.4    3.1    {[1]}    {3x2 table}

To retrieve the values in a sublabel, express the label name as a two-element array.

getLabelValues(lss,1,{'TrillRegions','TrillPeaks'})

ans=3×2 table
    Location      Value   
    ________    __________

     1.553      {[0.2110]}
     1.626      {[0.2540]}
       1.7      {[0.2110]}

Find the value of the third trill peak corresponding to the second member of the set.

getLabelValues(lss,2,{'TrillRegions','TrillPeaks'}, ...
    'LabelRowIndex',1,'SublabelRowIndex',3)

ans=1×2 table
    Location      Value   
    ________    __________

     11.437     {[0.1500]}

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
    {'laughter.mat'}
    {'mtlb.mat'    }
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    {'splat.mat'   }
    {'train.mat'   }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
    'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
    'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
    'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-805 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)
    
    [sig,info] = read(sds);
    fs = info.SampleRate;

    [~,fn] = fileparts(info.FileName);
    if fn=="handel" || fn=="laughter"
        setLabelValue(lss,kj,"Voice",true)
    end
    
    xm = find(islocalmax(sig,'MaxNumExtrema',1));
    setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

    N = length(sig);
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    rois = randROI(N,round(N/10),round(N/6));
    setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

    kj = kj+1;
    
end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
    Voice    Count    Percent
    _____    _____    _______

    false      4      66.667 
    true       2      33.333 

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
           Maximum            Count    Percent    MemberCount
    ______________________    _____    _______    ___________

    0.80000000000000004441      1      16.667          1     
    0.89113331915798421612      1      16.667          1     
    0.94730769230769229505      1      16.667          1     
    1                           2      33.333          2     
    1.0575668990330560071       1      16.667          1     

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
    RanROI    Count    Percent    MemberCount
    ______    _____    _______    ___________

    ROI        24        100           6     
    other       0          0           0     

Create two datastores with the data in the labeled signal set:

• The signalDatastore (Signal Processing Toolbox) object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

• Use a signalMask (Signal Processing Toolbox) object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.
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• Add a red axis label to the signals that contain human voices.

tiledlayout flow

while hasdata(sd)

    [sg,nf] = read(sd);
    
    lbls = read(ld);
    
    nexttile
    
    msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);    
    plotsigroi(msk,sg)
    colorbar off
    xlabel('')
    
    xline(lbls{:}.Maximum{:}.Location, ...
        'LineWidth',2,'Color','#EDB120')
    
    if lbls{:}.Voice{:}
        ylabel('VOICED','Color','#D95319')
    end

end
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function roilims = randROI(N,wid,sep)

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

Version History
Introduced in R2018b

See Also
Apps
Signal Labeler

Objects
signalLabelDefinition | signalMask
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laurentMatrix
Create Laurent matrix

Description
Use the laurentMatrix object to create a matrix with laurentPolynomial elements. You can
perform mathematical operations on the matrices.

Creation

Syntax
lmat = laurentMatrix
lmat = laurentMatrix(Elements=entries)

Description

lmat = laurentMatrix creates a Laurent matrix that is a 2-by-2 identity matrix.

lmat = laurentMatrix(Elements=entries) creates a Laurent matrix with elements specified
by the value of the Elements property.

Properties
Elements — Laurent matrix elements
2-by-2 identity matrix (default) | cell array

Laurent matrix elements, specified as a cell array that has at most two rows and two columns. You
can specify an element as a real-valued scalar or laurentPolynomial object. laurentMatrix
converts all real-valued scalars into laurentPolynomial objects internally.
Example: lmat = laurentMatrix(Elements={2,4;lpA,lpB}) creates a 2-by-2 Laurent matrix,
where lpA and lpB are both laurentPolynomial objects.

Object Functions

Specific to laurentMatrix
ctranspose Laurent matrix transpose
det Laurent matrix determinant
dispMat Display Laurent matrix
inverse Laurent matrix inverse

Common to laurentMatrix and laurentPolynomial
dyaddown Dyadic downsampling of Laurent polynomial or Laurent matrix
dyadup Dyadic upsampling of Laurent polynomial or Laurent matrix
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eq Laurent polynomials or Laurent matrices equality test
plus Laurent polynomial or Laurent matrix addition
minus Laurent polynomial or Laurent matrix subtraction
mtimes Laurent polynomial or Laurent matrix multiplication
reflect Laurent polynomial or Laurent matrix reflection
uminus Unary minus for Laurent polynomial or Laurent matrix

Examples

Create Laurent Matrix

Create two Laurent polynomials:

• a(z) = 2 + 4z−1 + 6z−2

• b(z) = z2 + 3z + 5

lpA = laurentPolynomial(Coefficients=[2 4 6]);
lpB = laurentPolynomial(Coefficients=[1 3 5],MaxOrder=2);

Create the Laurent matrix 
−1 a z
b z 7

.

lmat = laurentMatrix(Elements={-1 lpA; lpB 7});

Display the elements of the matrix.

for j=1:2
    for k=1:2
        fprintf("===================\nlmat(%d,%d):\n",j,k);
        element = lmat.Elements{j,k}
    end
end

===================
lmat(1,1):

element = 
  laurentPolynomial with properties:

    Coefficients: -1
        MaxOrder: 0

===================
lmat(1,2):

element = 
  laurentPolynomial with properties:

    Coefficients: [2 4 6]
        MaxOrder: 0

===================
lmat(2,1):
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element = 
  laurentPolynomial with properties:

    Coefficients: [1 3 5]
        MaxOrder: 2

===================
lmat(2,2):

element = 
  laurentPolynomial with properties:

    Coefficients: 7
        MaxOrder: 0

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The dispMat object function is not supported.

See Also
laurentPolynomial | liftingScheme
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laurentPolynomial
Create Laurent polynomial

Description
Use the laurentPolynomial object to create a Laurent polynomial with real-valued polynomial
coefficients. You can specify the maximum order of the polynomial. You can perform mathematical
and logical operations on Laurent polynomials. You can also create a lifting scheme associated with a
pair of Laurent polynomials.

Creation

Syntax
lpoly = laurentPolynomial
lpoly = laurentPolynomial(Name=Value)

Description

lpoly = laurentPolynomial creates the constant Laurent polynomial, where the constant is
equal to 1 and the maximum order is equal to 0.

lpoly = laurentPolynomial(Name=Value) creates a Laurent polynomial with “Properties” on
page 1-810 specified by name-value arguments. For example, laurentPolynomial(MaxOrder=2)
creates a Laurent polynomial with maximum order equal to 2. You can specify multiple name-value
arguments.

Properties
Coefficients — Laurent polynomial coefficients
1 (default) | real-valued vector

Laurent polynomial coefficients, specified as a real-valued vector. If k is the length of the vector C,
then lpoly = laurentPolynomial(Coefficients=C) represents the Laurent polynomial

lpoly(z) = ∑
m = 1

k
C(m)z1−m .

Example: If C = [4 3 2 1], then P = laurentPolynomial(Coefficients=C) represents the
Laurent polynomial P(z) = 4 + 3z−1 + 2z−2 + z−3 .
Data Types: double

MaxOrder — Maximum order
0 (default) | integer
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Maximum order of the Laurent polynomial, specified as an integer. If k is the length of the vector C
and d is an integer, then lpoly = laurentPolynomial(Coefficients=C,MaxOrder=d)
represents the Laurent polynomial

lpoly(z) = ∑
m = 1

k
C(m)zd−m + 1 .

Example: If C = [2 4 6 8], then P = laurentPolynomial(Coefficients=C,MaxOrder=1)
represents the Laurent polynomial P(z) = 2z + 4 + 6z−1 + 8z−2 .
Data Types: double

Object Functions

Specific to laurentPolynomial
degree Degree of Laurent polynomial
euclid Euclidean algorithm for Laurent polynomials
polyphase Polyphase components of Laurent polynomial
mpower Laurent polynomial exponentiation
horzcat Horizontal concatenation of Laurent polynomials
vertcat Vertical concatenation of Laurent polynomials
lp2filters Laurent polynomials to filters
lp2LS Laurent polynomials to lifting steps and normalization factors
ne Laurent polynomials inequality test
rescale Rescale Laurent polynomial

Common to laurentPolynomial and laurentMatrix
dyaddown Dyadic downsampling of Laurent polynomial or Laurent matrix
dyadup Dyadic upsampling of Laurent polynomial or Laurent matrix
eq Laurent polynomials or Laurent matrices equality test
plus Laurent polynomial or Laurent matrix addition
minus Laurent polynomial or Laurent matrix subtraction
mtimes Laurent polynomial or Laurent matrix multiplication
reflect Laurent polynomial or Laurent matrix reflection
uminus Unary minus for Laurent polynomial or Laurent matrix

Examples

Basic Mathematical Operations Applied to Laurent Polynomials

Create three Laurent polynomials:

• a(z) = 1 + z−1

• b(z) = z2 + 3z + z−1

• c(z) = z3 + 3z2 + 5z + 7

a = laurentPolynomial(Coefficients=[1 1])

a = 
  laurentPolynomial with properties:
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    Coefficients: [1 1]
        MaxOrder: 0

b = laurentPolynomial(Coefficients=[1 3 0 1],MaxOrder=2)

b = 
  laurentPolynomial with properties:

    Coefficients: [1 3 0 1]
        MaxOrder: 2

c = laurentPolynomial(Coefficients=[1 3 5 7],MaxOrder=3)

c = 
  laurentPolynomial with properties:

    Coefficients: [1 3 5 7]
        MaxOrder: 3

Addition

Add the two polynomials a(z) and b(z). Use the helper function helperPrintLaurent to print the
result in algebraic form.

polySum = plus(a,b)

polySum = 
  laurentPolynomial with properties:

    Coefficients: [1 3 1 2]
        MaxOrder: 2

res = helperPrintLaurent(polySum);
disp(res)

z^(2) + 3*z + 1 + 2*z^(-1)

Add 2 to b(z).

consSum = b+2;
res = helperPrintLaurent(consSum);
disp(res)

z^(2) + 3*z + 2 + z^(-1)

Subtraction

Subtract a(z) from b(z).

polyDiff = minus(b,a);
res = helperPrintLaurent(polyDiff);
disp(res)

z^(2) + 3*z - 1
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Subtract a(z) from 1.

consDiff = 1-a;
res = helperPrintLaurent(consDiff);
disp(res)

- z^(-1)

Multiplication

Multiply a(z) and b(z).

polyProd = mtimes(a,b);
res = helperPrintLaurent(polyProd);
disp(res)

z^(2) + 4*z + 3 + z^(-1) + z^(-2)

Compute a(z)c(z)− b(z).

polyProd2 = a*c-b;
res = helperPrintLaurent(polyProd2);
disp(res)

z^(3) + 3*z^(2) + 5*z + 12 + 6*z^(-1)

To multiply a Laurent polynomial by a constant, use the rescale function.

consProd = rescale(b,7);
res = helperPrintLaurent(consProd);
disp(res)

7*z^(2) + 21*z + 7*z^(-1)

Exponentiation

Raise a(z) to the fourth power.

polyPow = mpower(a,4);
res = helperPrintLaurent(polyPow);
disp(res)

1 + 4*z^(-1) + 6*z^(-2) + 4*z^(-3) + z^(-4)

Compute b2(z)− c(z).

polyPow2 = b^2-c;
res = helperPrintLaurent(polyPow2);
disp(res)

z^(4) + 5*z^(3) + 6*z^(2) - 3*z - 1 + z^(-2)

Properties of Laurent Polynomials

Create two Laurent polynomials:

• a(z) = z − 1
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• b(z) = − 2z3 + 6z2− 7z + 2

a = laurentPolynomial(Coefficients=[1 -1],MaxOrder=1);
b = laurentPolynomial(Coefficients=[-2 6 -7 2],MaxOrder=3);

Reflection

Obtain the reflection of b(z).

br = reflect(b);
res = helperPrintLaurent(br);
disp(res)

2 - 7*z^(-1) + 6*z^(-2) - 2*z^(-3)

Unary Minus

Confirm the sum of b(z) and its unary negation is equal to 0.

b+uminus(b)

ans = 
  laurentPolynomial with properties:

    Coefficients: 0
        MaxOrder: 0

Degree

Multiply a(z) and b(z). Confirm the degree of the product is equal to the sum of the degrees of a(z)
and b(z).

ab = a*b;
degree(ab)

ans = 4

degree(a)+degree(b)

ans = 4

Exponentiation

Raise a(z) to the third power. Confirm the result is not equal to b(z).

a3 = a^3;
a3 ~= b

ans = logical
   1

Rescale

Confirm a(z) raised to the third power is equal to −b(z)/2− z/2.

zt = laurentPolynomial(Coefficients=[-1/2],MaxOrder=1);
b2 = rescale(b,-1/2)+zt;
eq(a3,b2)
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ans = logical
   1

Dyadic Operations

Create the Laurent polynomial c(z) = ∑
k = − 3

4
(− 1)k k zk. Obtain the degree of c(z).

cfs = (-1).^(-3:4).*(-3:4);
c = laurentPolynomial(Coefficients=fliplr(cfs),MaxOrder=4);
res = helperPrintLaurent(c);
disp(res)

4*z^(4) - 3*z^(3) + 2*z^(2) - z + z^(-1) - 2*z^(-2) + 3*z^(-3)

degree(c)

ans = 7

Obtain the dyadic upsampling and downsampling of c(z). Obtain the degree of both polynomials.

dUp = dyadup(c)

dUp = 
  laurentPolynomial with properties:

    Coefficients: [4 0 -3 0 2 0 -1 0 0 0 1 0 -2 0 3]
        MaxOrder: 8

degree(dUp)

ans = 14

dDown = dyaddown(c)

dDown = 
  laurentPolynomial with properties:

    Coefficients: [4 2 0 -2]
        MaxOrder: 2

degree(dDown)

ans = 3

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
laurentMatrix | liftingScheme
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laurmat
(To be removed) Laurent matrices constructor

Note laurmat will be removed in a future release. Use laurentMatrix instead. For more
information, see “Compatibility Considerations”.

Syntax
M = laurmat(V)

Description
M = laurmat(V) returns the Laurent matrix object M associated with V which can be a cell array (at
most two dimensional) of Laurent polynomials (see laurpoly) or an ordinary matrix.

Examples
% Define Laurent matrices.
M1 = laurmat(eye(2,2))
 
      | 1     0  |
      |          |
 M1 = |          |
      |          |
      | 0     1  |

Z  = laurpoly(1,1);
M2 = laurmat({1 Z;0 1})
 
      | 1     z^(+1)  |
      |               |
 M2 = |               |
      |               |
      | 0       1     |

% Calculus on Laurent polynomials.
P = M1 * M2
 
     | 1     z^(+1)  |
     |               |
 P = |               |
     |               |
     | 0       1     |

d = det(P)
 
d(z) = 1
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Version History
Introduced before R2006a

R2021b: laurmat will be removed
Not recommended starting in R2021b

laurmat will be removed in a future release. Use laurentMatrix instead.

Functionality Result Use Instead Compatibility
Considerations

M = laurmat(V) Still runs M =
laurentMatrix(Elem
ents=V)

You can also perform
mathematical
operations on the
matrices.

References
Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second Generation of Wavelets,” SIAM J.
Math. Anal., 29 (2), pp. 511–546.

See Also
laurentMatrix
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laurpoly
(To be removed) Laurent polynomials constructor

Note laurpoly will be removed in a future release. Use laurentPolynomial instead. For more
information, see “Compatibility Considerations”.

Syntax
P = laurpoly(C,d)
P = laurpoly(C,'dmin',d)
P = laurpoly(C,'dmax',d)
P = laurpoly(C,d)

Description
P = laurpoly(C,d) returns a Laurent polynomial object. C is a vector whose elements are the
coefficients of the polynomial P and d is the highest degree of the monomials of P.

If m is the length of the vector C, P represents the following Laurent polynomial:

P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)

P = laurpoly(C,'dmin',d) specifies the lowest degree instead of the highest degree of
monomials of P. The corresponding output P represents the following Laurent polynomial:

P(z) = C(1)*z^(d+m-1) + ... + C(m-1)*z^(d+1) + C(m)*z^d

P = laurpoly(C,'dmax',d) is equivalent to P = laurpoly(C,d).

Examples
% Define Laurent polynomials.
P = laurpoly([1:3],2);
P = laurpoly([1:3],'dmax',2)
 
P(z) = + z^(+2) + 2*z^(+1) + 3

P = laurpoly([1:3],'dmin',2)
 
P(z) = + z^(+4) + 2*z^(+3) + 3*z^(+2)

% Calculus on Laurent polynomials.
Z = laurpoly(1,1)
 
Z(z) = z^(+1)

Q = Z*P
 
Q(z) = + z^(+5) + 2*z^(+4) + 3*z^(+3)
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R = Z^1 - Z^-1
 
R(z) = + z^(+1) - z^(-1)

Version History
Introduced before R2006a

R2021b: laurpoly will be removed
Not recommended starting in R2021b

laurpoly will be removed in a future release. Use laurentPolynomial instead.

Functionality Result Use Instead Compatibility
Considerations

P = laurpoly(C,d)
and P =
laurpoly(C,'dmax',
d)

Still runs P =
laurentPolynomial(
Coefficients=C,Max
Order=d)

You can also create a
lifting scheme
associated with a pair of
Laurent polynomials.

P =
laurpoly(C,'dmin',
d)

Still runs P =
laurentPolynomial(
Coefficients=C,Max
Order=N+d-1) where
N is the length of C.

 

References
Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second Generation of Wavelets,” SIAM J.
Math. Anal., 29 (2), pp. 511–546.

See Also
laurentPolynomial
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leaves
Determine terminal nodes

Syntax
N = leaves(T)
[N,K] = leaves(T,'sort')
N = leaves(T,'dp')
[N,K] = leaves(T,'sortdp')
[N,K] = leaves(T,'sdp')

Description
N = leaves(T) returns the indices of terminal nodes of the tree T where N is a column vector.

The nodes are ordered from left to right as in tree T.

[N,K] = leaves(T,'s') or [N,K] = leaves(T,'sort') returns sorted indices. M = N(K) are
the indices reordered as in tree T, from left to right.

N = leaves(T,'dp') returns a matrix N, which contains the depths and positions of terminal
nodes.

N(i,1) is the depth of the i-th terminal node, and N(i,2) is the position of the i-th terminal node.

[N,K] = leaves(T,'sortdp') or [N,K] = leaves(T,'sdp') returns sorted nodes.

Examples
% Create initial tree.
ord = 2; 
t = ntree(ord,3);        % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)

% List terminal nodes (index).
tnodes_ind = leaves(t)
tnodes_ind =
     7
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     8
     4
     5
    13
    14

% List terminal nodes (sorted on index).
[tnodes_ind,Ind] = leaves(t,'sort')
tnodes_ind =
     4
     5
     7
     8
    13
    14

Ind =
     3
     4
     1
     2
     5
     6

% List terminal nodes (Depth_Position).
tnodes_depo = leaves(t,'dp')
tnodes_depo =
     3     0
     3     1
     2     1
     2     2
     3     6
     3     7

% List terminal nodes (sorted on Depth_Position).
[tnodes_depo,Ind] = leaves(t,'sortdp')
tnodes_depo =
     2     1
     2     2
     3     0
     3     1
     3     6
     3     7

Ind =
     3
     4
     1
     2
     5
     6

Version History
Introduced before R2006a
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See Also
tnodes | noleaves
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liftingScheme
Create lifting scheme for lifting wavelet transform

Description
Use the liftingScheme object to create a lifting scheme that you can efficiently apply to data.

Creation

Syntax
lscheme = liftingScheme
lscheme = liftingScheme(Name,Value)

Description

lscheme = liftingScheme creates the lifting scheme for the 'lazy' wavelet with normalization
set to 1.

lscheme = liftingScheme(Name,Value) creates a lifting scheme with “Properties” on page 1-
824 specified by name-value pairs. Enclose the property name in quotes. You can create a lifting
scheme using one of the following syntaxes:

• lscheme = liftingScheme('Wavelet',wname)
• lscheme = liftingScheme('CustomLowpassFilter',filter)
• lscheme =

liftingScheme('LiftingSteps',liftingSteps,'NormalizationFactors',normFactor
s)

Properties
Wavelet — Orthogonal or biorthogonal wavelet
'lazy' (default) | 'haar' | 'db1' | 'db2' | ...

Orthogonal or biorthogonal wavelet associated with the lifting scheme, specified as one of these.

Wavelet Family Wavelet
Daubechies 'lazy', 'haar', 'db1', 'db2', 'db3', 'db4',

'db5', 'db6', 'db7', and 'db8'
Symlet 'sym2', 'sym3', 'sym4', 'sym5', 'sym6',

'sym7', and 'sym8'
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Wavelet Family Wavelet
Cohen-Daubechies-Feauveau 'cdf1.1', 'cdf1.3', 'cdf1.5', 'cdf2.2',

'cdf2.4', 'cdf2.6', 'cdf3.1', 'cdf3.3',
'cdf3.5', 'cdf4.2', 'cdf4.4', 'cdf4.6',
'cdf5.1', 'cdf5.3', 'cdf5.5', 'cdf6.2',
'cdf6.4', and 'cdf6.6'

Coiflet 'coif1', and 'coif2'
Biorthogonal 'bior1.1', 'bior1.3','bior1.5',

'bior2.2', 'bior2.4', 'bior2.6',
'bior2.8', 'bior3.1', 'bior3.3',
'bior3.5', 'bior3.7', 'bior3.9',
'bior4.4', 'bior5.5', 'bior6.8', 'bs3',
and '9.7'

Reverse Biorthogonal 'rbs3', 'r9.7', 'rbio1.1', 'rbio1.3',
'rbio1.5', 'rbio2.2', 'rbio2.4',
'rbio2.6', 'rbio2.8', 'rbio3.1',
'rbio3.3', 'rbio3.5', 'rbio3.7',
'rbio3.9', 'rbio4.4', 'rbio5.5', and
'rbio6.8'

Example: lscheme = liftingScheme('Wavelet','bior3.7') creates the lifting scheme
associated with the 'bior3.7' biorthogonal wavelet.

CustomLowpassFilter — Lowpass filters
cell array

Lowpass filters associated with the lifting scheme, specified as a cell array.

• To create a lifting scheme associated with an orthogonal wavelet, set CustomLowpassFilter to
{LoD}, where LoD is the lowpass filter associated with wavelet.

• To create a lifting scheme associated with a biorthogonal wavelet, set CustomLowpassFilter to
{LoPrimal,LoDual}, where LoPrimal and LoDual are the lowpass filters associated with the
biorthogonal wavelet.

When you specify filter coefficients, the Wavelet property is automatically set to 'custom'.
Example: lscheme = liftingScheme('CustomLowpassFilter',{[sqrt(2)/2 sqrt(2)/2]})
creates a lifting scheme associated with the Haar wavelet.
Data Types: single | double

LiftingSteps — Lifting steps
liftingStep structure | array of liftingStep structures

Lifting steps associated with the lifting scheme, specified as an array of structures obtained from
liftingStep. To create a lifting scheme using LiftingSteps, you must also set the
NormalizationFactors property. When you set these two properties, the Wavelet property is
automatically set to 'custom'.
Example: lscheme = liftingScheme('LiftingSteps',ELS,'NormalizationFactors',NF)
creates a lifting scheme using the liftingStep structures specified in ELS and factors specified in
NF.
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NormalizationFactors — Normalization factors
non-zero scalar | vector

Normalization factors associated with the lifting scheme, specified as K or [K 1/K], where K is a
non-zero scalar. The factor K specifies the diagonal elements of the 2-by-2 normalization matrix. If
specified as a vector, the product of the vector elements must equal 1 to within precision.

To create a lifting scheme using NormalizationFactors, you must also set the LiftingSteps
property. When you set these two properties, the Wavelet property is automatically set to 'custom'.
Data Types: double

Object Functions
addlift Add elementary lifting steps
deletelift Delete elementary lifting steps
ls2filt Extract wavelet filters from lifting scheme
disp Display lifting scheme

Examples

Apply Lifting Scheme to Signal

Create the lifting scheme associated with the Haar wavelet.

lscheme = liftingScheme('Wavelet','haar')

lscheme = 
      Wavelet               : 'haar' 
     LiftingSteps          : [2 × 1] liftingStep 
     NormalizationFactors  : [1.4142 0.7071] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'predict'
    Coefficients: -1
        MaxOrder: 0

            Type: 'update'
    Coefficients: 0.5000
        MaxOrder: 0

Obtain the level 2 wavelet decomposition of a signal using the lifting scheme. Inspect the
approximation and detail coefficients.

sig = 0:7;
[appC,detC]=lwt(sig,'LiftingScheme',lscheme,'Level',2);
appC

appC = 2×1

    3.0000
   11.0000
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detC{1}

ans = 4×1

    0.7071
    0.7071
    0.7071
    0.7071

detC{2}

ans = 2×1

    2.0000
    2.0000

Obtain the inverse transform and demonstrate perfect reconstruction.

xrec = ilwt(appC,detC,'LiftingScheme',lscheme);
max(abs(xrec(:)-sig(:)))

ans = 2.6645e-15

Create Lifting Scheme Using Custom Lowpass Filter

Create a lifting scheme using the lowpass filters associated with the db4 wavelet.

wv = 'db4';
[~,~,LoR,~] = wfilters(wv);
LS = liftingScheme('CustomLowpassFilter',{LoR});

Demonstrate Wavelet Orthogonality

Create the lifting scheme associated with the biorthogonal bior2.2 wavelet.

lscheme = liftingScheme('Wavelet','bior2.2');

A wavelet with N vanishing moments is orthogonal to degree N − 1 polynomials. The bior2.2
wavelet has two vanishing moments. Create a signal by sampling a polynomial of degree 1.

sig = 1:16;

Apply the lifting scheme to the signal. Inspect the detail coefficients at the finest scale. The bior2.2
wavelet is orthogonal to the degree 1 polynomial. Confirm that except for the nonzero coefficient at
the boundary, the detail coefficients are zero.

[A,D] = lwt(sig,'LiftingScheme',lscheme);
D{1}

ans = 8×1

         0
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         0
         0
         0
         0
         0
         0
    5.6569

Now create the lifting scheme associated with the Haar wavelet.

lschemeH = liftingScheme('Wavelet','haar');

Apply the lifting scheme to the signal. Confirm the detail coefficients are all nonzero. Because the
Haar wavelet has only one vanishing moment, the wavelet is not orthogonal to the degree 1
polynomial.

[AH,DH] = lwt(sig,'LiftingScheme',lschemeH);
DH{1}

ans = 8×1

    0.7071
    0.7071
    0.7071
    0.7071
    0.7071
    0.7071
    0.7071
    0.7071

Version History
Introduced in R2021a

R2021b: CustomLowpassFilter name-value argument in liftingScheme must be a cell
array
Behavior changed in R2021b

Starting this release, to use a lowpass filter to create a lifting scheme associated with an orthogonal
wavelet, you must specify CustomLowpassFilter as a cell array. If you specify
CustomLowpassFilter as a vector, liftingScheme will generate an error.

To update your code, change instances of 'CustomLowpassFilter',lpass, where lpass is the
vector, to 'CustomLowpassFilter',{lpass}.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The disp object function is not supported.

See Also
liftingStep | lwt | ilwt | lwt2 | ilwt2

 liftingScheme

1-829



liftingStep
Create elementary lifting step

Syntax
Lstep = liftingStep
Lstep = liftingStep(Name,Value)

Description
Lstep = liftingStep returns an elementary lifting step as a structure array with default field
values. You can add the lifting step to a liftingScheme object. For more information, see addlift.

Lstep = liftingStep(Name,Value) sets field values using name-value arguments. For example,
Lstep = liftingStep('Type','update') creates a lifting step of type 'update'. You can
specify multiple name-value arguments. Enclose each field name in quotes.

Examples

Apply Lifting Scheme with User-Specified Lifting Steps

This example shows how to apply a lifting scheme with user-specified lifting steps to a signal.

Create two lifting steps. Concatenate the steps in a single array.

 els1 = liftingStep('Type','update',...
     'Coefficients',[-sqrt(3) 1],'MaxOrder',0);
 
 els2 = liftingStep('Type','predict',...
     'Coefficients',[1 sqrt(3)/4+(sqrt(3)-2)/4],'MaxOrder',1);
 
 stepArray = [els1;els2];

Specify normalization constants.

K = [(sqrt(3)+1)/sqrt(2) (sqrt(3)-1)/sqrt(2)];

Create a lifting scheme using the array of lifting steps and the normalization constants.

lScheme = liftingScheme('LiftingSteps',stepArray,'NormalizationFactors',K)

lScheme = 
      Wavelet               : 'custom' 
     LiftingSteps          : [2 × 1] liftingStep 
     NormalizationFactors  : [1.9319 0.5176] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'update'
    Coefficients: [-1.7321 1]
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        MaxOrder: 0

            Type: 'predict'
    Coefficients: [1 0.3660]
        MaxOrder: 1

Create a signal. Apply the lifting scheme to the signal.

sig = 0:20;
[ca,cd] = lwt(sig,'LiftingScheme',lScheme);

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ls = liftingStep('MaxOrder',2,'Type','update','Coefficients',[1 2 3])

Type — Type of lifting step
'predict' | 'update'

Type of elementary lifting step, specified as 'predict' or 'update'.
Data Types: char | string

Coefficients — Laurent polynomial coefficients
vector

Laurent polynomial coefficients that correspond to the z-transform of the lifting filter, specified as a
real-valued vector. The order of the first element of Coefficients is MaxOrder.
Data Types: single | double

MaxOrder — Maximum order
0 (default) | integer

Maximum order of the Laurent polynomial coefficient, specified as an integer.
Data Types: double

Output Arguments
Lstep — Elementary lifting step
structure array

Elementary lifting step, returned as a structure. Lstep has three fields:

• Type — Type of lifting step, returned as a character array.
• Coefficients — Laurent polynomial coefficients, returned as a real-valued vector.

 liftingStep
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• MaxOrder — Maximum order of the Laurent polynomial, returned as an integer.

Data Types: struct

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
liftingScheme | lwt | ilwt | lwtcoef | lwt2 | ilwt2 | lwtcoef2
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liftfilt
Apply elementary lifting steps on filters

Syntax
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,LoR,LiftingSteps=ELS)
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,LoR,NormalizationFactor=NF)
liftfilt( ___ )

Description
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,LoR,LiftingSteps=ELS) returns the four filters
obtained by adding an array of elementary lifting steps (ELS) starting from the two filters LoD and
LoR.

[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,LoR,NormalizationFactor=NF) scales the filters
by the normalization factor NF.

liftfilt( ___ ) with no output arguments plots the successive biorthogonal pairs. A scaling
function and a wavelet comprise each pair.

Examples

Generate Biorthogonal Wavelet Filters From Haar Filters

This example shows how to obtain the bior1.3 wavelet filters using Haar filters and elementary
lifting steps.

Obtain the Haar lowpass decomposition and reconstruction filters.

[LoD,~,LoR,~] = wfilters("haar");

Use liftingStep to create two elementary lifting steps of type update. Create an array consisting
of the two steps.

els1 = liftingStep(Type="update",...
    Coefficients=[0.125 -0.125],MaxOrder=0);
els2 = liftingStep(Type="update",...
    Coefficients=[0.125 -0.125],MaxOrder=1);
elsBoth = [els1;els2];

Apply the lifting steps to the Haar filters to obtain new filters.

[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,LoR,LiftingSteps=elsBoth);

Obtain the bior1.3 wavelet filters. Confirm that up to a sign change, the wavelet filters are equal to
the filters liftfilt returns.

[LoDw,HiDw,LoRw,HiRw] = wfilters("bior1.3");
samewavelet = ... 
isequal([LoDw,HiDw,LoRw,HiRw],[LoDN,-HiDN,LoRN,HiRN])
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samewavelet = logical
   1

Use liftfilt to plot the successive biorthogonal pairs of scaling functions and wavelets.

liftfilt(LoD,LoR,LiftingSteps=elsBoth)

Input Arguments
LoD,LoR — Lowpass filters
real-valued vectors

Lowpass filters associated with a wavelet, specified as real-valued vectors. LoD is the lowpass
decomposition filter. LoR is the lowpass reconstruction filters.
Example: For [LoD,~,LoR,~] = wfilters("db4"),
liftfilt(LoD,LoR,LiftingSteps=lsteps) applies the elementary lifting steps specified in
lsteps to the db4 filters.
Data Types: double

ELS — Lifting steps
structure array

Lifting steps, specified as a structure array consisting of elementary lifting steps.
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• If liftingStep.Type="update", LoR and HiD are unchanged, where HiD is the associated
highpass decomposition filter.

• If liftingStep.Type="predict", LoD and HiR are unchanged, where HiR is the associated
highpass decomposition filter.

Example: liftfilt(LoD,LoR,LiftingSteps=ELS) applies the elementary lifting steps specified
in lsteps to the filters LoD and LoR.
Data Types: struct

NF — Normalization factor
nonzero scalar

Normalization factor, specified as a nonzero scalar.
Example: [LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,LoR,NF=2) scales the filters by 2.
Data Types: double

Output Arguments
LoDN,HiDN — Decomposition filters
real-valued vectors

Decomposition filters, returned as a pair of real-valued vectors. LoDN and HiDN correspond to the
lowpass and highpass filters, respectively.
Data Types: double

LoRN,HiRN — Reconstruction filters
real-valued vectors

Reconstruction filters, returned as a pair of real-valued vectors. LoRN and HiRN correspond to the
lowpass and highpass filters, respectively.
Data Types: double

Version History
Introduced in R2021b

R2021b: liftfilt input syntax has changed
Behavior changed in R2021b

The liftfilt input syntax has changed. Use name-value arguments instead.
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Functionality Result Use Instead Compatibility
Considerations

[LoDN,HiDN,LoRN,Hi
RN] =
liftfilt(LoD,HiD,L
oR,HiR,ELS)

Errors [LoDN,HiDN,LoRN,Hi
RN] =
liftfilt(LoD,LoR,L
iftingSteps=ELS),
where ELS is a
structure array
consisting of elementary
lifting steps.

You can also scale the
filters by a
normalization factor.
For more information
about elementary lifting
steps, see
liftingStep.

liftfilt(LoD,HiD,L
oR,HiR,ELS,TYPE,VA
LUE)

Errors NA This syntax is no longer
supported.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Plotting is not supported.

See Also
Functions
liftingStep

Objects
laurentPolynomial
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liftwave
(To be removed) Lifting schemes

Note liftwave will be removed in a future release. Use liftingScheme. For more information,
see “Compatibility Considerations”.

Syntax
LS = liftwave(wname)
LS = liftwave(wname,'Int2Int')

Description
LS = liftwave(wname) returns the lifting scheme associated with the wavelet specified by wname.

LS = liftwave(wname,'Int2Int') allows to perform an integer to integer wavelet transform.

Examples

Create Lifting Scheme With liftwave

Create the lifting scheme associated with the db2 wavelet.

lsdb2 = liftwave("db2");

Visualize the lifting scheme.

displs(lsdb2);

lsdb2 = {...                                      
'd'             [ -1.73205081]              [0]   
'p'             [ -0.06698730  0.43301270]  [1]   
'd'             [  1.00000000]              [-1]  
[  1.93185165]  [  0.51763809]              []    
};                                                

Input Arguments
wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. Valid values for wname are listed here.

WNAME Values
'lazy'
'haar'

 liftwave
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WNAME Values
'db1', 'db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8'
'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8'
Cohen-Daubechies-Feauveau wavelets
'cdf1.1', 'cdf1.3', 'cdf1.5'
'cdf3.1', 'cdf3.3', 'cdf3.5'
'cdf5.1', 'cdf5.3', 'cdf5.5'
'cdf2.2', 'cdf2.4', 'cdf2.6'
'cdf4.2', 'cdf4.4', 'cdf4.6'
'cdf6.2', 'cdf6.4', 'cdf6.6'
'biorX.Y' (see waveinfo)
'rbioX.Y' (see waveinfo)
'bs3': identical to 'cdf4.2'
'rbs3': reverse of 'bs3'
'9.7': identical to 'bior4.4'
'r9.7': reverse of '9.7'

Note:

• 'cdfX.Y' == 'rbioX.Y' except for rbio4.4 and rbio5.5.
• 'biorX.Y' is the reverse of 'rbioX.Y'
• 'haar' == 'db1' == 'bior1.1' == 'cdf1.1'
• 'db2' == 'sym2' and 'db3' == 'sym3'

Data Types: char | string

Output Arguments
LS — Lifting scheme
cell array

Lifting scheme, returned as a cell array. For more information, see lsinfo.

Version History
Introduced before R2006a

R2021a: liftwave will be removed
Not recommended starting in R2021a

liftwave will be removed in a future release. Use liftingScheme.

1 Functions

1-838



Functionality Result Use Instead Compatibility
Considerations

LS =
liftwave(WNAME)

Still runs LS =
liftingScheme('Wav
elet',WNAME)

You can also use
liftingScheme to
create a lifting scheme
by specifying lowpass
filter coefficients or
customized lifting steps.

LS =
liftwave(WNAME,'In
t2Int')

Still runs LS =
liftingScheme('Wav
elet',WNAME)

[CA,CD] =
lwt(X,'LiftingSche
me',LS,'Int2Int',t
rue)

To preserve integer-
valued data, set the
Int2Int name-value
pair of the functions
lwt or lwt2 to true.

See Also
liftingScheme
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littlewoodPaleySum
Littlewood-Paley sum

Syntax
lpsum = littlewoodPaleySum(sf)
lpsum = littlewoodPaleySum(sf,fb)
[lpsum,f] = littlewoodPaleySum( ___ )

Description
lpsum = littlewoodPaleySum(sf) returns the Littlewood-Paley sum for the scattering filter
banks in sf, the wavelet time scattering network. lpsum is an M-by-L matrix, where M is the number
of elements in the Fourier transform of the scattering filters, and L is the number of scattering filter
banks. The columns of lpsum are ordered by the position of the filter bank in the scattering network.
For example, the first column of lpsum corresponds to the filter bank used for the first-order
scattering coefficients.

Since the scattering transform is contractive, the Littlewood-Paley sums will not exceed one.

lpsum = littlewoodPaleySum(sf,fb) returns the Littlewood-Paley sum for the specified filter
bank fb in sf. The argument fb is a positive integer between 1 and the number of filter banks in sf
inclusive. The number of filter banks in sf is equal to the number of specified QualityFactors in
sf.

[lpsum,f] = littlewoodPaleySum( ___ ) returns the frequencies for the Littlewood-Paley sum.
If you specify a sampling frequency in sf, f is in hertz. If you do not specify a sampling frequency, f
is in cycles/sample. You can use these output arguments with any of the input syntaxes shown
previously.

Examples

Plot Littlewood-Paley Sum

Create a wavelet time scattering network with three filter banks for data sampled at 25 Hz.

sf = waveletScattering('QualityFactors',[8 4 1],...
    'SamplingFrequency',25)

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 20.4800
        QualityFactors: [8 4 1]
              Boundary: 'periodic'
     SamplingFrequency: 25
             Precision: 'double'
    OversamplingFactor: 0
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          OptimizePath: 0

Plot the Littlewood-Paley sums for the second and third filter banks. Note that the sums do not
exceed 1. This shows the filters have been normalized so that the scattering transform is contractive.

[lpsum,f] = littlewoodPaleySum(sf);
plot(f,lpsum(:,2:3))
grid on
legend('Filter Bank 2','Filter Bank 3')
xlabel('Hz')

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

fb — Filter bank index
positive integer

Filter bank index in the wavelet time scattering network, specified as a positive integer between 1
and the number of filter banks in sf inclusive. The number of filter banks in sf is equal to the
number of specified QualityFactors in sf.

 littlewoodPaleySum
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Data Types: double

Output Arguments
lpsum — Littlewood-Paley sum
real-valued matrix

Littlewood-Paley sum for the filter banks in the scattering network sf, returned as a real-valued
matrix. lpsum is an M-by-L matrix, where M is the number of elements in the Fourier transform of
the scattering filters and L is the number of scattering filter banks. For example, the first column of
lpsum corresponds to the filter bank used for the first-order scattering coefficients.

f — Frequencies
real-valued vector

Frequencies for the Littlewood-Paley sum, returned as a real-valued vector. If you specify a sampling
frequency in sf, f is in hertz. If you do not specify a sampling frequency, f is in cycles/sample.
Data Types: double

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
waveletScattering
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littlewoodPaleySum
Littlewood-Paley sum

Syntax
lpsum = littlewoodPaleySum(sf)
lpsum = littlewoodPaleySum(sf,fb)
[lpsum,f] = littlewoodPaleySum( ___ )

Description
lpsum = littlewoodPaleySum(sf) returns the Littlewood-Paley sum for the 2-D filter banks in
the 2-D wavelet scattering network sf. lpsum is an M-by-N-by-Nfb matrix, where M-by-N is the
matrix size of the padded filters and Nfb is the number of filter banks.

Since the scattering transform is contractive, the Littlewood-Paley sums do not exceed 1.

lpsum = littlewoodPaleySum(sf,fb) returns the Littlewood-Paley sum for the specified filter
banks fb. fb is a positive integer or vector of positive integers between 1 and
numfilterbanks(sf) inclusive. lpsum is an M-by-N-by-L matrix, where L is the number of unique
elements in fb.

[lpsum,f] = littlewoodPaleySum( ___ ) returns the spatial frequencies for the Littlewood-
Paley sum. f is a two-column matrix with the first column containing the spatial frequencies in the x-
direction and the second column containing the spatial frequencies in the y-direction.

Examples

Littlewood-Paley Sum of Image Scattering Network

This example shows how to obtain and display the Littlewood-Paley sum of an image scattering
network.

Create a scattering network with two filter banks and quality factors of 2 and 1, respectively.

sf = waveletScattering2('QualityFactors',[2 1]);

Obtain the Littlewood-Paley sums and spatial frequencies of the two filter banks. Display the
maximum value of the sums. Since the scattering transform is contractive, the sums do not exceed 1.

[lpsum,f] = littlewoodPaleySum(sf);
max(max(lpsum(:,:,1)))

ans = 1.0000

max(max(lpsum(:,:,2)))

ans = 1.0000

 littlewoodPaleySum

1-843



Display the Littlewood-Paley sum of the second filter bank with the zero frequency centered. Note the
2-D Morlet filter bank used in the scattering transform is not designed to capture the highest spatial
frequencies jointly in the x- and y-directions.

f(f>1/2) = f(f>1/2)-1;
surf(fftshift(f(:,1)),fftshift(f(:,2)),fftshift(lpsum(:,:,2)))
shading interp
view(0,90)
xlabel('f_x')
ylabel('f_y')
colorbar
title('Q=1')

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

fb — Filter bank index
positive integer | vector of positive integers

Filter bank index in the image scattering network, specified as a positive integer or vector of positive
integers between 1 and numfilterbanks(sf) inclusive. The number of filter banks in sf is equal to
the number of specified QualityFactors in sf.
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Output Arguments
lpsum — Littlewood-Paley sum
real-valued 3-D matrix

Littlewood-Paley sum for the filter banks in the image scattering network sf, returned as a real-
valued 3-D matrix. lpsum is an M-by-N-by-L matrix, where M-by-N is the matrix size of the padded
filters and L does not exceed the number of filter banks in sf.

f — Frequencies
real-valued two-column matrix

Frequencies for the Littlewood-Paley sum, returned as a real-valued two-column matrix. Frequencies
are in cycles per pixel. The first column of f contains the spatial frequencies in the x-direction, and
the second column contains the spatial frequencies in the y-direction. In this convention, the Fourier
transform is 1-periodic in both Fourier variables.

Version History
Introduced in R2019a

See Also
waveletScattering2
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localmax
Identify and chain local maxima

Syntax
[lmaxima,indices] = localmax(inputmatrix)
[lmaxima,indices] = localmax(inputmatrix,initrow)
[lmaxima,indices] = localmax(inputmatrix,initrow,regflag)

Description
[lmaxima,indices] = localmax(inputmatrix) identifies and chains the local maxima in the
rows of inputmatrix.

[lmaxima,indices] = localmax(inputmatrix,initrow) initializes the chaining of local
maxima beginning with row initrow. If there are no local maxima in initrow, all rows in lmaxima
with indices less than initrow consist of only zeros.

[lmaxima,indices] = localmax(inputmatrix,initrow,regflag) replaces initrow of
inputmatrix with the level-5 approximation (scaling) coefficients obtained with the sym4 wavelet.

Input Arguments
inputmatrix

inputmatrix is a matrix of real or complex numbers. Most often, inputmatrix is a matrix of
continuous wavelet transform (CWT) coefficients, and you use localmax to identify maxima lines.
localmax operates on the absolute values of inputmatrix.

initrow

Initialization row for chaining local maxima. The chaining algorithm begins at initrow and
decrements the row index by 1 until the first row of the matrix is reached. By specifying initrow,
you can exclude rows from the chaining algorithm.

Default: size(inputmatrix,1)

regflag

Regularization flag. If you set regflag to true, the row of inputmatrix corresponding to initrow
is replaced by the level-5 approximation (scaling) coefficients obtained with the sym4 wavelet.

Default: true
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Output Arguments
lmaxima

Matrix with local maxima chains. lmaxima only has nonzero entries at the locations of local maxima
in the absolute values of inputmatrix. Denote the row index of lmaxima by R. You can determine
the value of lmaxima at a local maximum in row R as follows:

• If R>initRow, the value of lmaxima at a local maximum is 1.
• If R=initRow, the value of lmaxima at a local maximum is the column index in row R.
• If R<initRow, the value of lmaxima at a local maximum in row R is the column index of the

nearest local maximum in row R+1.

To illustrate this, if inputmatrix is:

 3     2     5     3
 4     6     3     2
 4     4     7     4
 4     6     2     2

lmaxima with initRow = 4 and regflag = false is:

     0     0     2     0
     0     3     0     0
     0     0     2     0
     0     2     0     0

lmaxima with initRow = 3 and regflag = false is:

     0     0     2     0
     0     3     0     0
     0     0     3     0
     0     1     0     0

• If the local maximum in row R lies between two local maxima in row R+1, the value of the local
maximum in row R is the higher column index in row R+1.

To illustrate this, if inputmatrix is:

     0     0     1     0     0     0
     0     1     0     1     0     0

lmaxima with initRow = 2 and regflag = false is:

     0     0     4     0     0     0
     0     2     0     4     0     0

lmaxima with initRow = 1 and regflag = false is:

     0     0     3     0     0     0
     0     1     0     1     0     0

indices

Linear indices of the nonzero values of lmaxima. Use ind2sub to convert the linear indices to matrix
row and column indices.
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Examples
Local Maxima of a Matrix

Construct a 4-by-4 matrix with local maxima at the following row-column indices: (4,2), (3,3), (2,2),
and (1,3). Set initrow to 4 and regflag to false.

inputmatrix = ...
[3     2     5     3
 4     6     3     2
 4     4     7     4
 4     6     2     2];
 [lmaxima,indices] = localmax(inputmatrix,4,false);
 lmaxima

Because localmax operates on the absolute values of inputmatrix, setting inputmatrix(4,2) =
-inputmatrix(4,2) produces an identical lmaxima.

 inputmatrix(4,2) = -inputmatrix(4,2);
 [lmaxima1,indices1] = localmax(inputmatrix,4,false);
 isequal(lmaxima,lmaxima1)

CWT Coefficient Moduli and Maxima Lines

Determine the local maxima from the CWT of the cuspamax signal using the default Morse wavelet.
Plot the CWT coefficient moduli and maxima lines.

load cuspamax;

Plot the cuspamax signal and notice the shape of the signal near samples 300 and 700. The signal
shows a cusp near sample 700.

plot(cuspamax);
xlabel('Sample');
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Plot the wavelet transform modulus maxima and note the local Holder exponent values at samples
308 and 717.

wtmm(cuspamax,'ScalingExponent','local');

 localmax
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Holder exponent values indicate the strength of the singularities in a signal. Signal locations where
the local Holder exponent is 0 are discontinuous at that location. Locations with Holder exponents
greater than or equal to 1 are differentiable. Holder exponent values less than but close to 1 indicate
that the signal at the location is almost differentiable. The closer the Holder exponent value is to 0,
the stronger the singularity.

The Holder exponent at sample 308 is 1.9 and at sample 717 is 0.39. The low Holder value at sample
717 confirms that the signal is not differentiable and has a fairly strong singularity at that point.

Version History
Introduced in R2008a
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log
Natural logarithm of scattering transform

Syntax
slog = log(sf,s)
ulog = log(sf,u)
xlog = log(sf,x)

Description
slog = log(sf,s) returns the natural logarithm of the scattering coefficients in the cell array s. s
is the output of scatteringTransform and is a cell array of structure arrays with a signals field.

The precision of slog depends on the precision specified in the wavelet time scattering network sf.

ulog = log(sf,u) returns the natural logarithm of the scalogram coefficients in the cell array u. u
is the output of scatteringTransform and is a cell array of structure arrays with a coefficients
field.

The precision of ulog depends on the precision specified in the wavelet time scattering network sf.

xlog = log(sf,x) returns the natural logarithm of the 2-D matrix or 3-D array x. x is the output of
featureMatrix.

The precision of xlog depends on the precision specified in the wavelet time scattering network sf.

Examples

Natural Logarithm of Scattering Coefficients

This example shows how to obtain the natural logarithm of scattering coefficients.

Load a noisy Doppler signal and create a wavelet time scattering network that can be used with the
signal. Return the scattering coefficients.

load noisdopp
sf = waveletScattering('SignalLength',numel(noisdopp));
S = scatteringTransform(sf,noisdopp);

Calculate the natural logarithm of the scattering coefficients. Display the number of rows in the table
containing the first-order scattering coefficients.

slog = log(sf,S);
coefOrder = 1;
display(['Number of rows: ',...
    num2str(size(S{coefOrder+1},1))])

Number of rows: 41
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Choose a row from the first-order scattering coefficients table. Take the natural logarithm of the
absolute value of the scattering coefficients in that row. Compare with the corresponding row in slog
and confirm they are equal.

row = 23;
tmp1 = slog{coefOrder+1}.signals{row};
tmp2 = log(abs(S{coefOrder+1}.signals{row}));
disp(['Max Difference of Scattering Coefficients: ',...
    num2str(max(abs(tmp1(:)-tmp2(:))))])

Max Difference of Scattering Coefficients: 0

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

s — Scattering coefficients
cell array

Scattering coefficients, specified as a cell array of structure arrays. s is the output of
scatteringTransform for the scattering network sf.

u — Scalogram coefficients
cell array

Scalogram coefficients, specified as a cell array of structure arrays. u is the output of
scatteringTransform for the scattering network sf.

x — Scattering feature matrix
real-valued matrix | real-valued array

Scattering feature matrix, specified as a real-valued 2-D matrix or 3-D array. x is the output of
featureMatrix for the scattering network sf.

Output Arguments
slog — Natural logarithm of scattering coefficients
cell array

Natural logarithm of scattering coefficients, returned as a cell array. The dimensions of slog are
equal to the dimensions of s.

The precision of slog depends on the precision specified in the scattering network sf.

ulog — Natural logarithm of scalogram coefficients
cell array

Natural logarithm of scalogram coefficients, returned as a cell array. The dimensions of ulog are
equal to the dimensions of u.

The precision of ulog depends on the precision specified in the scattering network sf.
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xlog — Natural logarithm of scattering feature matrix
real-valued matrix | real-valued array

Natural logarithm of scattering feature matrix, returned as a real-valued matrix or array. The
dimensions of xlog are equal to the dimensions of x.

The precision of xlog depends on the precision specified in the scattering network sf.

Algorithms
log returns the natural logarithm of the absolute value of the input argument.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
waveletScattering | scatteringTransform
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log
Natural logarithm of 2-D scattering transform

Syntax
slog = log(sf,s)
ulog = log(sf,u)
xlog = log(sf,x)

Description
slog = log(sf,s) returns the natural logarithm of the scattering coefficients in the cell array s. s
is the output of scatteringTransform and is a cell array of structure arrays with an images field.

The precision of slog depends on the precision specified in the network sf.

ulog = log(sf,u) returns the natural logarithm of the scalogram coefficients in the cell array u. u
is the output of scatteringTransform and is a cell array of structure arrays with a coefficients
field.

The precision of ulog depends on the precision specified in the network sf.

xlog = log(sf,x) returns the natural logarithm of the 3-D matrix or 4-D tensor x. x is the output
of featureMatrix.

The precision of xlog depends on the precision specified in the network sf.

Examples

Natural Logarithm of Scattering Coefficients

This example shows how to obtain the natural logarithm of scattering coefficients.

Load the xbox image. Create an image scattering network that can be applied to the image.

load xbox
sf = waveletScattering2('ImageSize',size(xbox),...
    'InvarianceScale',min(size(xbox)))

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 128
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: "single"
    OversamplingFactor: 0
          OptimizePath: 1
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Obtain the scattering transform of the image and then the natural logarithm of the scattering
coefficients. Display the number of rows in the table containing the first-order scattering coefficients.

S = scatteringTransform(sf,xbox);
Slog = log(sf,S);
coefOrder = 1;
display(['Number of rows: ',num2str(size(S{coefOrder+1},1))])

Number of rows: 30

Choose a row from the first-order scattering coefficients table. Take the natural logarithm of the
absolute value of the scattering coefficients in that row. Compare with the corresponding row in Slog
and confirm they are equal.

row = 11;
tmp1 = Slog{coefOrder+1}.images{row};
tmp2 = log(abs(S{coefOrder+1}.images{row}));
disp(['Max Difference of Scattering Coefficients: '...
    num2str(max(abs(tmp1(:)-tmp2(:))))])

Max Difference of Scattering Coefficients: 0

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

s — Scattering coefficients
cell array

Scattering coefficients, specified as a cell array of structure arrays. s is the output of
scatteringTransform for the image scattering network sf.

u — Scalogram coefficients
cell array

Scalogram coefficients, specified as a cell array of structure arrays. u is the output of
scatteringTransform for the image scattering network sf.

x — Scattering feature matrix
real-valued matrix | real-valued 4-D tensor

Scattering feature matrix, specified as a real-valued 3-D matrix or a real-valued 4-D tensor. x is the
output of featureMatrix for the image scattering network sf.

Output Arguments
slog — Natural logarithm of scattering coefficients
cell array

Natural logarithm of scattering coefficients, returned as a cell array. The dimensions of slog are
equal to the dimensions of s.
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The precision of slog depends on the precision specified in the network sf.

ulog — Natural logarithm of scalogram coefficients
cell array

Natural logarithm of scalogram coefficients, returned as a cell array. The dimensions of ulog are
equal to the dimensions of u.

The precision of ulog depends on the precision specified in the network sf.

xlog — Natural logarithm of scattering feature matrix
real-valued 3-D matrix | real-valued 4-D tensor

Natural logarithm of scattering feature matrix, returned as a real-valued matrix or tensor. The
dimensions of xlog are equal to the dimensions of x.

The precision of xlog depends on the precision specified in the network sf.

Algorithms
log returns the natural logarithm of the absolute value of the input argument.

Version History
Introduced in R2019a

See Also
waveletScattering2 | featureMatrix | scatteringTransform
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lp2filters
Laurent polynomials to filters

Syntax
[LoD,HiD,LoR,HiR] = lp2filters(LoDz,HiDz,LoRz,HiRz)
[LoD,HiD,LoR,HiR] = lp2filters( ___ ,signFLAG)

Description
[LoD,HiD,LoR,HiR] = lp2filters(LoDz,HiDz,LoRz,HiRz) returns the filters associated with
the Laurent polynomials LoDz, HiDz, LoRz, and HiRz. The polynomials are associated to the filters
as follows:

• LoDz — Z(LoD)
• HiDz — Z(HiD)
• LoRz — Z(LoR)
• HiDz — Z(HiD)

where Z(.) is the z-transform of the corresponding filter.

[LoD,HiD,LoR,HiR] = lp2filters( ___ ,signFLAG) changes the signs of the two highpass
filters, HiD and HiR, when signFLAG is equal to 1. The default value for signFLAG is 0.

Examples

Filters Associated With Laurent Polynomials

Obtain the filters associated with the orthogonal db4 wavelet.

wv = "db4";
[LoD,HiD,LoR,HiR] = wfilters(wv);

Use the filters2lp function to obtain Laurent polynomials associated with the lowpass filter.

[LoDz,HiDz,LoRz,HiRz] = filters2lp({LoR});

Use the lp2filters function to obtain a new set of filters. Confirm the first and second set of filters
are identical.

[LoD2,HiD2,LoR2,HiR2] = lp2filters(LoDz,HiDz,LoRz,HiRz);
max(abs(LoD-LoD2))

ans = 0

max(abs(HiD-HiD2))

ans = 0

max(abs(LoR-LoR2))

 lp2filters

1-857



ans = 0

max(abs(HiR-HiR2))

ans = 0

Confirm that for orthogonal wavelets, the reflection of LoDz is equal to LoRz.

areEqual = (reflect(LoDz)==LoRz)

areEqual = logical
   1

Input Arguments
LoDz — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

HiDz — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

LoRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

HiRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

signFLAG — Change sign flag
0 (default) | 1

Change sign flag, specified as 0 or 1. If signFLAG is equal to 1, the signs of the highpass filters HiD
and HiR change.

Output Arguments
LoD — Lowpass filter
real-valued vector

Lowpass filter associated with the Laurent polynomial LoDz, returned as a real-valued vector.
Data Types: double

HiD — Highpass filter
real-valued vector

Highpass filter associated with the Laurent polynomial HiDz, returned as a real-valued vector.
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Data Types: double

LoR — Lowpass filter
real-valued vector

Lowpass filter associated with the Laurent polynomial LoRz, returned as a real-valued vector.
Data Types: double

HiR — Highpass filter
real-valued vector

Highpass filter associated with the Laurent polynomial HiRz, returned as a real-valued vector.
Data Types: double

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
filters2lp | wave2lp

Objects
laurentMatrix | laurentPolynomial
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lp2LS
Laurent polynomials to lifting steps and normalization factors

Syntax
[lsteps,k] = lp2LS(wavetype,LoRz,HiRz,factmode)

Description
[lsteps,k] = lp2LS(wavetype,LoRz,HiRz,factmode) returns the lifting scheme steps
lsteps and normalization factors k associated with the Laurent polynomials LoRz and HiRz.
wavetype specifies the wavelet type corresponding to the Laurent polynomials, and factmode
specifies the factorization mode.

Examples

Obtain Lifting Scheme from Laurent Polynomials

Create a lifting scheme associated with the db2 wavelet.

wv = "db2";
lsw = liftingScheme(Wavelet=wv);

Obtain the Laurent polynomials associated with the wavelet, and then obtain the lifting steps and
normalization factors associated with the Laurent polynomials.

[~,~,LoRz,HiRz] = wave2lp(wv);
[lsteps,k] = lp2LS("o",LoRz,HiRz,"s");

Create a lifting scheme using the lifting steps and normalization factors.

lscheme = liftingScheme(LiftingSteps=lsteps,NormalizationFactors=k)

lscheme = 
      Wavelet               : 'custom' 
     LiftingSteps          : [3 × 1] liftingStep 
     NormalizationFactors  : [3.3461 0.2989] 
     CustomLowpassFilter   : [  ] 

 Details of LiftingSteps :
            Type: 'update'
    Coefficients: -0.5774
        MaxOrder: 0

            Type: 'predict'
    Coefficients: [-2.7990 0.4330]
        MaxOrder: 1

            Type: 'update'
    Coefficients: 0.3333
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        MaxOrder: -1

Input Arguments
wavetype — Wavelet type
"o" | "b"

Wavelet type associated with the Laurent polynomials LoRz and HiRz, specified as one of:

• "o" — Orthogonal wavelet
• "b" — Biorthogonal wavelet

Data Types: char | string

LoRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with a lowpass filter, specified as a laurentPolynomial object.

HiRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with a highpass filter, specified as a laurentPolynomial object.

factmode — Factorization mode
"analysis" (default) | "synthesis"

Factorization mode of lifting steps and normalization factors, specified as one of:

• "analysis" — Analysis factorization
• "synthesis" — Synthesis factorization

Output Arguments
lsteps — Lifting steps
array of liftingStep structures

Lifting steps, returned as an array of liftingStep structures.

k — Normalization factors
real-valued vector

Normalization factors, returned as a 1-by-2 real-valued vector.
Data Types: double

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
liftingStep

Objects
laurentMatrix | laurentPolynomial
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ls2filt
(To be removed) Transform lifting scheme to quadruplet of filters

Note This version of ls2filt will be removed in a future release. Use the new version of ls2filt
and liftingScheme. For more information, see “Compatibility Considerations”.

Syntax
[LoD,HiD,LoR,HiR] = ls2filt(LS)

Description
[LoD,HiD,LoR,HiR] = ls2filt(LS) returns the four filters LoD, HiD, LoR, and HiR associated
with the lifting scheme LS.

Examples

Obtain Filters From Lifting Scheme

Obtain the lifting scheme associated with the db2 wavelet.

LS = liftwave("db2")

LS=4×3 cell array
    {'d'     }    {[       -1.7321]}    {[       0]}
    {'p'     }    {[-0.0670 0.4330]}    {[       1]}
    {'d'     }    {[             1]}    {[      -1]}
    {[1.9319]}    {[        0.5176]}    {0x0 double}

Visualize the lifting scheme.

displs(LS);

LS = {...                                         
'd'             [ -1.73205081]              [0]   
'p'             [ -0.06698730  0.43301270]  [1]   
'd'             [  1.00000000]              [-1]  
[  1.93185165]  [  0.51763809]              []    
};                                                

Obtain the filters associated with the lifting scheme.

[LoD,HiD,LoR,HiR] = ls2filt(LS)

LoD = 1×4

   -0.1294    0.2241    0.8365    0.4830

 ls2filt

1-863



HiD = 1×4

   -0.4830    0.8365   -0.2241   -0.1294

LoR = 1×4

    0.4830    0.8365    0.2241   -0.1294

HiR = 1×4

   -0.1294   -0.2241    0.8365   -0.4830

Get the db2 filters using the wfilters function. Check the equality.

[LoDref,HiDref,LoRref,HiRref] = wfilters("db2")

LoDref = 1×4

   -0.1294    0.2241    0.8365    0.4830

HiDref = 1×4

   -0.4830    0.8365   -0.2241   -0.1294

LoRref = 1×4

    0.4830    0.8365    0.2241   -0.1294

HiRref = 1×4

   -0.1294   -0.2241    0.8365   -0.4830

Input Arguments
LS — Lifting scheme
cell array

Lifting scheme, specified as a cell array. The format of LS is identical to the format of the output of
liftwave.

Note liftwave is no longer recommended and will be removed in a future release. Use
liftingScheme.

Data Types: cell
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Output Arguments
LoD,HiD — Wavelet decomposition filters
vectors

Wavelet decomposition filters, returned as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. See wfilters for
additional information.
Data Types: double

LoR,HiR — Wavelet reconstruction filters
vectors

Wavelet reconstruction filters, returned as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. See wfilters for
additional information.
Data Types: double

Version History
Introduced before R2006a

R2021a: ls2filt will be removed
Not recommended starting in R2021a

ls2filt will be removed in a future release. Use ls2filt, the new version of ls2filt, and
liftingScheme. To update your code, follow these steps:

1 Create a lifting scheme using liftingScheme.
2 Extract the wavelet filters using ls2filt.

See Also
liftingScheme | ls2filt
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ls2filt
Extract wavelet filters from lifting scheme

Syntax
[lod,hid,lor,hir] = ls2filt(lscheme)

Description
[lod,hid,lor,hir] = ls2filt(lscheme) returns the wavelet decomposition and reconstruction
filters associated with the lifting scheme lscheme.

Examples

Compare Lifting Scheme Filters

Create a lifting scheme associated with the db4 wavelet.

wv = 'db4';
lsc = liftingScheme('Wavelet',wv);

Use ls2filt to extract from the lifting scheme the corresponding wavelet filters. Compare with the
filters generated by wfilters. Confirm they are equal.

[lod,hid,lor,hir] = ls2filt(lsc);
[lod2,hid2,lor2,hir2] = wfilters(wv);
fprintf('Lowpass Decomposition\n ls2filt: %s\nwfilters: %s\n',num2str(lod),num2str(lod2))

Lowpass Decomposition
 ls2filt: -0.010597    0.032883    0.030841    -0.18703   -0.027984     0.63088     0.71485     0.23038
wfilters: -0.010597    0.032883    0.030841    -0.18703   -0.027984     0.63088     0.71485     0.23038

fprintf('Highpass Decomposition\n ls2filt: %s\nwfilters: %s\n',num2str(hid),num2str(hid2))

Highpass Decomposition
 ls2filt: -0.23038     0.71485    -0.63088   -0.027984     0.18703    0.030841   -0.032883   -0.010597
wfilters: -0.23038     0.71485    -0.63088   -0.027984     0.18703    0.030841   -0.032883   -0.010597

fprintf('Lowpass Reconstruction\n ls2filt: %s\nwfilters: %s\n',num2str(lor),num2str(lor2))

Lowpass Reconstruction
 ls2filt: 0.23038     0.71485     0.63088   -0.027984    -0.18703    0.030841    0.032883   -0.010597
wfilters: 0.23038     0.71485     0.63088   -0.027984    -0.18703    0.030841    0.032883   -0.010597

fprintf('Highpass Reconstruction\n ls2filt: %s\nwfilters: %s\n',num2str(hir),num2str(hir2))

Highpass Reconstruction
 ls2filt: -0.010597   -0.032883    0.030841     0.18703   -0.027984    -0.63088     0.71485    -0.23038
wfilters: -0.010597   -0.032883    0.030841     0.18703   -0.027984    -0.63088     0.71485    -0.23038

Now create a lifting scheme associated with the bior2.2 wavelet.
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wv = 'bior2.2';
lsc = liftingScheme('Wavelet',wv);

Use ls2filt to extract from the lifting scheme the corresponding wavelet filters. Compare with the
filters generated by wfilters. Observe that wfilters includes the missing powers of the
associated Laurent series as zeros so that all filters have equal even length. Except for the prepended
and appended zeros, the filters coefficients generated by wfilters equal the coefficients returned
by ls2filt.

[lod,hid,lor,hir] = ls2filt(lsc);
[lod2,hid2,lor2,hir2] = wfilters(wv);
fprintf('Lowpass Decomposition\n ls2filt: %s\nwfilters: %s\n',num2str(lod),num2str(lod2))

Lowpass Decomposition
 ls2filt: -0.17678     0.35355      1.0607     0.35355    -0.17678
wfilters: 0    -0.17678     0.35355      1.0607     0.35355    -0.17678

fprintf('Highpass Decomposition\n ls2filt: %s\nwfilters: %s\n',num2str(hid),num2str(hid2))

Highpass Decomposition
 ls2filt: 0.35355    -0.70711     0.35355
wfilters: 0     0.35355    -0.70711     0.35355           0           0

fprintf('Lowpass Reconstruction\n ls2filt: %s\nwfilters: %s\n',num2str(lor),num2str(lor2))

Lowpass Reconstruction
 ls2filt: 0.35355     0.70711     0.35355
wfilters: 0     0.35355     0.70711     0.35355           0           0

fprintf('Highpass Reconstruction\n ls2filt: %s\nwfilters: %s\n',num2str(hir),num2str(hir2))

Highpass Reconstruction
 ls2filt: 0.17678     0.35355     -1.0607     0.35355     0.17678
wfilters: 0     0.17678     0.35355     -1.0607     0.35355     0.17678

Input Arguments
lscheme — Lifting scheme
liftingScheme object

Lifting scheme, specified as a liftingScheme object.

Output Arguments
lod,hid — Decomposition filters
vectors

Decomposition filters associated with the lifting scheme, returned as vectors. lod is the lowpass
decomposition filter. hid is the highpass decomposition filter.
Data Types: double

lor,hir — Reconstruction filters
vectors
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Reconstruction filters associated with the lifting scheme, returned as vectors. lor is the lowpass
decomposition filter. hir is the highpass decomposition filter.
Data Types: double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
liftingScheme | wavedec | wavedec2
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lsinfo
(To be removed) Lifting schemes information

Note lsinfo will be removed in a future release. Use disp and liftingScheme instead. For more
information, see “Compatibility Considerations”.

Syntax
lsinfo

Description
lsinfo displays information about lifting schemes created with liftwave.

Note liftwave is no longer recommended and will be removed in a future release. Use
liftingScheme.

Examples

Display Information About Lifting Schemes

Display information about lifting schemes created with liftwave.

lsinfo

 lsinfo Information about lifting schemes.
    A lifting scheme (LS) is a N x 3 cell array. The N-1 first
    rows of the array are "elementary lifting steps" (ELS).
    The last row gives the normalization of LS.
 
    Each ELS has the following format: 
       {type , coefficients , max_degree}
    where:
      - "type" is equal to 'p' (primal) or 'd' (dual).
      - "coefficients" is a vector C of real numbers defining
         the coefficients of a Laurent polynomial P described
         below.
      - "max_degree" is the highest degree d of the monomials
         of P.
      The Laurent polynomial P is of the form:
        P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)
    
    So the Lifting Scheme LS is such that:
      for k = 1:N-1 , LS{k,:} is an ELS:
          LS{k,1} is the lifting "type" 'p' (primal) or 'd' (dual).
          LS{k,2} is the corresponding lifting filter.
          LS{k,3} is the highest degree of the Laurent polynomial
                  corresponding to the filter LS{k,2}.
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      LS{N,1} is the primal normalization (real number).
      LS{N,2} is the dual normalization (real number).
      LS{N,3} is not used.
      Usually, the normalizations are such that LS{N,1}*LS{N,2} = 1.
 
    For example, the lifting scheme associated to the wavelet db1 is:
 
        LS = {...
              'd'         [    -1]    [0]
              'p'         [0.5000]    [0]
              [1.4142]    [0.7071]     []
             }
 
    See also displs, laurpoly.

    Documentation for lsinfo

Version History
Introduced before R2006a

R2021a: lsinfo will be removed
Not recommended starting in R2021a

lsinfo will be removed in a future release. For lifting, use disp to display information of a lifting
scheme created by liftingScheme.

See Also
disp | liftingScheme
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lwt
1-D lifting wavelet transform

Syntax
[ca,cd] = lwt(x)
[ca,cd] = lwt( ___ ,Name,Value)

Description
[ca,cd] = lwt(x) returns the wavelet decomposition of x. lwt uses the lifting scheme associated
with the db1 wavelet and does not preserve integer-valued data. x is a vector or matrix. If x is a
matrix, lwt operates along the first dimension of x. x must have at least two samples. If x is of even
length, the wavelet transform is obtained down to level floor(log2(N)), where N is the length of x
if x is a vector, and the row dimension of x if x is a matrix. If N is odd, x is extended by one sample by
duplicating the last element of x.

[ca,cd] = lwt( ___ ,Name,Value) specifies options using one or more name-value arguments.
For example, [ca,cd] = lwt(x,'Level',2) specifies a level 2 wavelet decomposition.

Examples

Lifting Wavelet Transform of Integer-Valued Signal

Specify an integer-valued signal. Create a lifting scheme associated with the db2 wavelet.

sig = 1:10;
lsc = liftingScheme('Wavelet','db2');

Obtain the level 2 lifting wavelet transform (LWT) using the lifting scheme. Display the approximation
and detail coefficients.

wv = 'db2';
[ca,cd] = lwt(sig,'LiftingScheme',lsc,'Level',2);
ca

ca = 3×1

    5.8038
   14.0801
   16.5801

cd{1}

ans = 5×1

    3.5355
         0
    0.0000
    0.0000
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    0.0000

cd{2}

ans = 3×1

    5.0311
   -0.0000
   -1.0311

Obtain the decomposition again, but this time preserve the integer-valued data.

[ca,cd] = lwt(sig,'LiftingScheme',lsc,'Level',2,'Int2Int',true);
ca

ca = 3×1

     2
     4
     4

cd{1}

ans = 5×1

     6
     0
     0
     0
     0

cd{2}

ans = 3×1

     5
     1
     0

LWT of Multichannel Signal

Load the 23 channel EEG data Espiga3. The channels are arranged column-wise.

load Espiga3
size(Espiga3)

ans = 1×2

   995    23
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Obtain the LWT of the multichannel signal using the db4 wavelet down to the default maximum
decomposition level.

wv = 'db4';
[ca,cd] = lwt(Espiga3,'Wavelet',wv);

Confirm the number of columns in ca is equal to the number of channels in the multichannel signal,
and that the detail coefficients are an N-by-1 cell array, where N is equal to
floor(log2(size(Espiga3,1))).

size(ca)

ans = 1×2

     2    23

floor(log2(size(Espiga3,1)))

ans = 9

size(cd) 

ans = 1×2

     9     1

Input Arguments
x — Signal
vector | matrix

Signal, specified as a vector or matrix. If x is a matrix, lwt operates along the first dimension of x. x
must have at least two samples. If x has an odd number of samples, x is extended by one sample by
duplicating the last element of x.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [ca,cd] = lwt(x,'Wavelet','db3','Level',4) uses the db3 wavelet to perform a
level 4 wavelet decomposition.

Wavelet — Wavelet
character vector | string scalar

Orthogonal or biorthogonal wavelet to use in the LWT, specified as a character vector or string scalar.
See the Wavelet property of liftingScheme for the list of supported wavelets.
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You cannot specify 'Wavelet' and 'LiftingScheme' name-value arguments at the same time.
Example: [ca,cd] = lwt(x,'Wavelet','bior3.5') uses the bior3.5 biorthogonal wavelet.

LiftingScheme — Lifting scheme
liftingScheme object

Lifting scheme to use in the LWT, specified as a liftingScheme object.

You cannot specify 'LiftingScheme' and 'Wavelet' name-value arguments at the same time.
Example: [ca,cd] = lwt(x,'LiftingScheme',lScheme) uses the lScheme lifting scheme.

Level — Level of decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer less than or equal to
floor(log2(N)), where N is the length of x if x is a vector, or the row dimension of x if x is a
matrix.
Example: [ca,cd] = lwt(x,'Level',4) specifies a level 4 wavelet decomposition.
Data Types: double

Extension — Extension mode
'periodic' (default) | 'zeropad' | 'symmetric'

Extension mode to use in the LWT, specified as 'periodic' (default), 'zeropad', or 'symmetric'.
The value of 'Extension' specifies how to extend the signal at the boundaries.
Example: [ca,cd] = lwt(x,'Extension','symmetric') specifies the symmetric extension
mode.

Int2Int — Integer-valued data handling
false or 0 (default) | true or 1

Integer-valued data handling, specified as a numeric or logical 1 (true) or 0 (false).

• 1 (true) — Preserve integer-valued data
• 0 (false) — Do not preserve integer-valued data

Specify the 'Int2Int' name-value argument only if all elements of the input are integers.
Example: [ca,cd] = lwt(1:8,'Int2Int',true) preserves integer-valued data.

Output Arguments
ca — Approximation coefficients
scalar | vector | matrix

Approximation (lowpass) coefficients at the coarsest level, returned as a scalar, vector, or matrix. The
dimension of ca depends on the signal dimension.
Data Types: single | double

cd — Detail coefficients
cell array
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Detail coefficients, returned as an L-by-1 cell array, where L is the level of the transform. The
elements of cd are in order of decreasing resolution.
Data Types: single | double

Version History
Introduced in R2021a

R2021a: lwt input syntax has changed
Behavior changed in R2021a

The lwt input syntax has changed. Use name-value arguments instead.

Functionality Result Use Instead Compatibility
Considerations

[CA,CD] = lwt(X,W) Errors [CA,CD] =
lwt(X,'Wavelet',W)

You can also obtain the
lifting wavelet
transform (LWT) of a 1-
D signal using a lifting
scheme by setting the
LiftingScheme name-
value argument.

[CA,CD] =
lwt(X,W,LEVEL)

Errors [CA,CD] =
lwt(X,'Wavelet',W,
'Level',LEVEL)

You can also specify the
extension mode by
setting the
ExtensionMode name-
value argument.

[CA,CD] =
lwt(X,W,LEVEL,'typ
eDEC','wp')

Errors NA The wavelet packet
decomposition option is
no longer provided.

X_InPlace =
lwt(X,W)

Errors NA In-place transforms are
no longer supported.

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.

[2] Sweldens, Wim. “The Lifting Scheme: A Construction of Second Generation Wavelets.” SIAM
Journal on Mathematical Analysis 29, no. 2 (March 1998): 511–46. https://doi.org/10.1137/
S0036141095289051.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 lwt

1-875

https://doi.org/10.1137/S0036141095289051
https://doi.org/10.1137/S0036141095289051


See Also
liftingScheme | haart | ilwt | ihaart | lwtcoef
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lwt2
2-D Lifting wavelet transform

Syntax
[ll,lh,hl,hh] = lwt2(x)
[ ___ ] = lwt2(x,Name=Value)

Description
[ll,lh,hl,hh] = lwt2(x) performs the 2-D lifting wavelet transform (LWT) of the real- or
complex-valued matrix x using the db1 wavelet. The function performs the decomposition first along
the rows in x and then along the columns. The default decomposition level depends on the size of x.
For more information, see 'Level'. The function returns the approximation coefficients at the coarsest
scale and the horizontal, vertical, and diagonal detail coefficients by level.

If x is a single-precision input, the numeric type of the coefficients is single precision. Otherwise, the
numeric type is double precision.

[ ___ ] = lwt2(x,Name=Value) specifies options using one or more name-value arguments. For
example, lwt2(x,Wavelet="db2",Level=3) performs 2-D LWT using the db2 wavelet and a level
3 decomposition.

Examples

Lifting Wavelet Transform of 2-D Data

Load and display the xbox image.

load xbox
imagesc(xbox)
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Obtain the 2-D LWT of the image using default settings.

[ll,lh,hl,hh] = lwt2(xbox);

Display the first level detail coefficients.

subplot(1,3,1)
imagesc(lh{1})
title("Horizontal")
subplot(1,3,2)
imagesc(hl{1})
title("Vertical")
subplot(1,3,3)
imagesc(hh{1})
title("Diagonal")
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Lifting Wavelet Transform of RGB Image Using Lifting Scheme

Load an RGB image. An RGB image is also known as a truecolor image. The image is a 3-D array of
type uint8.

x = imread("ngc6543a.jpg");
image(x)
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Create the lifting scheme associated with the bior3.7 wavelet. Obtain the level 3 LWT of the image
using the lifting scheme. Preserve the integer-valued data.

lvl = 3;
lScheme = liftingScheme("Wavelet","bior3.7");
[ll,lh,hl,hh] = lwt2(x,LiftingScheme=lScheme,Level=lvl,Int2Int=true);

Confirm the approximation coefficients are all integer valued. Choose a level and confirm all the
detail coefficients at that level are integer valued.

approxDiffs = ll-floor(ll);
max(abs(approxDiffs(:)))

ans = 0

lev = 2;
horizDiffs = lh{lev}-floor(lh{lev});
vertDiffs = hl{lev}-floor(hl{lev});
diagDiffs = hh{lev}-floor(hh{lev});
[max(abs(horizDiffs(:))) max(abs(vertDiffs(:))) max(abs(diagDiffs(:)))]

ans = 1×3

     0     0     0
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Reconstruct the image using the red and blue components of the coefficients. Display the
reconstruction.

llx = ll;
llx(:,:,2) = 0;
for k=1:lvl
    lhx{k} = lh{k};
    hlx{k} = hl{k};
    hhx{k} = hh{k};
    lhx{k}(:,:,2) = 0;
    hlx{k}(:,:,2) = 0;
    hhx{k}(:,:,2) = 0;
end
xrec = ilwt2(llx,lhx,hlx,hhx,LiftingScheme=lScheme,Int2Int=true);
imagesc(uint8(xrec))
title("Reconstruction")

Confirm the reconstruction is integer valued.

recDiffs = xrec-floor(xrec);
max(abs(recDiffs(:)))

ans = 0
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Input Arguments
x — Input data
matrix

Input data, specified as a real- or complex-valued 2-D, 3-D, or 4-D matrix. The input x must have at
least two samples in the row and column dimensions.

• If size(x,1) is odd, the function extends x by duplicating the last row.
• If size(x,2) is odd, the function extends the last column of x by duplicating the last column.

Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [ll,lh,hl,hh] = lwt2(x,LiftingScheme=lscheme,Level=2)

Wavelet — Wavelet
"db1" (default) | character vector | string scalar

Orthogonal or biorthogonal wavelet to use in the 2-D LWT, specified as a character vector or string
scalar. See the Wavelet property of liftingScheme for the list of supported wavelets.

You cannot specify Wavelet and LiftingScheme at the same time.
Example: [ll,~,~,hh] = lwt2(x,Wavelet="bior3.5") uses the bior3.5 biorthogonal
wavelet.
Data Types: char | string

LiftingScheme — Lifting scheme
liftingScheme object

Lifting scheme to use in the 2-D LWT, specified as a liftingScheme object.

You cannot specify LiftingScheme and Wavelet at the same time.
Example: [~,lh,hl,~] = lwt2(x,LiftingScheme=lScheme) uses the lScheme lifting scheme.

Level — Decomposition level
positive integer

Decomposition level of the 2-D LWT, specified as a positive integer less than or equal to
floor(log2(N)), where N = min(size(x,[1 2])/2).

The default decomposition level depends on the number of rows and columns in x.

• If the number of both the rows and the columns is a power of two, the function performs 2-D LWT
down to level log2(min(size(x,[1 2]))).

• If the number of both the rows and the columns is even but at least one is not a power of two, the
function performs 2-D LWT down to floor(log2(N)), where N = min(size(x,[1 2])/2).
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Example: [ll,~,hl,~] = lwt2(x,Level=4) specifies a level 4 wavelet decomposition.
Data Types: double

Extension — Extension mode
"periodic" (default) | "zeropad" | "symmetric"

Extension mode to use in the LWT, specified as one of these:

• "periodic" — Periodized extension
• "zeropad" — Zero extension
• "symmetric" — Symmetric extension

This argument specifies how lwt2 extends the input at the boundaries.
Example: [~,lh,~,hh] = lwt2(x,Extension="symmetric") specifies the symmetric extension
mode.
Data Types: char | string

Int2Int — Handling integer-valued data
false or 0 (default) | true or 1

Handling integer-valued data, specified as one of these:

• 1 (true) — Preserve integer-valued data
• 0 (false) — Do not preserve integer-valued data

Specify Int2Int only if all elements of the input are integers.
Example: [~,lh,hl,hh] = lwt2(x,Int2Int=true) preserves integer-valued data.

Output Arguments
ll — Approximation coefficients
scalar | vector | matrix

Approximation coefficients at the coarsest scale, returned as a scalar, vector, or matrix.
Data Types: single | double

lh — Horizontal detail coefficients
cell array

Horizontal detail coefficients by level, returned as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of lh are in order of decreasing resolution.
Data Types: single | double

hl — Vertical detail coefficients
cell array

Vertical detail coefficients by level, returned as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of hl are in order of decreasing resolution.
Data Types: single | double
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hh — Diagonal detail coefficients
cell array

Diagonal detail coefficients by level, returned as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of hh are in order of decreasing resolution.
Data Types: single | double

Algorithms
At each stage of a 2-D wavelet decomposition, the approximation coefficients at level j are
decomposed into four components: the approximation at level j+1 and the details in three
orientations (horizontal, vertical, and diagonal). Each component is the result of convolving the rows
and columns of the level j approximation with the appropriate combination of lowpass and highpass
filters, LoD and HiD, respectively, followed by downsampling:

• Approximation — Convolve the rows and columns with a lowpass filter (ll)
• Horizontal — Convolve the rows with a lowpass filter, and convolve the columns with a highpass
filter (lh)

• Vertical — Convolve the rows with a highpass filter, and convolve the columns with a lowpass filter
(hl)

• Diagonal — Convolve the rows and columns with a highpass filter (hh)

The following chart describes the basic decomposition steps.

where

•

 — Downsample columns: keep the even-indexed columns
•

 — Downsample rows: keep the even-indexed rows
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•

 — Convolve the rows of the entry with filter X
•

 — Convolve the columns of the entry with filter X

The decomposition is initialized by setting the approximation coefficients equal to the image s: cA0 =
s.

Version History
Introduced in R2021b

R2021b: lwt2 input syntax has changed
Behavior changed in R2021b

The lwt2 input syntax has changed. Use name-value arguments instead.

Functionality Result Use Instead Compatibility
Considerations

[CA,CH,CV,CD] =
lwt2(X,W)

Errors [CA,CH,CV,CD] =
lwt2(X,Wavelet=W)

You can also obtain the
lifting wavelet
transform (LWT) using a
lifting scheme by
setting the
LiftingScheme name-
value argument.

[CA,CH,CV,CD] =
lwt2(X,W,LEVEL)

Errors [CA,CH,CV,CD] =
lwt2(X,Wavelet=W,L
evel=LEVEL)

You can also specify the
extension mode by
setting the Extension
name-value argument.

[CA,CD] =
lwt2(X,W,LEVEL,'ty
peDEC','wp')

Errors NA The wavelet packet
decomposition option is
no longer provided.

X_InPlace =
lwt2(X,LS)

Errors NA In-place transforms are
no longer supported.

References
[1] Daubechies, Ingrid. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics 61. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1992.

[2] Mallat, S.G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence 11, no. 7 (July 1989): 674–
93. https://doi.org/10.1109/34.192463.

[3] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:
Wellesley-Cambridge Press, 1997.
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[4] Sweldens, Wim. “The Lifting Scheme: A Construction of Second Generation Wavelets.” SIAM
Journal on Mathematical Analysis 29, no. 2 (March 1998): 511–46. https://doi.org/10.1137/
S0036141095289051.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ilwt2 | lwtcoef2 | haart2 | ihaart2 | liftingScheme
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lwtcoef
Extract or reconstruct 1-D LWT wavelet coefficients and orthogonal projections

Syntax
y = lwtcoef(ca,cd)
y = lwtcoef(ca,cd,Name,Value)

Description
y = lwtcoef(ca,cd) returns the level 1 approximation coefficients that correspond to the
approximation and detail coefficients, ca and cd, respectively. ca and cd are outputs of lwt.

y = lwtcoef(ca,cd,Name,Value) specifies options using one or more name-value arguments. For
example, y = lwtcoef(ca,cd,'OutputType','coefficients') specifies coefficients output.

Examples

Reconstruct Signal from Orthogonal Projections

Load a 1-D signal of length 2048. Plot the signal.

load wecg
plot(wecg)
title('Signal')
ylabel('Amplitude')
axis tight
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Create a lifting scheme associated with the db4 wavelet. Use the lifting scheme to obtain the wavelet
decomposition of the signal to the maximum level. Confirm the length of the detail coefficients cell
array equals floor(log2(N)), where N is the length of the signal.

wv = 'db4';
lsc = liftingScheme('Wavelet',wv);
[ca,cd] = lwt(wecg,'LiftingScheme',lsc);
[length(cd) floor(log2(length(wecg)))]

ans = 1×2

    11    11

Extract and plot the approximation coefficients at level 3. Confirm the length of the extraction is one-
eighth the length of the original signal.

approxCf = lwtcoef(ca,cd,'LiftingScheme',lsc,'OutputType','coefficients','Level',3);
[2048/(2^3) length(approxCf)]

ans = 1×2

   256   256

plot(approxCf)
title('Level 3 Approximation Coefficients')
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ylabel('Amplitude')
axis tight

Obtain the orthogonal projection of the level 3 approximation coefficients. Also obtain the orthogonal
projections of the detail coefficients at levels 1, 2, and 3. Plot the results.

approx3 = lwtcoef(ca,cd,'LiftingScheme',lsc,'OutputType','projection','Level',3);
det3 = lwtcoef(ca,cd,'LiftingScheme',lsc,'OutputType','projection','Level',3,'Type','detail');
det2 = lwtcoef(ca,cd,'LiftingScheme',lsc,'OutputType','projection','Level',2,'Type','detail');
det1 = lwtcoef(ca,cd,'LiftingScheme',lsc,'OutputType','projection','Level',1,'Type','detail');
subplot(4,1,1)
plot(approx3)
title('Projection - Approximation')
axis tight
subplot(4,1,2)
plot(det3)
title('Projection - Level 3 Details')
axis tight
subplot(4,1,3)
plot(det2)
title('Projection - Level 2 Details')
axis tight
subplot(4,1,4)
plot(det1)
title('Projection - Level 1 Details')
axis tight
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Confirm the sum of the four projections equals the original signal.

max(abs(wecg-(approx3+det3+det2+det1)))

ans = 1.3323e-15

Input Arguments
ca — Approximation coefficients
scalar | vector | matrix

Approximation (lowpass) coefficients at the coarsest level, specified as a scalar, vector, or matrix. The
coefficients are the output of lwt.
Data Types: single | double
Complex Number Support: Yes

cd — Detail coefficients
cell array

Detail coefficients, specified as an L-by-1 cell array, where L is the level of the transform. The
elements of cd are in order of decreasing resolution. The coefficients are the output of lwt.
Data Types: single | double
Complex Number Support: Yes
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: y =
lwtcoef(ca,cd,'LiftingScheme',lsc,'OutputType','coefficients','Level',2) uses
the lifting scheme lsc to extract the approximation coefficients at level 2.

Wavelet — Wavelet
'db1' (default) | character vector | string scalar

Orthogonal or biorthogonal wavelet, specified as a character vector or string scalar. See the Wavelet
property of liftingScheme for the list of supported wavelets. For perfect reconstruction, the
specified wavelet must match the wavelet you used to generate ca and cd.

You cannot specify 'Wavelet' and 'LiftingScheme' name-value arguments at the same time.

LiftingScheme — Lifting scheme
liftingScheme object

Lifting scheme to use, specified as a liftingScheme object. For perfect reconstruction, the specified
lifting scheme must match the lifting scheme you used to generate ca and cd.

You cannot specify 'Wavelet' and 'LiftingScheme' name-value arguments at the same time.

OutputType — Output type
'coefficients' (default) | 'projection'

Output type, specified as one of:

• 'coefficients' — Extract the approximation or details coefficients
• 'projection' — Return the projection (reconstruction) of the approximation or details
coefficients

Example: y = lwtcoef(ca,cd,'OutputType','projection','Type','detail') returns the
projection corresponding to the detail coefficients at the finest scale.

Type — Type of coefficients
'approximation' (default) | 'detail'

Type of coefficients to extract or reconstruct, specified as 'approximation' or 'detail'.
Example: y = lwtcoef(ca,cd,'Type','detail') extracts the detail coefficients at the finest
scale.

Level — Level
1 (default) | integer

Level of coefficients to extract or reconstruct, specified as an integer in the range [1,N], where N is
the length of cd.
Example: y = lwtcoef(ca,cd,'LiftingScheme',lsc,'Level',3) uses the lifting scheme lsc
to extract the approximation coefficients at level 3.
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Data Types: double

Int2Int — Handling integer-valued data
false or 0 (default) | true or 1

Handling integer-valued data, specified as one of these:

• 1 (true) — Preserve integer-valued data
• 0 (false) — Do not preserve integer-valued data

Int2Int must match the value you used to generate ca and cd.
Example: y = lwtcoef(ca,cd,Int2Int=true) preserves integer-valued data.

Extension — Extension mode
"periodic" (default) | "zeropad" | "symmetric"

Extension mode to use to extract or reconstruct the coefficients, specified as one of these:

• "periodic" — Periodized extension
• "zeropad" — Zero extension
• "symmetric" — Symmetric extension

This argument specifies how to extend the signal at the boundaries. The extension mode must match
the value you used to generate ca and cd.
Example: y = lwtcoef(ca,cd,Extension="zeropad") specifies zero extension.

Output Arguments
y — Extracted coefficients or projection
vector | matrix

Extracted coefficients or projection, returned as a vector or matrix. If ca is a scalar or vector, and the
elements of cd are vectors, then y is a vector. If ca and the elements of cd are matrices, then y is a
matrix, where each column is the extraction or projection of the corresponding columns in ca and cd.
Data Types: single | double

Version History
Introduced in R2021a

R2021a: lwtcoef input syntax has changed
Behavior changed in R2021a

The lwtcoef input syntax has changed. Use name-value arguments instead.
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Functionality Result Use Instead Compatibility
Considerations

Y =
lwtcoef(TYPE,XDEC,
LS,LEVEL,LEVEXT)

Errors Y =
lwtcoef(CA,CD,Name
,Value) with the
lifting decomposition CA
and CD in place of XDEC,
and the following name-
value arguments:

• Replace LS with
'LiftingScheme',
where
'LiftingScheme'
is a liftingScheme
object.

• Replace LEVEXT
with 'Level'.

• Replace TYPE with
the Type and
OutputType name-
value arguments.

• LEVEL is no longer
needed.

According to the value
of TYPE, set the Type
and OutputType name-
value arguments as
listed:

• 'a' —
'Type','approxim
ation' and
'OutputType','pr
ojection'

• 'ca' —
'Type','approxim
ation' and
'OutputType','co
efficients'

• 'd' —
'Type','detail'
and
'OutputType','pr
ojection'

• 'cd' —
'Type','detail'
and
'OutputType','co
efficients'

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
lwt | ilwt | liftingScheme
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lwtcoef2
Extract 2-D LWT wavelet coefficients and orthogonal projections

Syntax
y = lwtcoef2(ll,lh,hl,hh)
y = lwtcoef2(ll,lh,hl,hh,Name=Value)

Description
y = lwtcoef2(ll,lh,hl,hh) returns the level 1 reconstructed approximation coefficients that
correspond to the approximation coefficients ll and the horizontal (lh), vertical (hl), and diagonal
(hh) wavelet coefficients. The coefficients in ll, lh, hl, and hh are the outputs of lwt2 using default
values.

y = lwtcoef2(ll,lh,hl,hh,Name=Value) specifies options using one or more name-value
arguments. For example,
lwtcoef2(ll,lh,hl,hh,Type="detail",OutputType="projection") returns the projection
of the detail coefficients at the finest scale using the db1 wavelet.

Examples

Reconstruct Image from Orthogonal Projections

Load and plot a grayscale image.

load gatlin
figure
image(X)
colormap(map)
title("1964 Gatlinburg Conference on Numerical Algebra",...
    "Wilkinson, Givens, Forsythe, Householder, Henrici, and Bauer")
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Create a lifting scheme associated with the bior3.7 wavelet. Use the lifting scheme to obtain the
wavelet decomposition of the image to the maximum level.

lscheme = liftingScheme(Wavelet="bior3.7");
[ll,lh,hl,hh] = lwt2(X,LiftingScheme=lscheme);

Extract and display the approximation coefficients at level 2. Confirm the row and column dimensions
are one-quarter the size of those of the original image.

approxCF = lwtcoef2(ll,lh,hl,hh,...
    LiftingScheme=lscheme,OutputType="coefficients",Level=2);
figure
image(approxCF)
colormap(map)
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size(X)./size(approxCF)

ans = 1×2

     4     4

Obtain the orthogonal projection of the level 1 approximation coefficients. Also obtain the orthogonal
projections of the detail coefficients at level 1. Display the projections corresponding to the LH and HL
detail coefficients. Observe that the prominent features in the LH- and HL-derived images correspond
to the horizontal, and vertical features, respectively, of the original image.

approx = lwtcoef2(ll,lh,hl,hh,...
    LiftingScheme=lscheme,OutputType="projection",Level=1);
dLH = lwtcoef2(ll,lh,hl,hh,...
    LiftingScheme=lscheme,OutputType="projection",Level=1,Type="LH");
dHL = lwtcoef2(ll,lh,hl,hh,...
    LiftingScheme=lscheme,OutputType="projection",Level=1,Type="HL");
dHH = lwtcoef2(ll,lh,hl,hh,...
    LiftingScheme=lscheme,OutputType="projection",Level=1,Type="HH");
subplot(1,2,1)
imagesc(dLH)
title("LH - Horizontal")
subplot(1,2,2)
imagesc(dHL)
title("HL - Vertical")
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Confirm the sum of the four projections equals the original image.

max(max(abs(X-(approx+dLH+dHL+dHH))))

ans = 2.3448e-13

Input Arguments
ll — Approximation coefficients
scalar | vector | matrix

Approximation coefficients at the coarsest scale, specified as a scalar, vector, or matrix. The
coefficients are the output of lwt2.
Data Types: single | double

lh — Horizontal detail coefficients
cell array

Horizontal detail coefficients by level, specified as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of lh are in order of decreasing resolution. The coefficients are the
output of lwt2.
Data Types: single | double
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hl — Vertical detail coefficients
cell array

Vertical detail coefficients by level, specified as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of hl are in order of decreasing resolution. The coefficients are the
output of lwt2.
Data Types: single | double

hh — Diagonal detail coefficients
cell array

Diagonal detail coefficients by level, specified as a LEV-by-1 cell array, where LEV is the level of the
decomposition. The elements of hh are in order of decreasing resolution. The coefficients are the
output of lwt2.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: y =
lwtcoef2(ll,lh,hl,hh,OutputType="projection",LiftingScheme=lscheme)

Wavelet — Wavelet
"db1" (default) | character vector | string scalar

Orthogonal or biorthogonal wavelet, specified as a character vector or string scalar. See the Wavelet
property of liftingScheme for the list of supported wavelets. The specified wavelet must match the
value that you used to obtain the coefficients ll, lh, hl, and hh.

You cannot specify Wavelet and LiftingScheme at the same time.
Example: y = lwtcoef2(ll,lh,hl,hh,Wavelet="bior3.5") uses the bior3.5 biorthogonal
wavelet.
Data Types: char | string

LiftingScheme — Lifting scheme
liftingScheme object

Lifting scheme, specified as a liftingScheme object. The specified lifting scheme must be the same
lifting scheme that you used to obtain the coefficients ll, lh, hl, and hh.

You cannot specify LiftingScheme and Wavelet at the same time.
Example: y = lwtcoef2(ll,lh,hl,hh,LiftingScheme=lScheme) uses the lScheme lifting
scheme.

OutputType — Output type
"coefficients" (default) | "projection"

Output type, specified as one of these:
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• "coefficients" — Extract the approximation or details coefficients
• "projection" — Return the projection (reconstruction) of the approximation or details
coefficients

Example: y = lwtcoef2(ll,lh,hl,hh,OutputType="projection",Type="detail") returns
the projection corresponding to the detail coefficients at the finest scale.

Type — Type of coefficients
"ll" (default) | "lh" | "hl" | "hh"

Type of coefficients to extract or reconstruct, specified as one of these:

• "ll" — Approximation coefficients
• "lh" — Horizontal coefficients
• "hl" — Vertical coefficients
• "hh" — Diagonal coefficients

Example: y = lwtcoef2(ll,lh,hl,hh,Type="hh") extracts the diagonal coefficients at the
finest scale.

Level — Level
1 (default) | positive integer

Level of coefficients to extract or reconstruct, specified as a positive integer less than or equal to
length(hh).
Example: y = lwtcoef2(ll,lh,hl,hh,LiftingScheme=lsc,Level=3) uses the lifting scheme
lsc to extract the approximation coefficients at level 3.
Data Types: double

Extension — Extension mode
"periodic" (default) | "zeropad" | "symmetric"

Extension mode to use to extract or reconstruct the coefficients, specified as one of these:

• "periodic" — Periodized extension
• "zeropad" — Zero extension
• "symmetric" — Symmetric extension

This argument specifies how to extend the signal at the boundaries. The extension mode must match
the value you used to generate ll, lh, hl, and hh.
Example: y = lwtcoef2(ll,lh,hl,hh,Extension="zeropad") specifies zero extension.

Int2Int — Handling integer-valued data
false or 0 (default) | true or 1

Handling integer-valued data, specified as one of these:

• 1 (true) — Preserve integer-valued data
• 0 (false) — Do not preserve integer-valued data

Int2Int must match the value you used to generate ll, lh, hl, and hh.
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Example: y = lwtcoef2(ll,lh,hl,hh,Int2Int=true) preserves integer-valued data.

Output Arguments
y — Extracted coefficients or projection
matrix

Extracted coefficients or projection, returns as a matrix. y has the same dimensionality as the input
used by the lwt2 function to generate the approximation and details coefficients.
Data Types: single | double

Version History
Introduced in R2021b

R2021b: lwtcoef2 input syntax has changed
Behavior changed in R2021b

The lwtcoef2 input syntax has changed. Use name-value arguments instead.

Functionality Result Use Instead Compatibility
Considerations

Y =
lwtcoef2(TYPE,XDEC
,LS,LEVEL,LEVEXT)

Errors Y =
lwtcoef2(CA,CH,CV,
CD,Name=Value) with
the lifting
decomposition CA, CH,
CV, and CD in place of
XDEC, and the following
name-value arguments:

• Replace LS with
LiftingScheme,
where
LiftingScheme is a
liftingScheme
object.

• Replace LEVEXT
with Level.

• Replace TYPE with
the Type and
OutputType name-
value arguments.

• LEVEL is no longer
needed.

According to the value
of TYPE, set the Type
and OutputType name-
value arguments as
listed:

• 'a' —
Type="approximat
ion" and
OutputType="proj
ection"

• 'ca' —
Type="approximat
ion" and
OutputType="coef
ficients"

• 'd' —
Type="detail"
and
OutputType="proj
ection"

• 'cd' —
Type="detail"
and
OutputType="coef
ficients"

1 Functions

1-900



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
lwt2 | ilwt2 | liftingScheme
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matchingPursuit
Recover sparse signal using matching pursuit algorithm

Syntax
[Xr,YI,I,R] = matchingPursuit(A,Y)
[Xr,YI,I,R] = matchingPursuit( ___ ,Name=Value)

Description
[Xr,YI,I,R] = matchingPursuit(A,Y) recovers the sparse signal Xr using the
sensingDictionary A and sensor measurement Y. By default, the sparse recovery algorithm is
matching pursuit. The I output is the support of Xr identified by the matching pursuit algorithm. The
YI output is the best fit for Y corresponding to the bases indexed by the elements of I, and R is the
residual.

[Xr,YI,I,R] = matchingPursuit( ___ ,Name=Value) specifies options using one or more
name-value arguments in addition to the input argument in the previous syntax. For example,
[Xr,YI,I,R] = matchingPursuit(A,Y,Algorithm="WMP") specifies the weak matching
pursuit algorithm.

Examples

Obtain Sparse Approximation

Load a signal.

load cuspamax

Create a sensing dictionary consisting of the basis types poly and walsh that can be applied to the
signal.

lsig = length(cuspamax);
A = sensingDictionary(Size=lsig,Type={'poly','walsh'})

A = 
  sensingDictionary with properties:

                Type: {'poly'  'walsh'}
                Name: {''  ''}
               Level: [0 0]
    CustomDictionary: []
                Size: [1024 2048]

Use the dictionary to obtain a sparse approximation of the signal using weak matching pursuit.

[Xr,YI,I,R] = matchingPursuit(A,cuspamax, ...
    Algorithm="WMP",maxerr={"L2",1});

Plot the original signal and the approximation.
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plot(cuspamax,"k")
hold on
plot(YI,LineWidth=2)
legend("Original Signal","Weak Matching Pursuit")
hold off

Extract the vectors from the dictionary that correspond to the approximation. Multiply with the
associated coefficients and confirm the result is equal to the approximation.

Amat = subdict(A,1:1024,I);
x = Amat*Xr(I,:);
max(abs(x-YI))

ans = 0

Input Arguments
A — Sensing dictionary
sensingDictionary object

Sensing dictionary, specified as a sensingDictionary object.

Y — Sensor measurements
vector

Sensor measurements, specified as a vector Y such that Y = AX, where X is a sparse signal.
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Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: Xr = matchingPursuit(D,Y,Algorithm="WMP") recovers the sparse signal using
weak matching pursuit.

Algorithm — Recovery algorithm
"BMP" (default) | "OMP" | "WMP"

Recovery algorithm, specified as one of these:

• "BMP" — Matching pursuit
• "OMP" — Orthogonal matching pursuit
• "WMP" — Weak matching pursuit

For more information, see “Matching Pursuit Algorithms”.
Example: [Xr,YI,I,R] = matchingPursuit(D,Y,Algorithm="OMP") recovers the sparse
signal using orthogonal matching pursuit.

wmpcfs — Optimality factor
0.6 (default) | positive scalar

Optimality factor for weak orthogonal matching pursuit, specified as a scalar in the interval (0,1].
This option is valid only when Algorithm is "WMP".
Example: [Xr,YI,I,R] = matchingPursuit(D,Y,Algorithm="WMP",wmpcfs=0.7) specifies
an optimality factor of 0.7.
Data Types: single | double

maxIterations — Maximum number of iterations
25 (default) | positive integer

Maximum number of iterations to recover the sparse signal, specified as a positive integer. The
pursuit algorithm stops if the number of iterations reaches maxIterations. Note that the number of
iterations matchingPursuit performs to recover the sparse signal is equal to the length of the
index vector I.
Example: [Xr,YI,I,R] = matchingPursuit(D,Y,maxIterations=15) iterates at most 15
times to recover the sparse signal.
Data Types: single | double

maxerr — Maximum error criteria
{"L2",1} (default) | cell

Maximum error criteria used to recover the sparse signal, specified as cell array {NORME,ME}. NORME
specifies the norm used in the error computation. Valid options are "L1", "L2", and "Linf". ME is a
positive scalar in the interval (0,100] that specifies the maximum percentage of the relative
admissible value.
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The relative error expressed as a percentage is

100 R
Y

where R is the residual at each iteration and Y is the input signal. For example, {"L1",10} sets
maximum acceptable ratio of the L1 norms of the residual to the input signal to 0.10.

If you specify maxerr, the matching pursuit terminates when the first of the following conditions is
satisfied:

• The number of iterations reaches maxIterations.
• The relative error falls below the percentage you specify with the maxerr name-value argument.

Example: [Xr,YI,I,R] = matchingPursuit(D,Y,maxerr={"L1",20}) specifies the L1 norm
and a relative error of 20%.
Data Types: cell

Output Arguments
Xr — Sparse signal
vector

Sparse signal recovered, returned as a vector.
Data Types: single | double
Complex Number Support: Yes

YI — Best fit
vector

Best fit to the sensor measurements, returned as a vector. YI is the best fit for Y corresponding to the
bases indexed by the elements of I. The best fit is defined as YI = A(:,I)*Xr(I,:).
Data Types: single | double
Complex Number Support: Yes

I — Index
vector

Index of basis elements identified by the matching pursuit algorithm, returned as a vector. For
matching pursuit algorithms, the length of I corresponds to the number of iterations the algorithm
needed before termination.
Data Types: double

R — Residual
vector

Residual, returned as a vector. The vectors R and Y are equal in size. The residual is defined as R =
Y-(A(:,I)*Xr(I,:)) = Y-YI.
Data Types: single | double
Complex Number Support: Yes
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Version History
Introduced in R2022a

See Also
basisPursuit | sensingDictionary

Topics
“Signal Deconvolution and Impulse Denoising Using Pursuit Methods”
“Matching Pursuit Algorithms”
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mbscalf
Morris minimum-bandwidth discrete-time wavelets

Syntax
scalf = mbscalf(wname)

Description
scalf = mbscalf(wname) returns the Morris minimum-bandwidth scaling filter specified by
wname.

Note The orthogonal wavelets that mbscalf creates do not pass the default orthogonality checks in
isorthwfb. You can test for orthogonality with a relaxed tolerance.

Examples

Morris Minimum-Bandwidth Wavelet

Obtain the scaling filter corresponding to the Morris minimum-bandwidth wavelet with 10 taps and
optimized using a level 3 discrete wavelet transform.

scalf = mbscalf("mb10.3");

Use orthfilt to obtain the scaling and wavelet filters corresponding to the wavelet.

[LoD,HiD,LoR,HiR] = orthfilt(scalf);

This wavelet filter does not pass the default orthogonality check in isorthwfb. Test for orthogonality
with a relaxed tolerance.

[tf,check] = isorthwfb(LoD,Tolerance=1e-7)

tf = logical
   1

check=7×3 table
                                          Pass-Fail    Maximum Error    Test Tolerance
                                          _________    _____________    ______________

    Equal-length filters                    pass                 0              0     
    Even-length filters                     pass                 0              0     
    Unit-norm filters                       pass        5.0067e-08          1e-07     
    Filter sums                             pass             2e-09          1e-07     
    Even and odd downsampled sums           pass             1e-09          1e-07     
    Zero autocorrelation at even lags       pass        2.5884e-08          1e-07     
    Zero crosscorrelation at even lags      pass        1.7347e-17          1e-07     

 mbscalf

1-907



Create a discrete wavelet transform filter bank using the wavelet. Specify a single level of
decomposition. Plot the one-sided magnitude frequency responses of the filter bank.

fb = dwtfilterbank(Wavelet="mb10.3",Level=1);
freqz(fb)

Input Arguments
wname — Morris minimum-bandwidth scaling filter
"mbN.L"

Morris minimum-bandwidth scaling filter, specified as "mbN.L", where N is the number of filter
coefficients (taps), and L is the level of the discrete wavelet transform used in the optimization.
wname can be one of these values:

• "mb4.2", "mb8.2"
• "mb8.3", "mb10.3", "mb12.3", "mb14.3", "mb16.3", "mb18.3", "mb24.3", "mb32.3"
• "mb8.4"

Output Arguments
scalf — Scaling filter
vector
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Scaling filter corresponding to wname, returned as a vector. scalf should be used in conjunction with
orthfilt to obtain scaling and wavelet filters with the proper normalization.
Data Types: double

Version History
Introduced in R2022b

References
[1] Morris, Joel M, and Ravindra Peravali. “Minimum-Bandwidth Discrete-Time Wavelets.” Signal

Processing 76, no. 2 (July 1999): 181–93. https://doi.org/10.1016/S0165-1684(99)00007-9.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
symwavf | dbwavf | modwt | modwpt | wavedec | dwpt | orthfilt | isorthwfb
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mdwtcluster
Multisignals 1-D clustering

Syntax
s = mdwtcluster(x)
s = mdwtcluster( ___ ,Name,Value)

Description
s = mdwtcluster(x) clusters data using hierarchical clustering. The input matrix x is decomposed
in the row direction using the discrete wavelet transform (DWT) with the Haar wavelet and the
maximum allowed level fix(log2(size(x,2))).

Note mdwtcluster requires Statistics and Machine Learning Toolbox™.

s = mdwtcluster( ___ ,Name,Value) specifies options using name-value pair arguments in
addition to the input argument in the previous syntax. For example, 'level',4 specifies the
decomposition level.

Examples

Cluster 1-D Multisignal

Load the 1-D multisignal elecsig10.

load elecsig10

Compute the structure resulting from multisignal clustering.

lst2clu = {'s','ca1','ca3','ca6'};
S = mdwtcluster(signals,'maxclust',4,'lst2clu',lst2clu)

S = struct with fields:
    IdxCLU: [70x4 double]
    Incons: [69x4 double]
      Corr: [0.7920 0.7926 0.7947 0.7631]

Retrieve the cluster indices.

IdxCLU = S.IdxCLU;

Plot the first and third clusters.

plot(signals(IdxCLU(:,1)==1,:)','r')
hold on
plot(signals(IdxCLU(:,1)==3,:)','b')
hold off
title('Cluster 1 (Signal) and Cluster 3 (Coefficients)')
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Check the equality of partitions. Confirm we obtain the same partitions using coefficients of
approximation at level 3 instead of the original signals. Much less information is then used.

equalPART = isequal(IdxCLU(:,1),IdxCLU(:,3))

equalPART = logical
   1

Input Arguments
x — Input data
matrix

Input data, specified as a matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Example: s = mdwtcluster(signals,'maxclust',4,'wname','db4') specifies four clusters
and the wavelet db4.

dirDec — Direction of decomposition
'r' (default) | 'c'

Direction of decomposition, specified as 'r' (row) or 'c' (column).

level — Level of DWT decomposition
fix(log2(size(x,d))) (default) | positive integer

Level of DWT decomposition, specified as a positive integer. The default value is
fix(log2(size(x,d))), where d=1 or d=2, depending on the dirDec value.

wname — Wavelet
'haar' (default) | character vector | string scalar

Wavelet used for the DWT, specified as a character vector or string scalar. The default value is the
Haar wavelet, 'haar'.

dwtEXTM — DWT extension mode
character vector | string scalar

DWT extension mode, specified as a character vector or string scalar. See dwtmode.

pdist — Distance metric
'euclidean' (default) | character vector | string scalar | function handle

Distance metric, specified as a character vector, string scalar, or function handle. The default value is
'euclidean'. See pdist.

linkage — Algorithm for computing the distance between clusters
'ward' (default) | 'average' | 'centroid' | 'complete' | ...

Algorithm for computing the distance between clusters, specified as one of the values in this table.

Method Description
'average' Unweighted average distance (UPGMA)
'centroid' Centroid distance (UPGMC), appropriate for Euclidean distances only
'complete' Farthest distance
'median' Weighted center of mass distance (WPGMC), appropriate for Euclidean

distances only
'single' Shortest distance
'ward' Inner squared distance (minimum variance algorithm), appropriate for

Euclidean distances only
'weighted' Weighted average distance (WPGMA)

See linkage.

maxclust — Number of clusters
6 (default) | integer | vector
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Number of clusters, specified as an integer or vector.

lst2clu — Cell array that contains the list of data to classify
cell array | string vector

Cell array of character vectors or string vector which contains the list of data to classify. If N is the
level of decomposition, the allowed name values for the cells are:

• 's' — Signal
• 'aj' — Approximation at level j
• 'dj' — Detail at level j
• 'caj' — Coefficients of approximation at level j
• 'cdj' — Coefficients of detail at level j

with j = 1, …, N.

The default value is {'s';'ca1';...;'caN'} or ["s" "cal" ... "caN"].

Output Arguments
s — Output structure
structure

The output structure s is such that for each partition j:

S.Idx(:,j) Contains the cluster numbers obtained from the hierarchical cluster
tree. See cluster.

S.Incons(:,j) Contains the inconsistent values of each non-leaf node in the
hierarchical cluster tree. See inconsistent.

S.Corr(j) Contains the cophenetic correlation coefficients of the partition. See
cophenet.

Note If maxclust is a vector, then IdxCLU is a multidimensional array such that IdxCLU(:,j,k)
contains the cluster numbers obtained from the hierarchical cluster tree for k clusters.

Version History
Introduced in R2008a

See Also
mdwtdec | wavedec
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mdwtdec
Multisignal 1-D wavelet decomposition

Syntax
dec = mdwtdec(dirdec,x,lev,wname)
dec = mdwtdec(dirdec,x,lev,LoD,HiD,LoR,HiR)
dec = mdwtdec( ___ ,'mode',extmode)

Description
dec = mdwtdec(dirdec,x,lev,wname) returns the 1-D discrete wavelet decomposition at level
lev of each row or each column of the matrix x, using the wavelet wname.

dec = mdwtdec(dirdec,x,lev,LoD,HiD,LoR,HiR) uses the specified lowpass and highpass
wavelet decomposition filters LoD and HiD, respectively, and the lowpass and highpass wavelet
reconstruction filters LoR and HiR, respectively.

dec = mdwtdec( ___ ,'mode',extmode) uses the specified discrete wavelet transform (DWT)
extension mode extmode. For more information, see dwtmode. This syntax can be used with any of
the previous syntaxes.

Examples

Decompose Multisignals

This example shows how to return the wavelet decomposition of a multisignal using a wavelet name
and wavelet filters.

Load the 23 channel EEG data Espiga3 [4]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3
size(Espiga3)

ans = 1×2

   995    23

Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2')

dec = struct with fields:
        dirDec: 'c'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
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      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Compute the filters associated with the db2 wavelet.

[LoD,HiD,LoR,HiR] = wfilters('db2');

Perform a decomposition at level 2 using the filters.

decBIS = mdwtdec('c',Espiga3,2,LoD,HiD,LoR,HiR)

decBIS = struct with fields:
        dirDec: 'c'
         level: 2
         wname: ''
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Confirm the approximation and detail coefficients of both decompositions are identical.

max(abs(dec.ca(:)-decBIS.ca(:)))

ans = 0

max(abs(dec.cd{1}(:)-decBIS.cd{1}(:)))

ans = 0

max(abs(dec.cd{2}(:)-decBIS.cd{2}(:)))

ans = 0

Input Arguments
dirdec — Direction indicator
'r' | 'c'

Direction indicator of the wavelet decomposition, specified as:

• 'r': Take the 1-D wavelet decomposition of each row of x
• 'c': Take the 1-D wavelet decomposition of each column of x

x — Input data
real-valued matrix

Input data, specified as a real-valued matrix.

lev — Level of decomposition
positive integer
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Level of decomposition, specified as a positive integer. mdwtdec does not enforce a maximum level
restriction. Use wmaxlev to ensure that the wavelet coefficients are free from boundary effects. If
boundary effects are not a concern, a good rule is to set lev less than or equal to
fix(log2(length(N))), where N is the number of samples in the 1-D data.

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal or
biorthogonal. Orthogonal and biorthogonal wavelets are designated as type 1 and type 2 wavelets
respectively in the wavelet manager, wavemngr.

• Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin
("beyl"), Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han
linear-phase moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and
Vaidyanathan ("vaid").

• Valid built-in biorthogonal wavelet families are: Biorthogonal Spline ("bior"), and Reverse
Biorthogonal Spline ("rbio").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1) or biorthogonal (returns 2). For example,
wavemngr("type","db6") returns 1.

LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors

Wavelet decomposition filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. The lengths of LoD and
HiD must be equal. See wfilters for additional information.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.

extmode — Extension mode
'zpd' | 'sp0' | 'spd' | ...

Extension mode used when performing the wavelet decomposition, specified as:

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
'symw' Symmetric extension (whole point): boundary value symmetric

replication
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mode DWT Extension Mode
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd', 'per' Periodized extension

If the signal length is odd and mode is 'per', an extra sample
equal to the last value is added to the right and the extension is
performed in 'ppd' mode. If the signal length is even, 'per' is
equivalent to 'ppd'. This rule also applies to images.

The global variable managed by dwtmode specifies the default extension mode. Use dwtmode to
determine the extension modes.

Output Arguments
dec — Wavelet decomposition
structure

Wavelet decomposition of the multisignal x, returned as a structure with the following fields:

• dirDec — Direction indicator: 'r' (row) or 'c' (column)
• level — Level of wavelet decomposition
• wname — Wavelet name
• dwtFilters — Structure with four fields: LoD, HiD, LoR, and HiR
• dwtEXTM — DWT extension mode
• dwtShift — DWT shift parameter (0 or 1)
• dataSize — Size of x
• ca — Approximation coefficients at level lev
• cd — Cell array of detail coefficients, from level 1 to level lev

The coefficients ca and cd{k}, for k from 1 to lev, are matrices and are stored in rows if dirdec =
'r' or in columns if dirdec = 'c'.

Version History
Introduced in R2007a

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.
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[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

[4] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.
• The input lev must be defined as a scalar during compilation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.
• The level of decomposition, lev must be scalar and a compile-time constant.

See Also
mdwtrec | wavedec
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mdwtrec
Multisignal 1-D wavelet reconstruction

Syntax
x = mdwtrec(dec)
x = mdwtrec(dec,idxsig)
y = mdwtrec(dec,type,lev)

a = mdwtrec(dec,'a')
d = mdwtrec(dec,'d')
ca = mdwtrec(dec,'ca')

cd = mdwtrec(dec,'cd',mode)
cfs = mdwtrec(dec,'cfs',mode)

y = mdwtrec( ___ ,idxsig)

Description
x = mdwtrec(dec) reconstructs the original matrix of signals from the wavelet decomposition
structure dec.

x = mdwtrec(dec,idxsig) reconstructs the signals whose indices are specified in the vector
idxsig.

y = mdwtrec(dec,type,lev) extracts or reconstructs the detail or approximation coefficients at
level lev depending on the value of type.

a = mdwtrec(dec,'a') returns the reconstructed approximation coefficients.

d = mdwtrec(dec,'d') returns a matrix containing the sum of all the details, so that x = a + d.

ca = mdwtrec(dec,'ca') returns a matrix containing the extracted approximation coefficients.

cd = mdwtrec(dec,'cd',mode) returns a matrix containing all the detail coefficients
concatenated in the order specified by mode.

cfs = mdwtrec(dec,'cfs',mode) returns a matrix containing all the coefficients in the order
specified by mode.

y = mdwtrec( ___ ,idxsig) extracts or reconstructs the coefficients whose indices are specified in
the vector idxsig.

Examples

Reconstruct Multisignals

This example shows how to reconstruct a multisignal and a user-specified signal within the
multisignal.
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Load the 23 channel EEG data Espiga3 [4]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3
size(Espiga3)

ans = 1×2

   995    23

Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2');

Reconstruct the original matrix of signals using the decomposition structure dec.

XR = mdwtrec(dec);

Compute the reconstruction error.

errREC = max(abs(Espiga3(:)-XR(:)))

errREC = 3.5442e-10

Reconstruct the original signal at index 17, the corresponding approximation at level 2, and details at
levels 1 and 2.

idx = 17;
Y = mdwtrec(dec,idx);
A2 = mdwtrec(dec,'a',2,idx);
D2 = mdwtrec(dec,'d',2,idx);
D1 = mdwtrec(dec,'d',1,idx);

Compute the reconstruction error for signal 17.

errREC = max(abs(Y-A2-D2-D1))

errREC = 1.3242e-17

Input Arguments
dec — Wavelet decomposition
structure

Wavelet decomposition of a multisignal, specified as a structure with the following fields:

• dirDec — Direction indicator: 'r' (row) or 'c' (column)
• level — Level of wavelet decomposition
• wname — Wavelet name
• dwtFilters — Structure with four fields: LoD, HiD, LoR, and HiR
• dwtEXTM — DWT extension mode
• dwtShift — DWT shift parameter (0 or 1)
• dataSize — Size of x
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• ca — Approximation coefficients at level lev
• cd — Cell array of detail coefficients, from level 1 to level lev

The format of dec matches the output of mdwtdec.

idxsig — Indices
positive integer-valued vector

Indices of signals to reconstruct, specified as a positive integer-valued vector.
Example: If S is a matrix of 100 signals and dec = mdwtdec('r',S,3,'db2'), then
mdwtrec(dec,[1 20 98]) reconstructs the signals whose row indices are 1, 20, and 98.

lev — Level
nonnegative integer

Level of coefficients to extract or reconstruct, specified as a nonnegative integer.

• If type is 'a' or 'ca', then lev must be an integer in the interval [0, levdec], where levdec =
dec.level.

• If type is 'd' or 'cd', then lev must be an integer in the interval [1, levdec], where levdec =
dec.level.

type — Output type
'cd' | 'ca' | 'd' | 'a'

Output type, specified as one of the following:

• 'cd' – detail coefficients of level lev are extracted
• 'd' – detail coefficients of level lev are reconstructed
• 'ca' – approximation coefficients of level lev are extracted
• 'a' – approximation coefficients of level lev are reconstructed

mode — Order of concatenation
'descend' (default) | 'ascend'

Order of concatenation, specified as 'descend' or 'ascend'. For mode = 'descend', the
coefficients are concatenated from level levdec to level 1, where levdec = dec.level. If mode =
'ascend', the coefficients are concatenated from level 1 to level levdec. The concatenation is made
row-wise if dec.dirDEC = 'r' or column-wise if dec.dirDEC = 'c'.

Output Arguments
x — Reconstructed signals
real-valued matrix

Reconstructed signals, returned as a real-valued matrix.

y — Decomposition coefficients
real-valued matrix

Decomposition coefficients, returned as a real-valued matrix, depending on type:
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• 'cd' – extracted detail coefficients
• 'ca' – extracted approximation coefficients
• 'd' – reconstructed detail coefficients
• 'a' – reconstructed approximation coefficients

a — Reconstructed approximation coefficients
real-valued matrix

Reconstructed approximation coefficients, returned as a real-valued matrix.

d — Reconstructed detail coefficients
real-valued matrix

Reconstructed detail coefficients, returned as a real-valued matrix.

ca — Extracted approximation coefficients
real-valued matrix

Extracted approximation coefficients, returned as a real-valued matrix.

cd — Extracted detail coefficients
real-valued matrix

Extracted detail coefficients, returned as a real-valued matrix.

cfs — Extracted approximation and detail coefficients
real-valued matrix

Extracted approximation and detail coefficients, returned as a real-valued matrix.

Version History
Introduced in R2007a

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

[4] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input type must be constant.

See Also
mdwtdec | waverec
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measerr
Quality metrics of signal or image approximation

Syntax
[PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP)
[PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP,BPS)

Description
[PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP) returns the peak signal-to-noise ratio, PSNR,
mean square error, MSE, maximum squared error, MAXERR, and ratio of squared norms, L2RAT, for an
input signal or image, X, and its approximation, XAPP.

[PSNR,MSE,MAXERR,L2RAT] = measerr(X,XAPP,BPS) uses the bits per sample, BPS, to
determine the peak signal-to-noise ratio.

Examples

Measure Approximation Quality in RGB Image

Approximate an RGB image and compute the quality metrics.

Load an RGB image. Return the image dimensions and minimum and maximum values.

X = imread('africasculpt.jpg');
size(X)

ans = 1×3

   512   512     3

[min(X(:)) max(X(:))]

ans = 1x2 uint8 row vector

     0   236

Define the image approximation by setting equal to 1 all RGB values less than or equal to 100.

Xapp = X;
Xapp(X<=100) = 1;

Display the image and its approximation.

subplot(1,2,1)
image(X)
title('Original Image')
subplot(1,2,2)
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image(Xapp)
title('Approximation')

Compute the quality metrics of the image approximation.

[psnr,mse,maxerr,L2rat] = measerr(X,Xapp)

psnr = 17.5287

mse = 1.1487e+03

maxerr = 99

L2rat = 0.9398

Measure Approximation Quality in Grayscale Image

Approximate a grayscale image and calculate approximation quality metrics.

Create a 256-by-256 grayscale image with intensities between 0 and 216− 1.

val = 0:2^16-1;
X = reshape(val,256,256);

There are 16 bits per sample. Define the image approximation by setting equal to 1 all grayscale
values less than or equal to 1000. Display the image and its approximation.
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Xapp = X;
Xapp(X<=1000) = 1;
colormap(gray(2^16))
subplot(1,2,1)
image(X)
title('Original Image')
subplot(1,2,2)
image(Xapp)
title('Approximation')

There are 16 bits per sample. Compute the quality metrics of the grayscale approximation.

bps = 16;
[psnr,mse,maxerr,L2rat] = measerr(X,Xapp)

psnr = 11.0733

mse = 5.0786e+03

maxerr = 999

L2rat = 1.0000

Input Arguments
X — Input signal or image
real-valued array
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Input signal or image, specified as a real-valued array.

XAPP — Approximation of signal or image
real-valued array

Approximation of signal or image X, specified as a real-valued array. XAPP is the same size as X.

BPS — Bits per sample
8 (default) | positive integer

Bits per sample of the input data, specified as a positive integer. The default value is 8, so the
maximum possible pixel value of an image (MAXI) is 255. More generally, when samples are
represented using linear Pulse Code Modulation with B bits per sample, MAXI is 2B−1.

Output Arguments
PSNR — Peak signal-to-noise ratio
positive real number

Peak signal-to-noise ratio (PSNR) in decibels, returned as a positive real number. The PSNR is only
meaningful for data encoded in terms of bits per sample or bits per pixel. For example, an image with
8 bits per pixel contains integers from 0 to 255.

MSE — Mean square error
positive real number

Mean square error, returned as a positive real number. MSE is the squared norm of the difference
between X and XAPP divided by the number of elements.

MAXERR — Maximum absolute squared deviation
positive real number

Maximum absolute squared deviation of the data X from the approximation XAPP, returned as a
positive real number.

L2RAT — Energy ratio
positive real number

Energy ratio between the approximation XAPP and input data X, returned as a positive real number.
L2RAT is the ratio of the squared norm of XAPP to X.

More About
Peak Signal to Noise Ratio

The peak signal-to-noise ratio (PSNR) in decibels between a signal and its approximation is

20log10(2B− 1
MSE )

where MSE represents the mean square error, and B represents the bits per sample.
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Mean Square Error

The mean square error (MSE) between a signal or image, X, and an approximation, Y, is

X − Y 2

N

where N is the number of elements in the signal.

Version History
Introduced in R2010b

References
[1] Huynh-Thu, Q. and M. Ghanbari. "Scope of Validity of PSNR in Image/Video Quality Assessment."

Electronics Letters. Vol. 44, Issue 13, 2008, pp. 800–801.

See Also
wdenoise | wden | wdencmp

Topics
“Wavelet Data Compression”
“Wavelet Denoising and Nonparametric Function Estimation”
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merge
Merge two or more labeled signal sets

Syntax
lssnew = merge(lss1,...,lssN)

Description
lssnew = merge(lss1,...,lssN) merges N labeled signal set objects, lss1,...,lssN, and
returns a labeled signal set lssnew containing all the members and label values of the input sets.

Examples

Merge Labeled Signal Sets

Load a labeled signal set containing recordings of whale songs. Display the names of the set's
members and a summary of its label definitions.

load whales

getMemberNames(lss)

ans = 2x1 string
    "Member{1}"
    "Member{2}"

labelDefinitionsSummary(lss)

ans=3×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag            Description         
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ____________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                
    "MoanRegions"     "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {0x0 double               }    ""     "Regions where moans occur" 
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"

Create a new signal set with the same data source, time information, and labels as lss. Remove the
first member of the new set and change the name of the remaining one. Display the names of the new
set's members.

newlss = copy(lss);

removeMembers(newlss,1)
setMemberNames(newlss,"YoungOne")

getMemberNames(newlss)

ans = 
"YoungOne"

 merge

1-929



Create a label definition that specifies whether a signal corresponds to a calf or to an adult whale.
Add the definition to the new labeled signal set and label the member. Remove the label that specifies
the moan regions. Display a summary of the new member's label definitions

calf = signalLabelDefinition('Calf','LabeldataType','logical','DefaultValue',false, ...
    'Description','Is the specimen a calf, or an adult?');

addLabelDefinitions(newlss,calf)
setLabelValue(newlss,1,"Calf",true)

removeLabelDefinition(newlss,"MoanRegions")
labelDefinitionsSummary(newlss)

ans=3×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag                 Description              
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ______________________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                          
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"          
    "Calf"            "attribute"    "logical"        {["N/A"   ]}       {0x0 double}       {[       0]}    {0x0 double               }    ""     "Is the specimen a calf, or an adult?"

Merge the two labeled signal sets. Verify that the merged set contains the members, definitions, and
labels of the original sets.

lssmerge = merge(lss,newlss);

getMemberNames(lssmerge)

ans = 3x1 string
    "Member{1}"
    "Member{2}"
    "YoungOne"

labelDefinitionsSummary(lssmerge)

ans=4×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag                 Description              
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ______________________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                          
    "MoanRegions"     "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {0x0 double               }    ""     "Regions where moans occur"           
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"          
    "Calf"            "attribute"    "logical"        {["N/A"   ]}       {0x0 double}       {[       0]}    {0x0 double               }    ""     "Is the specimen a calf, or an adult?"

Input Arguments
lss1,...,lssN — Input labeled signal sets
labeledSignalSet objects

Input labeled signal sets, specified as labeledSignalSet objects. All input sets must have the same
time information settings and data source type.
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Output Arguments
lssnew — Merged labeled signal set
labeledSignalSet object

Merged labeled signal set, returned as a labeledSignalSet object. The set lssnew contains a
signal source, label definitions, and label values that are independent of those in the input labeled
signal sets.

• Changing any of the input labeled signal sets does not affect the merged labeled signal set.
• Changing the merged labeled signal set does not affect any of the input labeled signal sets.

Version History
Introduced in R2020a

See Also
labeledSignalSet | signalLabelDefinition
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mexihat
Mexican hat (Ricker) wavelet

Syntax
[psi,x] = mexihat(lb,ub,n)

Description
[psi,x] = mexihat(lb,ub,n) returns the Mexican hat wavelet psi evaluated at x, an n-point
regular grid in the interval [lb, ub]. The Mexican hat wavelet is also known as the Ricker wavelet.

The Mexican hat wavelet has the interval [-5, 5] as effective support. Nearly 100% of the wavelet's
energy is in the interval. Although [-5, 5] is the correct theoretical effective support, a wider effective
support, [-8, 8], is used in the computation to provide more accurate results.

This function is proportional to the second derivative function of the Gaussian probability density
function.

Note You can use gauswavf to obtain a second order derivative of a Gaussian wavelet. If you use the
negative of this normalized derivative, the resulting wavelet resembles the Mexican hat wavelet.

Examples

Mexican Hat Wavelet

Create a Mexican hat wavelet with support on [-5,5]. Use 1,000 sample points. Plot the result.

lb = -5;
ub = 5;
N = 1000;
[psi,xval] = mexihat(lb,ub,N);
plot(xval,psi)
title('Mexican Hat Wavelet')
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Input Arguments
lb — Lower limit
real-valued scalar

Lower limit of interval, specified as a real-valued scalar.

ub — Upper limit
real-valued scalar

Upper limit of interval, specified as a real-valued scalar.

n — Number of sample points
positive integer

Number of sample points, specified as a positive integer.

Output Arguments
psi — Mexican hat wavelet
real-valued vector

Mexican hat wavelet, returned as a real-valued vector of length n.
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x — Sampling instants
real-valued vector

Sampling instants, returned as a real-valued vector of length n.

Version History
Introduced before R2006a

See Also
waveinfo | gauswavf
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meyer
Meyer wavelet

Syntax
[phi,psi,t] = meyer(lb,ub,n)
[phi,t] = meyer(lb,ub,n,'phi')
[psi,t] = meyer(lb,ub,n,'psi')
[phi,psi] = meyer(lb,ub,n,S)

Description
[phi,psi,t] = meyer(lb,ub,n) returns the Meyer scaling and wavelet functions, phi and psi
respectively, evaluated at t, an n-point regular grid in the interval [lb, ub]. Both functions have the
interval [-8, 8] as effective support.

Note meyer uses the auxiliary function meyeraux. If you change meyeraux, you get a family of
different wavelets.

[phi,t] = meyer(lb,ub,n,'phi') returns only the Meyer scaling function.

[psi,t] = meyer(lb,ub,n,'psi') returns only the Meyer wavelet.

[phi,psi] = meyer(lb,ub,n,S) returns the Meyer scaling function and wavelet if S is not equal
to 'phi' or 'psi'.

Examples

Plot Meyer Wavelet and Scaling Functions

Plot the Meyer wavelet and scaling functions.

lb = -8;
ub = 8;
n = 1024;
[phi,psi,x] = meyer(lb,ub,n);
subplot(2,1,1)
plot(x,phi)
grid on
title('Scaling Function')
subplot(2,1,2)
plot(x,psi)
grid on
title('Wavelet')
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Input Arguments
lb — Lower limit
real-valued scalar

Lower limit of interval, specified as a real-valued scalar.

ub — Upper limit
real-valued scalar

Upper limit of interval, specified as a real-valued scalar.

n — Number of points
positive integer

Number of points, specified as a positive integer. n must be a power of 2.

Output Arguments
phi — Meyer scaling function
real-valued vector

Meyer scaling function, returned as a real-valued vector of length n.

1 Functions

1-936



psi — Meyer wavelet
real-valued vector

Meyer wavelet, returned as a real-valued vector of length n.

t — Sampling instants
real-valued vector

Sampling instants, returned as a real-valued vector of length n.

Algorithms
The Meyer wavelet and scaling functions are defined in the Fourier domain. Starting from an explicit
form of the Fourier transform ϕ  of the scaling function ϕ, meyer computes the values of ϕ  on a
regular grid. The values of ϕ are computed using an inverse Fourier transform.

The procedure for the wavelet ψ is identical to the procedure for the scaling function.

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: SIAM Ed, 1992.

See Also
meyeraux | wavefun | waveinfo
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meyeraux
Meyer wavelet auxiliary function

Syntax
Y = meyeraux(X)

Description
Y = meyeraux(X) returns values of the auxiliary function used for Meyer wavelet generation
evaluated at the elements of X. The input X is a vector or matrix of real values. The function is

y = 35x4− 84x5 + 70x6− 20x7 .

X and Y have the same dimensions. The range of meyeraux is the closed interval [0, 1].

Examples

Plot Meyer Auxiliary Function

Plot the Meyer auxiliary function.

x = linspace(0,1,100);
y = meyeraux(x);
plot(x,y)
grid on
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Input Arguments
X — Sample points
real-valued vector | real-valued matrix

Sample points at which to evaluate the Meyer auxiliary function, specified as a vector or matrix of
real values.
Data Types: single | double

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
meyer
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minus
Laurent polynomial or Laurent matrix subtraction

Syntax
Q = minus(A,B)
Q = A - B

Description
Q = minus(A,B) subtracts B from A, where A and B are a pair of Laurent polynomials or Laurent
matrices.

Note The laurentPolynomial and laurentMatrix objects have their own versions of minus. The
input data type determines which version is executed.

Q = A - B is equivalent to Q = minus(A,B).

Examples

Laurent Polynomial Subtraction

Create two Laurent polynomials:

• a(z) = 2z
• b(z) = 8z3 + 4z2 + 2z + 1

a = laurentPolynomial(Coefficients=[2],MaxOrder=1);
b = laurentPolynomial(Coefficients=[8 4 2 1],MaxOrder=3);

Subtract a(z) from b(z).

c = minus(b,a)

c = 
  laurentPolynomial with properties:

    Coefficients: [8 4 0 1]
        MaxOrder: 3

Subtract a3(z) + a2(z) from b(z).

d = b-(mpower(a,3)+mpower(a,2))

d = 
  laurentPolynomial with properties:
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    Coefficients: [2 1]
        MaxOrder: 1

Laurent Matrix Subtraction

Create the Laurent polynomials:

• a(z) = 5z2 + 8z + 3
• b(z) = 8z + 3 + 2z−1

lpA = laurentPolynomial(Coefficients=[5 8 3],MaxOrder=2);
lpB = laurentPolynomial(Coefficients=[8 3 2],MaxOrder=1);

Create the Laurent matrices:

•
lmatA = 

a z 2
4 6

•
lmatB = 

b z 1
3 5

lmatA = laurentMatrix(Elements={lpA,2;4,6});
lmatB = laurentMatrix(Elements={lpB,1;3,5});

Subtract lmatB from lmatA.

lmatC = lmatA-lmatB;
lmatC.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: [5 0 0 -2]
        MaxOrder: 2

lmatC.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: 0

lmatC.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: 0

lmatC.Elements{2,2}
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ans = 
  laurentPolynomial with properties:

    Coefficients: 1
        MaxOrder: 0

Input Arguments
A — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

B — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Difference
laurentPolynomial object

Difference of two Laurent polynomials or two Laurent matrices, returned as a laurentPolynomial
object or a laurentMatrix object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes | plus

Objects
laurentMatrix | laurentPolynomial
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mlpt
Multiscale local 1-D polynomial transform

Syntax
[coefs,T,coefsPerLevel,scalingMoments] = mlpt(x,t)
[coefs,T,coefsPerLevel,scalingMoments] = mlpt(x,t,numLevel)
[coefs,T,coefsPerLevel,scalingMoments] = mlpt(x)
[coefs,T,coefsPerLevel,scalingMoments] = mlpt( ___ ,Name,Value)

Description
[coefs,T,coefsPerLevel,scalingMoments] = mlpt(x,t) returns the multiscale local
polynomial 1-D transform (MLPT) of input signal x sampled at the sampling instants, t. If x or t
contain NaNs, the union of the NaNs in x and t is removed before obtaining the mlpt.

[coefs,T,coefsPerLevel,scalingMoments] = mlpt(x,t,numLevel) returns the transform
for numLevel resolution levels.

[coefs,T,coefsPerLevel,scalingMoments] = mlpt(x) uses uniform sampling instants for x
as the time instants if x does not contain NaNs. If x contains NaNs, the NaNs are removed from x and
the nonuniform sampling instants are obtained from the numeric elements of x.

[coefs,T,coefsPerLevel,scalingMoments] = mlpt( ___ ,Name,Value) specifies mlpt
properties using one or more Name,Value pair arguments and any of the previous input arguments.

Examples

Multiscale Local 1-D Polynomial Transform and Inverse Transform

Create a signal with nonuniform sampling and verify good reconstruction when performing the mlpt
and imlpt.

Create and plot a sine wave with non-uniform sampling.

timeVector = 0:0.01:1;
sineWave = sin(2*pi*timeVector)';

samplesToErase = randi(100,100,1);
sineWave(samplesToErase) = [];
timeVector(samplesToErase) = [];

figure(1)
plot(timeVector,sineWave,'o')
hold on
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Perform the multiscale local 1-D polynomial transform (mlpt) on the signal. Visualize the coefficients.

[coefs,T,coefsPerLevel,scalingMoments] = mlpt(sineWave,timeVector);

figure(2)
stem(coefs)
title('Wavelet Coefficients')

Perform the inverse multiscale local 1-D polynomial transform (imlpt) on the coefficients. Visualize
the reconstructed signal.
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y = imlpt(coefs,T,coefsPerLevel,scalingMoments);

figure(1)
plot(T,y,'*')
legend('Original Signal','Reconstructed Signal')
hold off

Look at the total error to verify good reconstruction.

reconstructionError = sum(abs(y-sineWave))

reconstructionError = 1.7552e-15

Specify Nondefault Dual Moments

Specify nondefault dual moments by using the mlpt function. Compare the results of analysis and
synthesis using the default and nondefault dual moments.

Create an input signal and visualize it.

T = (1:16)';
x = T.^2;
plot(x)
hold on
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Perform the forward and inverse transform for the input signal using the default and nondefault dual
moments.

[w2,t2,nj2,scalingmoments2] = mlpt(x,T);
y2 = imlpt(w2,t2,nj2,scalingmoments2);

[w3,t3,nj3,scalingmoments3] = mlpt(x,T,DualMoments=3);
y3 = imlpt(w3,t3,nj3,scalingmoments3,DualMoments=3);

Plot the reconstructed signal and verify perfect reconstruction using both the default and nondefault
dual moments.

plot(y2,'o')
plot(y3,'*')
legend('Original Signal', ...
       'DualMoments = 3', ...
       'DualMoments = 2 (Default)');

fprintf('\nMean Reconstruction Error:\n');

Mean Reconstruction Error:

fprintf('  - Nondefault dual moments: %0.2f\n',mean(abs(y3-x)));

  - Nondefault dual moments: 0.00

fprintf('  - Default dual moments: %0.2f\n\n',mean(abs(y2-x)));

  - Default dual moments: 0.00
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hold off

Specify Nondefault Resolution Levels

Resolution levels are the number of cascaded local polynomial smoothing operations. The details at
each resolution level are obtained by predicting one half the samples based on a local polynomial
interpolation of the other half. The difference between the predicted and actual values are the details
at each resolution level. The scaling coefficients at each coarser resolution level are smoother
versions of the higher resolution scaling coefficients. Only the final-level scaling coefficients are
retained.

Increasing the number of resolution levels enables you to analyze narrowband coefficients for a
computational and memory cost.

Create a dual-tone input signal, x, that contains high and low frequencies.

fs = 1000;
t = (0:1/fs:10)';
x = sin(499*pi.*t) + sin(2*pi.*t);

Use mlpt to obtain coefficients for minimum and maximum resolution levels. Print the computation
time.
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tic
[w1,~,nj1,m1] = mlpt(x,t,1);
computationTime1 = toc;
fprintf('Level one computation time: %0.2f\n',computationTime1)

Level one computation time: 3.82

tic
[w13,~,nj13,m13] = mlpt(x,t,13);
computationTime13 = toc;
fprintf('Level thirteen computation time: %0.2f\n',computationTime13)

Level thirteen computation time: 5.78

Use Default Time Instants

If your time instants are not known or specified, you can calculate the MLPT using default time
instants.

Load a data signal corrupted with NaNs and with unknown time instants. Calculate the MLPT without
specifying time instants. The resulting implied time instants is a vector of valid indices of the
corrupted signal.

load('CorruptedData.mat');

[w,t,nj,scalingMoments] = mlpt(yCorrupt);

Calculate the inverse MLPT and visualize the results. Reinsert NaNs to visualize gaps in the signal.

z = imlpt(w,t,nj,scalingMoments);

zToPlot = NaN(numel(yCorrupt),1);
zToPlot(t) = z;

plot(yCorrupt,'k','LineWidth',2.5)
hold on
plot(zToPlot,'c','LineWidth',1)
hold off
legend('Original Signal','Reconstructed Signal')
xlabel('Time Instants')
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.

• matrix — x must have at least two rows. mlpt operates independently on each column of x. The
number of elements in t must equal the row dimension of x. Any NaNs in the columns of x must
occur in the same rows.

• vector — x and t must have the same number of elements.

Data Types: double

t — Sampling instants
vector | duration array | datetime array

Sampling instants corresponding to the input signal, specified as a vector, duration array, or
datetime array of monotonically increasing real values. The default value depends on the length of
the input signal, x.
Data Types: double | duration | datetime

numLevel — Number of resolution levels
positive integer
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Number of resolution levels, specified as a positive integer. The maximum value of numLevel
depends on the shape of the input signal, x:

• matrix — floor(log2(size(x,1)))
• vector — floor(log2(length(x)))

If numLevel is not specified, mlpt uses the maximum value.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DualMoments',3 computes a transform using three dual vanishing moments.

DualMoments — Number of dual vanishing moments
2 (default) | 3 | 4

Number of dual vanishing moments in the lifting scheme, specified as the comma-separated pair
consisting of 'DualMoments' and 2, 3 or 4.
Data Types: double

PrimalMoments — Number of primal vanishing moments
2 (default) | 3 | 4

Number of primal vanishing moments in the lifting scheme, specified as the comma-separated pair
consisting of 'PrimalMoments' and 2, 3, or 4.
Data Types: double

Prefilter — Prefilter before mlpt
'Haar' (default) | 'UnbalancedHaar' | 'None'

Prefilter before mlpt operation, specified as the comma-separated pair consisting of 'Prefilter'
and'Haar' [1], 'UnbalancedHaar', or 'None'.
Data Types: char | string

Output Arguments
coefs — MLPT coefficients
vector | matrix

MLPT coefficients, returned as a vector or matrix of coefficients, depending on the level to which the
transform is calculated. coefs contains the approximation and detail coefficients.
Data Types: double

T — Sampling instants corresponding to output
vector | duration array
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Sampling instants corresponding to output, returned as a vector or duration array of sample times
obtained from x and t. The imlpt function requires T as an input. If the input t is a datetime or
duration array, t is converted to units that allow for the stable computation of the mlpt and imlpt.
Then T is returned as a duration array.
Data Types: double | duration

coefsPerLevel — Coefficients per resolution level
vector

Coefficients per resolution level, returned as a vector containing the number of coefficients at each
resolution level in coefs. The elements of coefsPerLevel are organized as follows:

• coefsPerLevel(1) — Number of approximation coefficients at the coarsest resolution level.
• coefsPerLevel(i) — Number of detail coefficients at resolution level i, where i = numLevel

– i + 2 for i = 2, ..., numLevel + 1.

The smaller the index i, the lower the resolution. The MLPT is two times redundant in the number of
detail coefficients, but not in the number of approximation coefficients.
Data Types: double

scalingMoments — Scaling function moments
matrix

Scaling function moments, returned as a length(coefs)-by-P matrix, where P is the number of
primal moments specified by the PrimalMoments name-value pair.
Data Types: double

Algorithms
Maarten Jansen developed the theoretical foundation of the multiscale local polynomial transform
(MLPT) and algorithms for its efficient computation [1][2][3]. The MLPT uses a lifting scheme,
wherein a kernel function smooths fine-scale coefficients with a given bandwidth to obtain the
coarser resolution coefficients. The mlpt function uses only local polynomial interpolation, but the
technique developed by Jansen is more general and admits many other kernel types with adjustable
bandwidths [2].

Version History
Introduced in R2017a

References
[1] Jansen, Maarten. “Multiscale Local Polynomial Smoothing in a Lifted Pyramid for Non-Equispaced

Data.” IEEE Transactions on Signal Processing 61, no. 3 (February 2013): 545–55. https://
doi.org/10.1109/TSP.2012.2225059.

[2] Jansen, Maarten, and Mohamed Amghar. “Multiscale Local Polynomial Decompositions Using
Bandwidths as Scales.” Statistics and Computing 27, no. 5 (September 2017): 1383–99.
https://doi.org/10.1007/s11222-016-9692-8.

 mlpt

1-951



[3] Jansen, Maarten, and Patrick Oonincx. Second Generation Wavelets and Applications. London ;
New York: Springer, 2005.

See Also
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mlptdenoise
Denoise signal using multiscale local 1-D polynomial transform

Syntax
y = mlptdenoise(x,t)
y = mlptdenoise(x,t,numLevel)
y = mlptdenoise( ___ ,Name,Value)
[y,T] = mlptdenoise( ___ )
[y,T,thresholdedCoefs] = mlptdenoise( ___ )
[y,T,thresholdedCoefs,originalCoefs] = mlptdenoise( ___ )

Description
y = mlptdenoise(x,t) returns a denoised version of input signal x sampled at the sampling
instants, t. If x or t contain NaNs, the union of the NaNs in x and t is removed before obtaining the
mlpt.

y = mlptdenoise(x,t,numLevel) denoises x down to numLevel.

y = mlptdenoise( ___ ,Name,Value) specifies mlpt properties using one or more Name,Value
pair arguments, and any of the previous syntaxes

[y,T] = mlptdenoise( ___ ) also returns the time instants for the denoised signal.

[y,T,thresholdedCoefs] = mlptdenoise( ___ ) also returns the thresholded multiscale local
1–D polynomial transform coefficients.

[y,T,thresholdedCoefs,originalCoefs] = mlptdenoise( ___ ) also returns the original
multiscale local 1–D polynomial transform coefficients.

Examples

Specify Nondefault Denoising Method

Denoise a nonuniformly sampled spline signal with added noise using median smoothing and two
primal vanishing moments. The nonuniformity of the signal is indicated by NaNs (missing data).

Load the data to your workspace and visualize it.

load nonuniformspline
plot(splinenoise)
grid on
title('Noisy Signal with Missing Data')
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Denoise the data using the median denoising method.

xden = mlptdenoise(splinenoise,[],'DenoisingMethod','median');

Replace the original missing data in the correct position for plotting purposes. Visualize the original
and denoised signals.

denoisedsig = NaN(size(splinenoise));
denoisedsig(~isnan(splinenoise)) = xden;
figure
plot([splinesig denoisedsig])
grid on
legend('Original Signal','Denoised Signal');
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Denoise Using Multiscale Local Polynomial Transform

Reduce noise of signal using the multiscale local polynomial transform (MLPT).

Load a pure sine wave signal with uniform sampling, and a corrupted version of the signal.

load('InputSamples.mat')

plot(t,x)
hold on
plot(tCorrupt,xCorrupt)
legend('Original','Corrupted')
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Use mlptdenoise to denoise the corrupted signal. Visually compare the corrupted and denoised
signals against the original signal.

[xDenoised,tDenoised] = mlptdenoise(xCorrupt,tCorrupt);

plot(tDenoised,xDenoised,'b')
hold off
legend('Original','Corrupted','Denoised')
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Compare the error signals associated with the corrupted signal and the denoised signal. Remove
NaNs from the signals for visualization purposes.

x(samplesToErase) = [];
xCorrupt(samplesToErase) = [];

xCorruptError = abs(diff([x,xCorrupt],[],2));
yError = abs(diff([x,xDenoised],[],2));

plot(tDenoised,xCorruptError)
hold on
plot(tDenoised,yError)
title('Error Signals')
legend('Corrupted','Denoised')
hold off
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Specify Nondefault Denoising Level

By default, mlptdenoise denoises a signal based on the two highest-level detail coefficients. In this
example, you denoise a signal to different levels and visualize the effect.

Create a multitone signal.

fs = 1000;
t = 0:1/fs:1;
x = sin(4*pi*t) + sin(120*pi*t) + sin(480*pi*t);

Denoise the signal to levels one, two, and five.

y1 = mlptdenoise(x,t,1);
y2 = mlptdenoise(x,t,2);
y5 = mlptdenoise(x,t,5);

Visualize the effect of level on the denoised signal.

subplot(4,1,1)
plot(t,x)
title('Original Signal')

subplot(4,1,2)
plot(t,y1)
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title('Denoised Signal, Level = 1')

subplot(4,1,3)
plot(t,y2)
title('Denoised Signal, Level = 2')

subplot(4,1,4)
plot(t,y5)
title('Denoised Signal, Level = 5')

Compare Thresholded and Nonthresholded Coefficients

The mlptdenoise function performs the forward MLPT, thresholds the coefficients as specified by
the 'DenoisingMethod' name-value pair. Then mlptdenoise performs the inverse MLPT to return
a denoised signal in the domain of your original signal.

You can optionally return the thresholded and original coefficients for inspection and analysis.

Denoise a nonuniformly sampled signal using Stein's unbiased risk method. Return the denoised
signal, the associated time instants, the thresholded MLPT coefficients, and the original MLPT
coefficients. Plot the original and denoised signals.

load nonuniformheavisine;
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[xDenoised,t,wThrolded,wOriginal] = mlptdenoise(x,t,3,'denoisingmethod','SURE');

plot(t,[f,xDenoised])
legend('Original signal','Denoised signal')

Plot the original MLPT coefficients and the thresholded MLPT coefficients for comparison.

plot([wOriginal,wThrolded])
legend('Original coefficients','Thresholded coefficients')
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Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix.

• matrix — x must have at least two rows. mlpt operates independently on each column of x. The
number of elements in t must equal the row dimension of x. Any NaNs in the columns of x must
occur in the same rows.

• vector — x and t must have the same number of elements.

Data Types: double

t — Sampling instants
vector | duration array | datetime array

Sampling instants corresponding to the input signal, specified as a vector, duration array, or
datetime array of monotonically increasing real values. The default value depends on the length of
the input signal, x.
Data Types: double | duration | datetime

numLevel — Number of resolution levels
2 (default) | positive integer
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Number of resolution levels, specified as a positive integer. The maximum value of numLevel
depends on the shape of the input signal, x:

• matrix — floor(log2(size(x,1)))
• vector — floor(log2(length(x)))

mlptdenoise denoises x by thresholding all detail coefficients of an MLPT calculated for numLevel
resolution levels.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DualMoments',3 computes a transform using three dual vanishing moments.

DualMoments — Number of dual vanishing moments
2 (default) | 3 | 4

Number of dual vanishing moments in the lifting scheme, specified as the comma-separated pair
consisting of 'DualMoments' and 2, 3 or 4.
Data Types: double

PrimalMoments — Number of primal vanishing moments
2 (default) | 3 | 4

Number of primal vanishing moments in the lifting scheme, specified as the comma-separated pair
consisting of 'PrimalMoments' and 2, 3, or 4.
Data Types: double

Prefilter — Prefilter before mlpt
'Haar' (default) | 'UnbalancedHaar'

Prefilter before mlpt operation, specified as the comma-separated pair consisting of'Prefilter'
and 'Haar' or 'UnbalancedHaar'. If no prefilter is specified, 'Haar' is used by default.
Data Types: char | string

DenoisingMethod — Denoising method applied to MLPT detail coefficients
'Bayesian' (default) | 'Median' | 'SURE' | 'FDR'

Denoising method applied to MLPT detail coefficients, specified as the comma-separated pair
consisting of 'DenoisingMethod' and 'Bayesian', 'Median', 'SURE', or 'FDR'.

Note 'FDR' has an optional argument for the Q-value. Q is the proportion of false positives and is
specified as a real-valued scalar between zero and one. To specify 'FDR' with a Q-value, use a cell
array, where the second element is the Q-value, for example 'DenoisingMethod',{'FDR',0.01}.
If unspecified, Q defaults to 0.05.
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Data Types: char | string

Output Arguments
y — Denoised version of the input signal
vector | matrix

Denoised version of the input signal, returned as a vector or matrix. The size of y depends on the size
of x and the union of NaNs in x and t.

By default, the mlpt is denoised based on the two highest resolution detail coefficients, unless x has
fewer than four samples. If x has fewer than four samples, the mlpt is denoised based only on the
highest resolution detail coefficients.
Data Types: double

T — Sampling instants corresponding to output
vector | duration array

Sampling instants corresponding to the output, returned as a vector or duration array obtained
from x and the input t. If the input t is a datetime or duration array, t is converted to units that
enable stable mlpt and implt computation. Then T is returned as a duration array.
Data Types: double | duration

thresholdedCoefs — Thresholded MLPT coefficients
vector | matrix

Thresholded MLPT coefficients, returned as a vector or matrix. The size of thresholdedCoefs
depends on the size of x and the level to which the transform is calculated.
Data Types: double

originalCoefs — Original MLPT coefficients
vector | matrix

Original MLPT coefficients, returned as a vector or matrix. The size of originalCoefs depends on
the size of x and the level to which the transform is calculated.
Data Types: double

Algorithms
Maarten Jansen developed the theoretical foundation of the multiscale local polynomial transform
(MLPT) and algorithms for its efficient computation [1][2][3]. The MLPT uses a lifting scheme,
wherein a kernel function smooths fine-scale coefficients with a given bandwidth to obtain the
coarser resolution coefficients. The mlpt function uses only local polynomial interpolation, but the
technique developed by Jansen is more general and admits many other kernel types with adjustable
bandwidths [2].

Version History
Introduced in R2017a
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mlptrecon
Reconstruct signal using inverse multiscale local 1-D polynomial transform

Syntax
y = mlptrecon(type,coefs,T,coefsPerLevel,scalingMoments,reconstructionLevel)
y = mlptrecon( ___ ,DualMoments=dm)

Description
y = mlptrecon(type,coefs,T,coefsPerLevel,scalingMoments,reconstructionLevel)
returns an approximation to the inverse multiscale 1-D polynomial transform (MLPT) of coefs.

y = mlptrecon( ___ ,DualMoments=dm) specifies the number of dual vanishing moments in the
lifting scheme.

Before R2021a, use a comma to separate the name and value, and enclose the name in quotes.

Example: 'DualMoments',2 specifies two vanishing moments.

Examples

Detect and Localize High-Frequency Content

Create a low-frequency signal with high-frequency blips.

t = (0:0.01:10)';
x = sin(2*pi.*t) + 0.5*sin(pi.*t+0.1);
bliptime = (0:0.01:0.5)';
n = numel(bliptime);
z0 = 2*(1:(n+1)/2)/(n+1);
trng = [z0 z0((n-1)/2:-1:1)]';
blip = sin(50*pi.*bliptime).*trng;
for i = [200,700,900]
    x(i:i+numel(bliptime)-1) = x(i:i+numel(bliptime)-1)+blip;
end

Perform a multilevel polynomial transform. Perform the inverse multilevel polynomial transform using
the detail coefficients.

[w,t,nj,scalingmoments] = mlpt(x,t);
yDetails = mlptrecon('d',w,t,nj,scalingmoments,1);

Plot the original signal and the processed signal.

subplot(2,1,1)
plot(t,x)
title('Original Signal')

subplot(2,1,2)
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plot(t,yDetails)
title('Signal Details')

Approximate Data by Choosing Reconstruction Coefficients

Approximate data using multiscale local polynomial transform (MLPT) reconstruction. Use
mlptrecon to approximate a corrupted and sparsely sampled pitch contour.

Load input data and visualize it.

load CorruptedPitchData.mat
plot(time,pitchContour,'k',linewidth=3)
hold on
xlabel('Time (s)')
ylabel('Pitch (Hz)')
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Compute the MLPT of the pitch contour.

[w,t,nj,scalingMoments] = mlpt(pitchContour,time, ...
    DualMoments=3, ...
    PrimalMoments=4, ...
    PreFilter='none');

Use mlptrecon to reconstruct the signal using the approximation coefficients at different levels.

y = zeros(numel(t),3);
for level = 1:3
    y(:,level) = mlptrecon('a',w,t,nj,scalingMoments,level,DualMoments=3);
end

Plot the reconstructed signals. Level two obtains the best smoothed estimate.

plot(t,y(:,1),'c',linewidth=1)
plot(t,y(:,2),linewidth=2)
plot(t,y(:,3),linewidth=2)
legend('Original Data','Level = 1','Level = 2','Level = 3')
hold off

 mlptrecon

1-967



Input Arguments
type — Type of coefficients
'a' | 'd'

Type of coefficients used to reconstruct the signal, specified as 'a' or 'd'.

• 'a' — Approximation coefficients
• 'd' — Detail coefficients

Approximation coefficients are a lowpass representation of the input. At each level, the approximation
coefficients are divided into coarser approximation and detail coefficients.
Data Types: char | string

coefs — MLPT coefficients
vector | matrix

MLPT coefficients, specified as a vector or matrix of MLPT coefficients returned by the mlpt
function.
Data Types: double

T — Sampling instants corresponding to output
vector | duration array
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Sampling instants corresponding to y, specified as a vector or duration array of increasing values
returned by the mlpt function.
Data Types: double | duration

coefsPerLevel — Coefficients per resolution level
vector

Coefficients per resolution level, specified as a vector containing the number of coefficients at each
resolution level in coefs. coefsPerLevel is an output argument of the mlpt function.

The elements of coefsPerLevel are organized as follows:

• coefsPerLevel(1) — Number of approximation coefficients at the coarsest resolution level.
• coefsPerLevel(i) — Number of detail coefficients at resolution level i, where i = numLevel

– i + 2 for i = 2,..., numLevel + 1. numLevel is the number of resolution levels used to
calculate the MLPT. numLevel is inferred from coefsPerLevel: numLevel =
length(coefsPerLevel-1).

The smaller the index i, the lower the resolution. The MLPT is two times redundant in the number of
detail coefficients, but not in t the number of approximation coefficients.
Data Types: double

scalingMoments — Scaling function moments
matrix

Scaling function moments, specified as a length(coefs)-by-P matrix, where P is the number of
primal moments specified by the MLPT.
Data Types: double

reconstructionLevel — Resolution level used for reconstruction
positive integer

Resolution level used for reconstruction, specified as a positive integer less than or equal to
length(coefsPerLevel-1). length(coefsPerLevel-1) is the number of resolution levels used
to calculate the MLPT. Increasing the value of reconstructionLevel corresponds to
reconstructing your signal with coarser resolution approximations.
Data Types: double

dm — Dual vanishing moments
2 (default) | 3 | 4

Number of dual vanishing moments in the lifting scheme. The number of dual moments must match
the number used by mlpt.
Data Types: double

Output Arguments
y — Reconstructed approximation or details of signal
vector | matrix

Reconstructed approximation or details of signal, returned as a vector or matrix, depending on the
inputs to the mlpt function.
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Data Types: double

Algorithms
Maarten Jansen developed the theoretical foundation of the multiscale local polynomial transform
(MLPT) and algorithms for its efficient computation [1][2][3]. The MLPT uses a lifting scheme,
wherein a kernel function smooths fine-scale coefficients with a given bandwidth to obtain the
coarser resolution coefficients. The mlpt function uses only local polynomial interpolation, but the
technique developed by Jansen is more general and admits many other kernel types with adjustable
bandwidths [2].

Version History
Introduced in R2017a
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modwpt
Maximal overlap discrete wavelet packet transform

Syntax
wpt = modwpt(x)
wpt = modwpt(x,wname)
wpt = modwpt(x,lo,hi)
wpt = modwpt( ___ ,lev)

[wpt,packetlevs] = modwpt( ___ )
[wpt,packetlevs,cfreq] = modwpt( ___ )
[wpt,packetlevs,cfreq,energy] = modwpt( ___ )
[wpt,packetlevs,cfreq,energy,relenergy] = modwpt( ___ )

[ ___ ] = modwpt( ___ ,Name,Value)

Description
wpt = modwpt(x) returns the terminal nodes for the maximal overlap discrete wavelet packet
transform (MODWPT) for the 1-D real-valued signal, x.

Note The output of the MODWPT is time-delayed compared to the input signal. Most filters used to
obtain the MODWPT have a nonlinear phase response, which makes compensating for the time delay
difficult. This is true for all orthogonal scaling and wavelet filters, except the Haar wavelet. It is
possible to time-align the coefficients with the signal features, but the result is an approximation, not
an exact alignment with the original signal. The MODWPT partitions the energy among the wavelet
packets at each level. The sum of the energy over all the packets equals the total energy of the input
signal. The output of MODWPT is useful for applications where you want to analyze the energy levels
in different packets.

The MODWPT details (modwptdetails) are the result of zero-phase filtering of the signal. The
features in the MODWPT details align exactly with features in the input signal. For a given level,
summing the details for each sample returns the exact original signal. The output of the MODWPT
details is useful for applications that require time-alignment, such as nonparametric regression
analysis.

wpt = modwpt(x,wname) returns the MODWPT using the orthogonal wavelet filter specified by the
wname.

wpt = modwpt(x,lo,hi) returns the MODWPT using the orthogonal scaling filter, lo, and wavelet
filter, hi.

wpt = modwpt( ___ ,lev) returns the terminal nodes of the wavelet packet tree at positive integer
level lev.

[wpt,packetlevs] = modwpt( ___ ) returns a vector of transform levels corresponding to the
rows of wpt.
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[wpt,packetlevs,cfreq] = modwpt( ___ ) returns the center frequencies of the approximate
passbands corresponding to the rows of wpt.

[wpt,packetlevs,cfreq,energy] = modwpt( ___ ) returns the energy (squared L2 norm) of
the wavelet packet coefficients for the nodes in wpt.

[wpt,packetlevs,cfreq,energy,relenergy] = modwpt( ___ ) returns the relative energy for
the wavelet packets in wpt.

[ ___ ] = modwpt( ___ ,Name,Value) returns the MODWPT with additional options specified by
one or more Name,Value pair arguments.

Examples

MODWPT Using Default Wavelet

Obtain the MODWPT of an electrocardiogram (ECG) signal using the default length 18 Fejér-Korovkin
('fk18') wavelet.

load wecg;
wpt = modwpt(wecg);

wpt is a 16-by-2048 matrix containing the sequency-ordered wavelet packet coefficients for the
wavelet packet transform nodes. In this case, the nodes are at level 4. Each node corresponds to an
approximate passband filtering of [nfs/25, (n + 1)fs/25), where n = 0,...,15, and fs is the sampling
frequency. Plot the wavelet packet coefficients at node (4,2), which is level 4, node 2.

plot(wpt(3,:))
title("Node 4 Wavelet Packet Coefficients")
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MODWPT Using Daubechies Extremal Phase Wavelet with Two Vanishing Moments

Obtain the MODWPT of Southern Oscillation Index data with the Daubechies extremal phase wavelet
with two vanishing moments ('db2').

load soi;
wsoi = modwpt(soi,"db2");

Verify that the size of the resulting transform contains 16 nodes. Each node is in a separate row.

size(wsoi)

ans = 1×2

          16       12998

MODWPT Full Packet Tree and Passband Center Frequencies

Obtain the MODWPT and full wavelet packet tree of an ECG waveform using the default length 18
Fejér-Korovkin ('fk18') wavelet. Extract and plot the node coefficients at level 3, node 2.
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load wecg;     
[wpt,packetlevels,cfreq] = modwpt(wecg,"FullTree",true);
p3 = wpt(packetlevels==3,:);
plot(p3(3,:))
title("Level 3, Node 2 Wavelet Coefficients")

Display the center frequencies at level 3.

cfreq(packetlevels==3,:)

ans = 8×1

    0.0312
    0.0938
    0.1562
    0.2188
    0.2812
    0.3438
    0.4062
    0.4688

MODWPT Energy and Relative Energy

Obtain and plot the MODWPT energy and relative energy of an ECG waveform.
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load wecg
[wpt,~,cfreq,energy,relenergy] = modwpt(wecg);

Show that the sum of the MODWPT energies is equal to the sum of the energy in the original signal.
The difference between the total MODWPT energy and the signal energy is small enough to be
considered insignificant.

disp("Difference between MODWPT energy and signal energy: "+num2str(sum(energy)-sum(wecg.^2)))

Difference between MODWPT energy and signal energy: 3.6122e-09

Plot the MODWPT energy by node.

figure
bar(1:16,energy)
xlabel("Node")
ylabel("Energy")
title("Energy by Node")

disp("Total power in passband: "+num2str(energy(1)))

Total power in passband: 200.8446

Plot the relative energy and show the percentage of signal energy in the first passband [0,5.6250].

figure
bar(1:16,relenergy*100)
xlabel("Node")
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ylabel("Percent Energy")
title("Energy Relative to Signal Energy by Node")

disp("Percentage of signal power in passband: "+num2str(relenergy(1)*100))

Percentage of signal power in passband: 67.3352

Time-Aligned MODWPT

Obtain the time-aligned MODWPT of two intermittent sine waves in noise. The sine wave frequencies
are 150 Hz and 200 Hz. The data is sampled at 1000 Hz.

Fs = 1000;    
t = 0:1/Fs:1-1/Fs;     
x = cos(2*pi*150*t).*(t>=0.2 & t<0.4)+ ...
    sin(2*pi*200*t).*(t>0.6 & t<0.9);     
y = x+0.05*randn(size(t));
[wpta,~,Falign] = modwpt(x,"TimeAlign",true);
[wptn,~,Fnon] = modwpt(x);

Compare the nonaligned and time-aligned time-frequency plots.

subplot(2,1,1)
contour(t,Fs*Fnon,abs(wptn).^2)
grid on
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ylabel("Hz")
title("Time-Frequency Plot (Nonaligned)")
subplot(2,1,2)
contour(t,Fs*Falign,abs(wpta).^2)
grid on
xlabel("Time")
ylabel("Hz")
title("Time-Frequency Plot (Aligned)")

Input Arguments
x — Input signal
real-valued vector

Input signal, specified as a real-valued row or column vector. x must have at least two elements.
Data Types: single | double

wname — Analyzing wavelet
"fk18" (default) | character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal.
Orthogonal wavelets are designated as type 1 wavelets in the wavelet manager, wavemngr.
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Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin ("beyl"),
Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han linear-phase
moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and Vaidyanathan ("vaid").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wname) to determine if
wname is orthogonal (returns 1). For example, wavemngr("type","db6") returns 1.

lo,hi — Filters
even-length real-valued vectors

Filters, specified as a pair of even-length real-valued vectors. lo is the orthogonal scaling filter and
hi is the orthogonal wavelet filter. The filters must satisfy the conditions for an orthogonal wavelet.
For more information, see wfilters and isorthwfb. You cannot specify both wname and a filter
pair lo,hi.

Note By default, the wfilters function returns two pairs of filters associated with an orthogonal or
biorthogonal wavelet you specify. To agree with the usual convention in the implementation of
MODWPT in numerical packages, when you specify an orthogonal wavelet wname, the modwpt function
internally uses the second pair of filters returned by wfilters. For example,

wpt = modwpt(x,"db2");
is equivalent to

[~,~,lo,hi] = wfilters("db2"); wpt = modwpt(x,lo,hi);
This convention is different from the one followed by most Wavelet Toolbox discrete wavelet
transform functions when decomposing a signal. Most functions internally use the first pair of filters.

Data Types: single | double

lev — Transform level
positive integer

Transform level, specified as a positive integer less than or equal to floor(log2(numel(x))).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Fulltree',true returns the full wavelet packet tree

FullTree — Full packet tree
false (default) | true

Option to return the full wavelet packet tree, specified as the comma-separated pair consisting of
'FullTree' and either false or true. If you specify false, then modwpt returns only the terminal
(final-level) wavelet packet nodes. If you specify true, then modwpt returns the full wavelet packet
tree down to the specified level.
Example: 'Fulltree',true
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TimeAlign — Signal time alignment
false (default) | true

Option to time align wavelet packet coefficients with signal features, specified as the comma-
separated pair consisting of 'TimeAlign' and either true to time align or false to not align.

The scaling and wavelet filters have a time delay. Circularly shifting the wavelet packet coefficients in
all nodes aligns the signal and wavelet coefficients in time. If you want to reconstruct the signal, such
as by using imodwpt, do not shift the coefficients because time alignment is done during the
inversion process.
Example: 'TimeAlign',true

Output Arguments
wpt — Wavelet packet transform
matrix

Wavelet packet tree, returned as a matrix with each row containing the sequency-ordered wavelet
packet coefficients. By default, wpt contains only the terminal level for the MODWPT. The default
terminal level is either level 4 or floor(log2(numel(x))), whichever is smaller. At level 4, wpt is
a 16-by-numel(x) matrix. For the full tree, at level j, wpt is a 2j+2-2-by-numel(x) matrix, with each
row containing the packet coefficients by level and index. The approximate passband for the nth row

of wpt at level j is n− 1
2 j + 1 , n

2 j + 1  cycles/sample, where n = 1,2,...2j.

packetlevs — Transform levels
vector

Transform levels, returned as a vector. The levels correspond to the rows of wpt. If wpt contains only
the terminal level coefficients, packetlevs is a vector of constants equal to the terminal level. If wpt
contains the full wavelet packet table, packetlevs is a vector with 2j elements for each level, j. To
select all the wavelet packet nodes at a particular level, use packetlevs with logical indexing.

cfreq — Center frequencies of passbands
vector

Center frequencies of the approximate passbands in the wpt rows, returned as a vector. The center
frequencies are in cycles/sample. To convert the units to cycles/unit time, multiply cfreq by the
sampling frequency.

energy — Energy of the wavelet packet coefficients
vector

Energy of the wavelet packet coefficients for the wpt nodes, returned as a vector. The sum of the
energies (squared L2 norms) for the wavelet packets at each level equals the energy in the signal.

relenergy — Relative energy
vector

Relative energy for each level, returned as a vector. The relative energy is the proportion of energy in
each wavelet packet by level, relative to the total energy of that level. The sum of relative energies in
all packets at each level equals 1.
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Algorithms
The modwpt performs a discrete wavelet packet transform and produces a sequency-ordered wavelet
packet tree. Compare the sequency-ordered and normal (Paley)-ordered trees.
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Version History
Introduced in R2016a

R2023a: Support for single-precision data and GPU acceleration

The modwpt function:

• Supports single-precision data.
• Accepts gpuArray objects.

You must have Parallel Computing Toolbox to use gpuArray objects.

References
[1] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.
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[2] Walden, A. T., and A. Contreras Cristan. “The Phase–Corrected Undecimated Discrete Wavelet
Packet Transform and Its Application to Interpreting the Timing of Events.” Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454,
no. 1976 (August 8, 1998): 2243–66. https://doi.org/10.1098/rspa.1998.0257.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
imodwpt | modwptdetails | dwpt
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modwptdetails
Maximal overlap discrete wavelet packet transform details

Syntax
w = modwptdetails(x)
w = modwptdetails(x,wname)
w = modwptdetails(x,lo,hi)
w = modwptdetails( ___ ,lev)

[w,packetlevs] = modwptdetails( ___ )
[w,packetlevs,cfreq] = modwptdetails( ___ )

[ ___ ] = modwptdetails( ___ ,'FullTree',tf)

Description
w = modwptdetails(x) returns the maximal overlap discrete wavelet packet transform (MODWPT)
details for the 1-D real-valued signal, x. The MODWPT details provide zero-phase filtering of the
signal. By default, modwptdetails returns only the terminal nodes, which are at level 4 or at level
floor(log2(numel(x))), whichever is smaller.

Note To decide whether to use modwptdetails or modwpt, consider the type of data analysis you
need to perform. For applications that require time alignment, such as nonparametric regression
analysis, use modwptdetails. For applications where you want to analyze the energy levels in
different packets, use modwpt. For more information, see “Algorithms” on page 1-991.

w = modwptdetails(x,wname) uses the orthogonal wavelet specified by wname.

w = modwptdetails(x,lo,hi) uses the orthogonal scaling filter, lo, and wavelet filter, hi.

w = modwptdetails( ___ ,lev) returns the terminal nodes of the wavelet packet tree at positive
integer level lev.

[w,packetlevs] = modwptdetails( ___ ) returns a vector of transform levels corresponding to
the rows of w.

[w,packetlevs,cfreq] = modwptdetails( ___ ) returns cfreq, the center frequencies of the
approximate passbands corresponding to the MODWPT details in w.

[ ___ ] = modwptdetails( ___ ,'FullTree',tf), where tf is false, returns details about only
the terminal (final-level) wavelet packet nodes. If you specify true, then modwptdetails returns
details about the full wavelet packet tree down to the default or specified level. The default for tf is
false.

Examples
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MODWPT Details Using Default Wavelet

Obtain the MODWPT of an electrocardiogram (ECG) signal using the default length 18 Fejér-Korovkin
('fk18') wavelet and the default level, 4.

load wecg;
wptdetails = modwptdetails(wecg);

Demonstrate that summing the MODWPT details over each sample reconstructs the signal. The
largest absolute difference between the original signal and the reconstruction is on the order of
10−11, which demonstrates perfect reconstruction.

xrec = sum(wptdetails);
max(abs(wecg-xrec'))

ans = 1.7903e-11

MODWPT Details for Two Sine Waves

Obtain the MODWPT details for a signal containing 100 Hz and 450 Hz sine waves. Each row of the
modwptdetails output corresponds to a separate frequency band.

dt = 0.001;
fs = 1/dt;
t = 0:dt:1;
x = (sin(2*pi*100*t)+sin(2*pi*450*t));
[lo,hi] = wfilters('fk22');
wptdetails = modwptdetails(x,lo,hi);

Use modwpt to obtain the energy and center frequencies of the signal. Plot the energy in the wavelet
packets. The fourth and fifteenth frequency bands contain most of the energy. Other frequency bands
have significantly less energy. The frequency ranges of fourth and fifteenth bands are approximately
94-125 Hz and 438-469 Hz, respectively.

[wpt,~,cfreqs,energy] = modwpt(x,lo,hi);
figure
bar(1:16,energy);
xlabel('Packet')
ylabel('Packet Energy')
title('Energy by Wavelet Packet')
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Plot the power spectral density of the input signal.

pwelch(x,[],[],[],fs,'onesided');
title('Power Spectral Density of Input Signal')
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Show that the MODWPT details have zero-phase shift from the 100 Hz input sine.

p4 = wptdetails(4,:);
plot(t,sin(2*pi*100*t).*(t>0.3 & t<0.7))
hold on
plot(t,p4.*(t>0.3 & t<0.7),'r')
legend('Sine Wave','MODWPT Details')
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MODWPT Details for Noisy Sine Wave

Obtain the MODWPT details for a 100 Hz time-localized sine wave in noise. The sampling rate is 1000
Hz. Obtain the MODWPT at level 4 using the length 22 Fejér-Korovkin ('fk22') wavelet.

dt = 0.001;     
t = 0:dt:1;
x = cos(2*pi*100*t).*(t>0.3 & t<0.7)+0.25*randn(size(t));
wptdetails = modwptdetails(x,'fk22');
p4 = wptdetails(4,:);

Plot the MODWPT details for level 4, packet number 4. The MODWPT details represent zero-phase
filtering of the input signal with an approximate passband of [3Fs/25, 4Fs/25), where Fs is the
sampling frequency.

plot(t,cos(2*pi*100*t).*(t>0.3 & t<0.7));
hold on
plot(t,p4,'r')
legend('Sine Wave','MODWPT Details')
hold off
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MODWPT Details Using Scaling and Wavelet Filters

Obtain the MODWPT details of an ECG waveform using the length 18 Fejér-Korovkin scaling and
wavelet filters.

load wecg; 
[lo,hi] = wfilters('fk18');
wpt = modwptdetails(wecg,lo,hi);

MODWPT Details for Full Packet Tree

Obtain the MODWPT details for the full wavelet packet tree of an ECG waveform. Use the default
length 18 Fejér-Korovkin ('fk18') wavelet. Extract and plot the node coefficients at level 3, node 2.

load wecg;     
[w,packetlevels] = modwptdetails(wecg,'FullTree',true);
p3 = w(packetlevels==3,:);
plot(p3(3,:))
title('Level 3, Node 2 MODWPT Details')
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Input Arguments
x — Input signal
real-valued vector

Input signal, specified as a real-valued row or column vector. x must have at least two elements.
Data Types: single | double

wname — Analyzing wavelet
"fk18" (default) | character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal.
Orthogonal wavelets are designated as type 1 wavelets in the wavelet manager, wavemngr.

Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin ("beyl"),
Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han linear-phase
moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and Vaidyanathan ("vaid").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1). For example, wavemngr("type","db6") returns 1.

lo,hi — Filters
even-length real-valued vectors
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Filters, specified as a pair of even-length real-valued vectors. lo is the orthogonal scaling filter and
hi is the orthogonal wavelet filter. The filters must satisfy the conditions for an orthogonal wavelet.
For more information, see wfilters and isorthwfb. You cannot specify both wname and a filter
pair lo,hi.

Note By default, the wfilters function returns two pairs of filters associated with an orthogonal or
biorthogonal wavelet you specify. To agree with the usual convention in the implementation of
MODWPT in numerical packages, when you specify an orthogonal wavelet wname, the modwptdetails
function internally uses the second pair of filters returned by wfilters. For example,

wptdetails = modwptdetails(x,"db2");
is equivalent to

[~,~,lo,hi] = wfilters("db2"); wptdetails = modwptdetails(x,lo,hi);
This convention is different from the one followed by most Wavelet Toolbox discrete wavelet
transform functions when decomposing a signal. Most functions internally use the first pair of filters.

Data Types: single | double

lev — Transform level
positive integer

Transform level, specified as a positive integer less than or equal to floor(log2(numel(x))).

tf — Return tree option
false (default) | true

Return tree option, specified as false or true. If tf is false, then modwptdetails returns details
about only the terminal (final-level) wavelet packet nodes. If you specify true, then modwptdetails
returns details about the full wavelet packet tree down to the default or specified level.

For the full wavelet packet tree, w is a 2j+1-2-by-numel(x) matrix. Each level j has 2j wavelet packet
details.

Output Arguments
w — Wavelet packet tree details
matrix

Wavelet packet tree details, returned as a matrix with each row containing the sequency-ordered
wavelet packet details for the terminal nodes. The terminal nodes are at level 4 or at level
floor(log2(numel(x))), whichever is smaller. The MODWPT details are zero-phase-filtered
projections of the signal onto the subspaces corresponding to the wavelet packet nodes. The sum of
the MODWPT details over each sample reconstructs the original signal.

For the default terminal nodes, w is a 2j-by-numel(x) matrix. For the full packet table, at level j, w is a
2j+1-2-by-numel(x) matrix of sequency-ordered wavelet packet coefficients by level and index. The

approximate passband for the nth row of w at level j is n− 1
2 j + 1 , n

2 j + 1  cycles per sample, where n =

1,2,...,2j.

packetlevs — Transform levels
vector
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Transform levels, returned as a vector. The levels correspond to the rows of w. If w contains only the
terminal level coefficients, packetlevs is a vector of constants equal to the terminal level. If w
contains the full wavelet packet tree of details, packetlevs is a vector with 2j-1 elements for each
level, j. To select all the MODWPT details at a particular level, use packetlevs with logical indexing.

cfreq — Center frequencies of passbands
vector

Center frequencies of the approximate passbands in the w rows, returned as a vector. The center
frequencies are in cycles per sample. To convert the units to cycles per unit time, multiply cfreq by
the sampling frequency.

Algorithms
The MODWPT details (modwptdetails) are the result of zero-phase filtering of the signal. The
features in the MODWPT details align exactly with features in the input signal. For a given level,
summing the details for each sample returns the exact original signal.

The output of the MODWPT (modwpt) is time delayed compared to the input signal. Most filters used
to obtain the MODWPT have a nonlinear phase response, which makes compensating for the time
delay difficult. All orthogonal scaling and wavelet filters have this response, except the Haar wavelet.
It is possible to time align the coefficients with the signal features, but the result is an approximation,
not an exact alignment with the original signal. The MODWPT partitions the energy among the
wavelet packets at each level. The sum of the energy over all the packets equals the total energy of
the input signal.

Version History
Introduced in R2016a

R2023a: Supports single-precision data

The modwptdetails function supports single-precision data.

References
[1] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.

[2] Walden, A. T., and A. Contreras Cristan. “The Phase–Corrected Undecimated Discrete Wavelet
Packet Transform and Its Application to Interpreting the Timing of Events.” Proceedings of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454,
no. 1976 (August 8, 1998): 2243–66. https://doi.org/10.1098/rspa.1998.0257.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The input wname must be constant.

See Also
modwpt | imodwpt | waveinfo | wavemngr
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modwt
Maximal overlap discrete wavelet transform

Syntax
w = modwt(x)
w = modwt(x,wname)
w = modwt(x,Lo,Hi)
w = modwt( ___ ,lev)
w = modwt( ___ ,'reflection')
w = modwt( ___ ,TimeAlign=alignflag)

Description
w = modwt(x) returns the maximal overlap discrete wavelet transform (MODWT) of x. x can be a
real- or complex-valued vector or matrix. If x is a matrix, modwt operates on the columns of x. modwt
computes the wavelet transform down to level floor(log2(length(x))) if x is a vector and
floor(log2(size(x,1))) if x is a matrix. By default, modwt uses the Daubechies least-asymmetric
wavelet with four vanishing moments ('sym4') and periodic boundary handling.

w = modwt(x,wname) uses the orthogonal wavelet, wname, for the MODWT.

w = modwt(x,Lo,Hi) uses the scaling filter, Lo, and wavelet filter, Hi, to compute the MODWT.
These filters must satisfy the conditions for an orthogonal wavelet. You cannot specify both wname
and a filter pair, Lo and Hi.

w = modwt( ___ ,lev) computes the MODWT down to the specified level, lev, using any of the
arguments from previous syntaxes.

w = modwt( ___ ,'reflection') computes the MODWT using reflection boundary handling.
Other inputs can be any of the arguments from previous syntaxes. Before computing the wavelet
transform, modwt extends the signal symmetrically at the terminal end to twice the signal length. The
number of wavelet and scaling coefficients that modwt returns is equal to twice the length of the
input signal. By default, the signal is extended periodically.

You must enter the entire character vector 'reflection'. If you added a wavelet named
'reflection' using the wavelet manager, you must rename that wavelet prior to using this option.
'reflection' may be placed in any position in the input argument list after x.

w = modwt( ___ ,TimeAlign=alignflag) circularly shifts the wavelet coefficients at all levels
(scales) and the scaling coefficients to correct for the delay of the scaling and wavelet filters. Other
inputs can be any of the arguments from previous syntaxes.

Examples
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MODWT Using Default Wavelet

Obtain the MODWT of an electrocardiogram (ECG) signal using the default sym4 wavelet down to the
maximum level. The data are taken from Percival & Walden (2000), p.125 (data originally provided by
William Constantine and Per Reinhall, University of Washington).

load wecg;
wtecg = modwt(wecg);
whos wtecg

  Name        Size               Bytes  Class     Attributes

  wtecg      12x2048            196608  double              

The first eleven rows of wtecg are the wavelet coefficients for scales 21 to 211. The final row contains
the scaling coefficients at scale 211. Plot the detail (wavelet) coefficients for scale 23.

plot(wtecg(3,:))
title('Level 3 Wavelet Coefficients')

MODWT Using Daubechies Extremal Phase Wavelet with Two Vanishing Moments

Obtain the MODWT of Southern Oscillation Index data with the db2 wavelet down to the maximum
level.
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load soi;
wsoi = modwt(soi,'db2');

MODWT Using Scaling and Wavelet Filters

Obtain the MODWT of the Deutsche Mark - U.S. Dollar exchange rate data using the Fejér-Korovkin
length 8 scaling and wavelet filters.

load DM_USD
[~,~,Lo,Hi] = wfilters("fk8");
wdmf = modwt(DM_USD,Lo,Hi);

Obtain a second MODWT with the same wavelet, but this time specify the wavelet name.

wdmn = modwt(DM_USD,"fk8");

Confirm the decompositions are equal.

max(abs(wdmf(:)-wdmn(:)))

ans = 0

MODWT to a Specified Level

Obtain the MODWT of an ECG signal down to scale 24, which corresponds to level four. Use the
default sym4 wavelet. The data are taken from Percival & Walden (2000), p.125 (data originally
provided by William Constantine and Per Reinhall, University of Washington).

load wecg;
wtecg = modwt(wecg,4);
whos wecg wtecg

  Name          Size              Bytes  Class     Attributes

  wecg       2048x1               16384  double              
  wtecg         5x2048            81920  double              

The row size of wtecg is L+1, where, in this case, the level (L) is 4. The column size matches the
number of input samples.

MODWT with Reflection Boundary

Obtain the MODWT of an ECG signal using reflection boundary handling. Use the default sym4
wavelet and obtain the transform down to level 4. The data are taken from Percival & Walden (2000),
p.125 (data originally provided by William Constantine and Per Reinhall, University of Washington).

load wecg;
wtecg = modwt(wecg,4,'reflection');
whos wecg wtecg
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  Name          Size               Bytes  Class     Attributes

  wecg       2048x1                16384  double              
  wtecg         5x4096            163840  double              

wtecg has 4096 columns, which is twice the length of the input signal, wecg.

Time Align MODWT Analysis

Create a unit impulse signal.

n = 128;
sig = zeros(1,n);
sig(n/2) = 1;
clf
plot(sig)
axis tight
title("Unit Impulse")

Obtain the MODWT of the signal down to level 4 using default modwt settings. Obtain a second
MODWT of the signal down to level 4 with the coefficients time aligned.

lev = 4;
w = modwt(sig,lev);
wTimeAligned = modwt(sig,lev,TimeAlign=true);
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Plot the wavelet and scaling coefficients of the MODWT obtained with default settings. The delays
increase with scale because the wavelet and scaling filters used in the MODWT have non-zero phase
response.

for k=1:lev+1
    subplot(lev+1,1,k)
    plot(w(k,:))
    axis tight
    if k==1
        title("MODWT Analysis with Delay")
    end
end

Compare with plots of the time-aligned coefficients.

for k=1:lev+1
    subplot(lev+1,1,k)
    plot(wTimeAligned(k,:))
    axis tight
    if k==1
        title("Time-Aligned MODWT Analysis")
    end
end
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MODWT of Multisignal

Load the 23 channel EEG data Espiga3 [3]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Compute the maximal overlap discrete wavelet transform down to the maximum level.

wt = modwt(Espiga3);

Obtain the squared signal energies and compare them against the squared energies obtained from
summing the wavelet coefficients over all levels. Use the log-squared energy due to the
disproportionately large energy in one component.

sigN2 = vecnorm(Espiga3).^2;
wtN2 = sum(squeeze(vecnorm(wt,2,2).^2));
bar(1:23,log(sigN2))
hold on
scatter(1:23,log(wtN2),'filled','SizeData',100)
alpha(0.75)
legend('Signal Energy','Energy in Wavelet Coefficients', ...
        'Location','NorthWest')
xlabel('Channel')
ylabel('ln(squared energy)')

1 Functions

1-998



Comparing MODWT and MODWTMRA

This example demonstrates the differences between the MODWT and MODWTMRA. The MODWT
partitions a signal's energy across detail coefficients and scaling coefficients. The MODWTMRA
projects a signal onto wavelet subspaces and a scaling subspace.

Choose the sym6 wavelet. Load and plot an electrocardiogram (ECG) signal. The sampling frequency
for the ECG signal is 180 hertz. The data are taken from Percival and Walden (2000), p.125 (data
originally provided by William Constantine and Per Reinhall, University of Washington).

load wecg
t = (0:numel(wecg)-1)/180;
wv = 'sym6';
plot(t,wecg)
grid on
title(['Signal Length = ',num2str(numel(wecg))])
xlabel('Time (s)')
ylabel('Amplitude')
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Take the MODWT of the signal.

wtecg = modwt(wecg,wv);

The input data are samples of a function f (x) evaluated at N time points. The function can be
expressed as a linear combination of the scaling function ϕ(x) and wavelet ψ(x) at varying scales and

translations: f (x) = ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) + ∑

j = 1

J0
f j(x), where f j(x) = ∑

k = 0

N − 1
d j, k 2− j/2 ψ(2− jx− k)

and J0 is the number of levels of wavelet decomposition. The first sum is the coarse scale
approximation of the signal, and the f j(x) are the details at successive scales. MODWT returns the N
coefficients {ck} and the ( J0 × N) detail coefficients {d j, k} of the expansion. Each row in wtecg
contains the coefficients at a different scale.

When taking the MODWT of a signal of length N, there are floor(log2(N)) levels of decomposition by
default. Detail coefficients are produced at each level. Scaling coefficients are returned only for the
final level. In this example, N = 2048, J0 = floor(log2(2048)) = 11, and the number of rows in wtecg
is J0 + 1 = 11 + 1 = 12.

The MODWT partitions the energy across the various scales and scaling coefficients:

| | X | |2 = ∑
j = 1

J0
| |W j | |2 + ||V J0 | |2, where X is the input data, W j are the detail coefficients at scale j,

and V J0 are the final-level scaling coefficients.
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Compute the energy at each scale, and evaluate their sum.

energy_by_scales = sum(wtecg.^2,2);
Levels = {'D1';'D2';'D3';'D4';'D5';'D6';...
    'D7';'D8';'D9';'D10';'D11';'A11'};
energy_table = table(Levels,energy_by_scales);
disp(energy_table)

    Levels     energy_by_scales
    _______    ________________

    {'D1' }         14.063     
    {'D2' }         20.612     
    {'D3' }         37.716     
    {'D4' }         25.123     
    {'D5' }         17.437     
    {'D6' }         8.9852     
    {'D7' }         1.2906     
    {'D8' }         4.7278     
    {'D9' }         12.205     
    {'D10'}         76.428     
    {'D11'}         76.268     
    {'A11'}         3.4192     

energy_total = varfun(@sum,energy_table(:,2))

energy_total=table
    sum_energy_by_scales
    ____________________

           298.28       

Confirm the MODWT is energy-preserving by computing the energy of the signal and comparing it
with the sum of the energies over all scales.

energy_ecg = sum(wecg.^2);
max(abs(energy_total.sum_energy_by_scales-energy_ecg))

ans = 7.4414e-10

Take the MODWTMRA of the signal.

mraecg = modwtmra(wtecg,wv);

MODWTMRA returns the projections of the function f (x) onto the various wavelet subspaces and final

scaling space. That is, MODWTMRA returns ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) and the J0-many {f j(x)}

evaluated at N time points. Each row in mraecg is a projection of f (x) onto a different subspace. This
means the original signal can be recovered by adding all the projections. This is not true in the case
of the MODWT. Adding the coefficients in wtecg will not recover the original signal.

Choose a time point, add the projections of f (x) evaluated at that time point, and compare with the
original signal.

time_point = 1000;
abs(sum(mraecg(:,time_point))-wecg(time_point))
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ans = 3.0849e-13

Confirm that, unlike MODWT, MODWTMRA is not an energy-preserving transform.

energy_ecg = sum(wecg.^2);
energy_mra_scales = sum(mraecg.^2,2);
energy_mra = sum(energy_mra_scales);
max(abs(energy_mra-energy_ecg))

ans = 115.7053

The MODWTMRA is a zero-phase filtering of the signal. Features will be time-aligned. Show this by
plotting the original signal and one of its projections. To better illustrate the alignment, zoom in.

plot(t,wecg,'b')
hold on
plot(t,mraecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Projection','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')

Make a similar plot using the MODWT coefficients at the same scale. Features will not be time-
aligned. The MODWT is not a zero-phase filtering of the input.

plot(t,wecg,'b')
hold on
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plot(t,wtecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Coefficients','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')

Input Arguments
x — Input signal
vector | matrix

Input signal, specified as a vector or matrix. If x is a vector, x must have at least two elements. If x is
a matrix, the row dimension of x must be at least 2.
Data Types: single | double

wname — Wavelet
"sym4" (default) | character vector | string scalar

Wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal. Orthogonal
wavelets are designated as type 1 wavelets in the wavelet manager, wavemngr.
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Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin ("beyl"),
Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han linear-phase
moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and Vaidyanathan ("vaid").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1). For example, wavemngr("type","db6") returns 1.

Lo,Hi — Filters
even-length real-valued vectors

Filters, specified as a pair of even-length real-valued vectors. Lo is the scaling filter, and Hi is the
wavelet filter. The filters must satisfy the conditions for an orthogonal wavelet. The lengths of Lo and
Hi must be equal. See wfilters for additional information. You cannot specify both wname and a
filter pair Lo,Hi.

Note By default, the wfilters function returns two pairs of filters associated with an orthogonal or
biorthogonal wavelet you specify. To agree with the usual convention in the implementation of MODWT
in numerical packages, when you specify an orthogonal wavelet wname, the modwt function internally
uses the second pair of filters returned by wfilters. For example,

wt = modwt(x,"db2");
is equivalent to

[~,~,Lo,Hi] = wfilters("db2"); wt = modwt(x,Lo,Hi);
This convention is different from the one followed by most Wavelet Toolbox discrete wavelet
transform functions when decomposing a signal. Most functions internally use the first pair of filters.

Data Types: single | double

lev — Transform level
positive integer

Transform level, specified as a positive integer less than or equal to floor(log2(N)), where N =
length(x) if x is a vector, or N = size(x,1) if x is a matrix. If unspecified, lev defaults to
floor(log2(N)).

alignflag — Time align coefficients logical
false or 0 (default) | true or 1

Time align coefficients logical which determines whether the MODWT circularly shifts the wavelet
coefficients at all levels (scales) and the scaling coefficients to correct for the delay of the scaling and
wavelet filters, specified as a numeric or logical 1 (true) or 0 (false). Coefficients are shifted using
the "center of energy" method of Hess-Nielsen and Wickerhauser [4]. Shifting the coefficients is
useful if you want to time align features in the signal with the wavelet coefficients.

If you want to reconstruct the signal with the imodwt function, or obtain a multiresolution analysis
using the modwtmra function, do not shift the coefficients. In those cases, the time alignment is
performed in obtaining the inverse or multiresolution analysis.
Data Types: logical
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Output Arguments
w — MODWT transform
matrix | 3-D array

MODWT transform of x. w contains the wavelet coefficients and final-level scaling coefficients of x. If
x is a vector, w is a lev+1-by-N matrix. If x is a matrix, w is a lev+1-by-N-by-NC array, where NC is
the number of columns in x. N is equal to the input signal length unless you specify 'reflection'
boundary handling, in which case N is twice the length of the input signal. The kth row of the array,
w, contains the wavelet coefficients for scale 2k (wavelet scale 2(k-1)). The final, (lev+1)th, row
contains the scaling coefficients for scale 2lev.

Algorithms
The standard algorithm for the MODWT implements the circular convolution directly in the time
domain. This implementation of the MODWT performs the circular convolution in the Fourier domain.
The wavelet and scaling filter coefficients at level j are computed by taking the inverse discrete
Fourier transform (DFT) of a product of DFTs. The DFTs in the product are the signal’s DFT and the
DFT of the jth level wavelet or scaling filter.

Let Hk and Gk denote the length N DFTs of the MODWT wavelet and scaling filters, respectively. Let j
denote the level and N denote the sample size.

The jth level wavelet filter is defined by

1
N ∑

k = 0

N − 1
H j, kei2πnk/N

where

H j, k = H2 j− 1kmodN ∏
m = 0

j− 2
G2mkmodN

The jth level scaling filter is

1
N ∑

k = 0

N − 1
G j, kei2πnk/N

where

G j, k = ∏
m = 0

j− 1
G2mkmodN

Version History
Introduced in R2015b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Wavelet Signal Analyzer | Signal Multiresolution Analyzer

Functions
dlmodwt | imodwt | modwtmra | modwtcorr | modwtvar | modwtxcorr

Objects
modwtLayer

Topics
“Practical Introduction to Multiresolution Analysis”
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“Time-Frequency Gallery”
“Wavelet Analysis of Financial Data”
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modwtcorr
Multiscale correlation using the maximal overlap discrete wavelet transform

Syntax
wcorr = modwtcorr(w1,w2)
wcorr = modwtcorr(w1,w2,wav)

[wcorr,wcorrci] = modwtcorr( ___ )
[wcorr,wcorrci] = modwtcorr( ___ ,conflevel)
[wcorr,wcorrci,pval] = modwtcorr( ___ )
[wcorr,wcorrci,pval,nj] = modwtcorr( ___ )

wcorrtable = modwtcorr( ___ ,'table')

[ ___ ] = modwtcorr( ___ ,'reflection')

modwtcorr( ___ )

Description
wcorr = modwtcorr(w1,w2) returns the wavelet correlation by scale for the maximal overlap
discrete wavelet transforms (MODWTs) specified in w1 and w2. wcorr is an M-by-1 vector of
correlation coefficients, where M is the number of levels with nonboundary wavelet coefficients. If
the final level has enough nonboundary coefficients, modwtcorr returns the scaling correlation in the
final row of wcorr.

wcorr = modwtcorr(w1,w2,wav) uses the wavelet wav to determine the number of boundary
coefficients by level.

[wcorr,wcorrci] = modwtcorr( ___ ) returns in wcorrci the lower and upper 95% confidence
bounds for the correlation coefficients of wcorr, using any arguments from the previous syntaxes.

[wcorr,wcorrci] = modwtcorr( ___ ,conflevel) uses conflevel for the coverage probability
of the confidence interval. conflevel is a real scalar strictly greater than 0 and less than 1. If
conflevel is unspecified or specified as empty, the coverage probability defaults to 0.95.

[wcorr,wcorrci,pval] = modwtcorr( ___ ) returns the p-values for the null hypothesis test
that the correlation coefficient in wcorr is equal to zero. pval is an M-by-2 matrix, where M is the
number of levels with nonboundary wavelet coefficients. T

[wcorr,wcorrci,pval,nj] = modwtcorr( ___ ) returns the number of nonboundary coefficients
used in the computation of the correlation estimates by level, nj.

wcorrtable = modwtcorr( ___ ,'table') returns an M-by-6 table with the correlation,
confidence bounds, p-value, and adjusted p-value. The table also lists the number of nonboundary
coefficients by level. The row names of the table wcorrtable designate the type and level of each
estimate. For example, D1 designates that the row corresponds to a wavelet or detail estimate at level
1 and S6 designates that the row corresponds to the scaling estimate at level 6. The scaling
correlation is only computed for the final level of the MODWT and only when there are nonboundary
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scaling coefficients. You can specify the 'table' flag anywhere after the input transforms w1 and w2.
You must enter the entire character vector 'table'. If you specify 'table', modwtcorr only
outputs one argument.

[ ___ ] = modwtcorr( ___ ,'reflection') reduces the number of wavelet and scaling
coefficients at each scale by half before computing the correlation. Use this option only when you
obtain the MODWT of w1 and w2 were obtained using the 'reflection' boundary condition. You
must enter the entire character vector 'reflection'. If you added a wavelet named
'reflection' using the wavelet manager, you must rename that wavelet prior to using this option.

modwtcorr supports only unbiased estimates of the wavelet correlation. For these estimates, the
algorithm must remove the extra coefficients obtained using the 'reflection' boundary condition.
Specifying the 'reflection' option in modwtcorr is identical to first obtaining the MODWT of w1
and w2 using the default 'periodic' boundary handling and then computing the wavelet
correlation estimates.

modwtcorr( ___ ) with no output arguments plots the wavelet correlations by scale with lower and
upper confidence bounds. By default, the coverage probability is 0.95. Scales with NaNs for the
confidence bounds and the scaling correlation are excluded.

Examples

Correlation by Scale

Find the correlation by scale for monthly DM-USD exchange rate returns from 1970 to 1998. The
return data are log transformed. Use the Daubechies wavelet with two vanishing moments ('db2') to
obtain the MODWT down to level 6. Then obtain the correlation data.

load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
wcorr = modwtcorr(wdm,wjy,'db2')

wcorr = 7×1

    0.5854
    0.5748
    0.6264
    0.4948
    0.3787
    0.9072
    0.7976

wcorr contains seven elements. The first six elements are the correlation coefficients for the wavelet
(detail) levels one to six. The final element is the correlation for the scaling (lowpass) level six.

Multiscale Correlation

Obtain the MODWT of the Southern Oscillation Index and Truk Island daily pressure data sets.
Tabulate the correlation between the two data sets by level.
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load soi;
load truk;
wsoi = modwt(soi);
wtruk = modwt(truk);
wcorr = modwtcorr(wsoi,wtruk)

wcorr = 10×1

    0.1749
    0.2936
    0.0914
    0.0883
    0.2667
    0.0894
   -0.0415
    0.4825
    0.4394
    0.7433

Show that the number of nonboundary coefficients, in this case, is less than the maximal length of the
input. The MODWT is computed down to level thirteen, which is the maximal level for the length of
the input. Level thirteen contains thirteen wavelet coefficient vectors and one scaling coefficient
vector.

size(wsoi,1)

ans = 14

The multiscale correlations are computed only down to level ten because the levels after than do not
contain nonboundary coefficients. For unbiased estimates, you must use nonboundary coefficients
only.

numel(wcorr)

ans = 10

Confidence Intervals for Correlation

Obtain the MODWT of the monthly US-DM and US-JPY exchange return data from 1970 to 1998. The
return data are log transformed. Use the Daubechies wavelet with two vanishing moments ('db2') and
obtain the MODWT of each series down to level six. Obtain the correlation estimates by scale and the
95% confidence intervals.

load DM_USD
load JY_USD
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
[wcorr,wcorrci] = modwtcorr(wdm,wjy,'db2');
[wcorr wcorrci]

ans = 7×3

    0.5854    0.4780    0.6756
    0.5748    0.4133    0.7013
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    0.6264    0.4016    0.7800
    0.4948    0.0803    0.7634
    0.3787   -0.3295    0.8142
    0.9072    0.1247    0.9939
    0.7976   -0.2857    0.9860

The width of the confidence interval increases as you go down in level.

Confidence Intervals with 0.99 Coverage Probability

Specify the coverage probability for the confidence intervals. Obtain the 99% confidence intervals for
the US-DM and US-JY exchange returns.

load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
[wcorr,wcorrci] = modwtcorr(wdm,wjy,'db2',0.99);
[wcorr wcorrci]

ans = 7×3

    0.5854    0.4407    0.7005
    0.5748    0.3557    0.7340
    0.6264    0.3169    0.8153
    0.4948   -0.0646    0.8176
    0.3787   -0.5191    0.8792
    0.9072   -0.3006    0.9975
    0.7976   -0.6227    0.9941

P-values for Correlation

Return p-values for the test of zero correlation by scale. Obtain the MODWT of the DM-USD and JY-
USD exchange return data down to level six using the Daubechies wavelet with two vanishing
moments ('db2') wavelet. Compute the correlation by scale and return the p-values.

load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
[wcorr,wcorrci,pval] = modwtcorr(wdm,wjy,'db2');
format longE
pval

pval = 7×2

     2.694174887029436e-17     4.889927419958426e-16
     7.125460513473893e-09     6.466355415977557e-08
     7.012389783536670e-06     4.242495819039685e-05
     2.258540027996925e-02     1.024812537703605e-01
     2.805930327935258e-01     7.275376493146417e-01
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     3.348079529469863e-02     1.215352869197560e-01
     1.059217509938030e-01     3.204132967562542e-01

format

The first column contains the p-value and the second column contains the adjusted p-value based on
the false discovery rate.

Multiscale Correlation in Tabular Form

Output results from modwtcorr in tabular form. Obtain the MODWT of the DM-USD and JY-USD
exchange returns down to level six using the Daubechies wavelet with two vanishing moments ('db2').
Output the results in a table.

load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
corrtable = modwtcorr(wdm,wjy,'db2','table')

corrtable=7×6 table
          NJ      Lower        Rho       Upper       Pvalue      AdjustedPvalue
          ___    ________    _______    _______    __________    ______________

    D1    344     0.47797    0.58542    0.67561    2.6942e-17      4.8899e-16  
    D2    338     0.41329    0.57483    0.70129    7.1255e-09      6.4664e-08  
    D3    326     0.40163    0.62641    0.78001    7.0124e-06      4.2425e-05  
    D4    302    0.080255     0.4948    0.76342      0.022585         0.10248  
    D5    254    -0.32954    0.37865    0.81417       0.28059         0.72754  
    D6    158     0.12469    0.90716    0.99393      0.033481         0.12154  
    S6    158    -0.28573    0.79761    0.98601       0.10592         0.32041  

Correlation with Reflection Boundary Conditions

Obtain multiscale correlation estimates when using 'reflection' boundary handling. Obtain the
MODWT of the Southern Oscillation Index and Truk Islands pressure data sets using 'reflection'
boundary handling for both data sets.

load soi
load truk
wsoi = modwt(soi,'fk4',6,'reflection');
wtruk = modwt(truk,'fk4',6,'reflection');
corrtable = modwtcorr(wsoi,wtruk,'fk4',0.95,'reflection','table')

corrtable=7×6 table
           NJ        Lower        Rho       Upper       Pvalue      AdjustedPvalue
          _____    _________    _______    _______    __________    ______________

    D1    12995      0.16942    0.19294    0.21624    1.5466e-55      2.8071e-54  
    D2    12989      0.21426    0.24683    0.27885    2.7037e-46      2.4536e-45  
    D3    12977     0.057885    0.10623    0.15407     1.789e-05       6.494e-05  
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    D4    12953     0.048034    0.11645    0.18378    0.00088579       0.0026795  
    D5    12905      0.13281     0.2272     0.3175    3.7566e-06      1.7046e-05  
    D6    12809    -0.019835     0.1182    0.25181      0.093044         0.24125  
    S6    12809      0.26664    0.39003    0.50084    8.8066e-09       5.328e-08  

Plot Correlation with Confidence Intervals

Plot the multiscale correlation of the DM-USD and JY-USD exchange returns down to level six. Use
modwtcorr with no output arguments.

load DM_USD;
load JY_USD;
wdm = modwt(DM_USD,'db2',6);
wjy = modwt(JY_USD,'db2',6);
modwtcorr(wdm,wjy,'db2')

Input Arguments
w1 — MODWT transform of signal 1
matrix
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MODWT transform of signal 1, specified as a matrix. w1 is the output of modwt. w1 and w2 must be
the same size and both must have been obtained using the same analyzing wavelet.
Data Types: double

w2 — MODWT transform of signal 2
matrix

MODWT transform of signal 2, specified as a matrix. w2 is the output of modwt. w1 and w2 must be
the same size and both must have been obtained using the same analyzing wavelet.

wav — Wavelet
'sym4' (default) | character vector | string scalar | positive even scalar

Wavelet, specified as a character vector or string scalar indicating a valid wavelet name, or as a
positive even scalar indicating the length of the wavelet and scaling filters. wav must be the same
wavelet and length used to obtain the MODWTs of w1 and w2. For a list of valid wavelets, see modwt.
If unspecified or specified as an empty, [], wav defaults to the symlet wavelet with four vanishing
moments, 'sym4'.

conflevel — Confidence level
0.95 (default) | positive scalar less than 1

Confidence level, specified as a positive scalar less than 1. conflevel determines the coverage
probability of the confidence intervals in wcorrci and in the table, if you specify 'table' as an
input. If unspecified, or if specified as empty, [], conflevel defaults to 0.95.

Output Arguments
wcorr — Correlation coefficients by scale
vector

Correlation coefficients by scale, returned as a vector. wcorr is an M-by-1 vector of correlation
coefficients, where M is the number of levels with nonboundary wavelet coefficients. modwtcorr
returns correlation estimates only where there are nonboundary coefficients. This condition is
satisfied when the transform level is not greater than floor(log2(N/(L-1)+1)), where N is the
length of the original signal and L is the filter length. If the final level has enough nonboundary
coefficients, modwtcorr returns the scaling correlation in the final row of wcorr. By default,
modwtcorr uses the symlet wavelet with four vanishing moments, 'sym4' to determine the
boundary coefficients.

wcorrci — Confidence intervals by scale
matrix

Confidence intervals by scale, returned as a matrix. The matrix is of size M-by-2, where M is the
number of levels with nonboundary wavelet coefficients. The first column contains the lower
confidence bound and the second column contains the upper confidence bound. The conflevel
determines the coverage probability.

Confidence bounds are computed using Fisher's Z-transformation. The standard error of Fisher's Z
statistic is the square root of (N – 3). In this case, N is the equivalent number of coefficients in the
critically sampled discrete wavelet transform (DWT), floor(size(w1,2)/2^LEV), where LEV is the
level of the wavelet transform. modwtcorr returns NaNs for the confidence bounds when (N – 3) is
less than or equal to zero.
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pval — P-values for null hypothesis test
matrix

P-values for null hypothesis test, returned as a matrix. pval is an M-by-2 matrix.

• The first column of pval is the p-value computed using the standard t-statistic test for a
correlation coefficient of zero.

• The second column of pval contains the adjusted p-value using the false discovery procedure of
Benjamini & Yekutieli under arbitrary dependence assumptions.

The degrees of freedom, (N – 2), for the t-statistic are determined by the equivalent number of
coefficients N in the critically sampled DWT, floor(size(w1,2)/2^LEV), where LEV is the level of
the wavelet transform. modwtcorr returns NaNs when (N – 2) is less than or equal to zero.

nj — Number of nonboundary coefficients
vector

Number of nonboundary coefficients by scale, returned as a vector.

wcorrtable — Correlation table
table

Correlation table, returned as a MATLAB table. The table contains six variables:

• NJ — Number of nonboundary coefficients by level.
• Lower — Lower confidence bound for the coverage probability specified by conflevel.
• Rho — Correlation coefficient.
• Upper — Upper confidence bound for the coverage probability specified by conflevel.
• Pvalue — P-value for hypothesis test. The null hypothesis is that the correlation coefficient is

equal to zero.
• AdjustedPvalue — P-value adjusted for multiple comparisons. The p-values are adjusted using

false discovery rate under dependency assumptions.

Version History
Introduced in R2015b

References
[1] Percival, D. B., and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge, UK:

Cambridge University Press, 2000.

[2] Whitcher, B., P. Guttorp, and D. B. Percival. “Wavelet analysis of covariance with application to
atmospheric time series.” Journal of Geophysical Research, Vol. 105, pp. 14941–14962, 2000.

[3] Benjamini, Y., and Yekutieli, D. “The Control of the False Discovery Rate in Multiple Testing Under
Dependency.” Annals of Statistics, Vol. 29, Number 4, pp. 1165–1188, 2001.

See Also
modwtxcorr | modwtvar | modwt | modwtmra | imodwt
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Topics
“Wavelet Cross-Correlation for Lead-Lag Analysis”
“Wavelet Analysis of Financial Data”
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modwtLayer
Maximal overlap discrete wavelet transform (MODWT) layer

Description
A MODWT layer computes the MODWT and MODWT multiresolution analysis (MRA) of the input. Use
of this layer requires Deep Learning Toolbox.

Creation

Syntax
layer = modwtLayer
layer = modwtLayer(Name=Value)

Description

layer = modwtLayer creates a MODWT layer. By default, the layer computes the MODWTMRA to
level 5 using the Daubechies least-asymmetric wavelet with four vanishing moments ('sym4') .

The input to modwtLayer must be a dlarray object in "CBT" format. The size of the time dimension
of the tensor input must be greater than or equal to 2Level, where Level is the transform level of the
MODWT. modwtLayer formats the output as "SCBT". For more information, see “Layer Output
Format” on page 1-1029.

Note The object initializes the weights internally for use as wavelet filters in the MODWT. It is not
recommended to initialize the weights directly.

layer = modwtLayer(Name=Value) creates a MODWT layer with properties on page 1-1017
specified by name-value arguments. For example, layer = modwtLayer(Wavelet="haar")
creates a MODWT layer that uses the Haar wavelet. You can specify the wavelet and the level of
decomposition, among others.

Properties
MODWT

Wavelet — Orthogonal wavelet
"sym4" (default) | character vector | string scalar

This property is read-only.

Name of an orthogonal wavelet used in the MODWT, specified as a character vector or a string scalar.

Orthogonal wavelets are designated as type 1 wavelets in the wavelet manager. Valid built-in
orthogonal wavelet families begin with 'haar', 'dbN', 'fkN', 'coifN', 'blN', 'hanSR.LP',
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'symN', 'vaid', or 'beyl'. Use waveinfo with the wavelet family short name to see supported
values for any numeric suffixes and how to interpret those values. For example, waveinfo("han").

For a wavelet specified by wname, the associated lowpass and highpass filters Lo and Hi,
respectively, are [~,~,Lo,Hi] = wfilters(wname).
Data Types: char | string

LowpassFilter,HighpassFilter — Initial wavelet filter pair
even-length real-valued vectors

This property is read-only.

Initial wavelet filter pair, specified as a pair of even-length real-valued vectors. The lengths of the
vectors must be equal. LowpassFilter and HighpassFilter must correspond to the lowpass and
highpass filters, respectively, associated with an orthogonal wavelet. You can use isorthwfb to
determine orthogonality.

[~,~,Lo,Hi] = wfilters("db2");
[tf,checks] = isorthwfb(Lo,Hi);

If unspecified, both filters default to [] and modwtLayer uses Wavelet to determine the filters used
in MODWT.

You cannot specify both a wavelet name and a wavelet filter pair.
Example: layer = modwtLayer('LowpassFilter',Lo,'HighpassFilter',Hi)
Data Types: single | double

Level — Transform level
5 (default) | positive integer

This property is read-only.

Transform level to compute the MODWT, specified as a positive integer less than or equal to
floor(log2(N)), where N is the size of the layer input in the time dimension.
Data Types: single | double

Boundary — Boundary condition
"periodic" (default) | "reflection"

This property is read-only.

Boundary condition to use in the computation of the MODWT, specified as one of these:

• "periodic" — The signal is extended periodically along the time dimension. The number of
wavelet coefficients equals the size of the signal in the time dimension.

• "reflection" — The signal is reflected symmetrically along the time dimension at the terminal
end before computing the MODWT. The number of wavelet coefficients returned is twice the
length of the input signal.

SelectedLevels — Selected levels
1:Level (default) | vector

This property is read-only.
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Selected levels for modwtLayer to output, specified as a vector of positive integers less than or equal
to Level.
Data Types: single | double

IncludeLowpass — Include lowpass coefficients
true or 1 (default) | false or 0

This property is read-only.

Include lowpass coefficients, specified as a numeric or logical 1 (true) or 0 (false). If specified as
true, the MODWT layer includes the Levelth level lowpass (scaling) coefficients in the MODWT, or
Levelth level smooth in the MODWTMRA.
Data Types: logical

AggregateLevels — Aggregate selected levels
false or 0 (default) | true or 1

This property is read-only.

Aggregate selected levels, specified as a numeric or logical 1 (true) or 0 (false). If specified as
true, the MODWT layer aggregates the selected levels and lowpass level (if IncludeLowpass is
true) of each input channel by summation. If AggregateLevels is true, the size of the output in
the spatial dimension is 1. For more information, “Compare modwtLayer Output with modwt and
modwtmra Outputs” on page 1-1021.
Data Types: logical

Algorithm — Algorithm
"MODWTMRA" (default) | "MODWT"

This property is read-only.

Algorithm modwtLayer uses to compute the output, specified as one of these:

• "MODWTMRA" — Compute the maximal overlap discrete wavelet transform based multiresolution
analysis.

• "MODWT" — Compute the wavelet coefficients of the maximal overlap discrete wavelet transform.

For more information, see “Comparing MODWT and MODWTMRA” on page 1-1025.

Layer

WeightLearnRateFactor — Multiplier for weight learning rate
0 (default) | nonnegative scalar

Multiplier for weight learning rate, specified as a nonnegative scalar. If not specified, this property
defaults to zero, resulting in weights that do not update with training. You can also set this property
using the setLearnRateFactor function.

The learnable parameter 'Weights' in modwtLayer is a two-row matrix of the current filter pair.
The first row is the lowpass filter and the second row is the highpass filter. By default, the weights are
the lowpass and highpass filters associated with the default wavelet and do not update.
Data Types: single | double
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Name — Layer name
'' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. For Layer array input, the
trainNetwork, assembleNetwork, layerGraph, and dlnetwork functions automatically assign
names to layers with the name ''.
Data Types: char | string

NumInputs — Number of inputs
1 (default)

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames — Input names
{"in"} (default)

This property is read-only.

Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs — Number of outputs
1 (default)

This property is read-only.

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames — Output names
{'out'} (default)

This property is read-only.

Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Use modwtLayer in Deep Learning Network

Create a MODWT layer to compute the multiresolution analysis for the input signal. Use a coiflet
wavelet with order 5. Set the transform level to 8. Only keep the details at levels 3, 5, and 7, and the
approximation.

layer = modwtLayer(Wavelet="coif5",Level=8, ...
    SelectedLevels=[3,5,7],Name="MODWT");
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Create a dlnetwork object containing a sequence input layer, a MODWT layer, and an LSTM layer.
For a level-8 decomposition, set the minimum sequence length to 2^8 samples. To work with an
LSTM layer, a flatten layer is also needed before the LSTM layer to collapse the spatial dimension
into the channel dimension.

mLength=2^8;
sqLayer = sequenceInputLayer(1,Name="input",MinLength=mLength);
layers = [sqLayer
    layer
    flattenLayer
    lstmLayer(10,Name="LSTM")
    ];
dlnet = dlnetwork(layers);

Run a batch of 10 random single-channel signals through the dlnetwork object. Inspect the size and
dimensions of the output. The flatten layer has collapsed the spatial dimension.

dataout = dlnet.forward(dlarray(randn(1,10,2000,'single'),'CBT'));
size(dataout)

ans = 1×3

          10          10        2000

dims(dataout)

ans = 
'CBT'

Compare modwtLayer Output with modwt and modwtmra Outputs

Load the Espiga3 electroencephalogram (EEG) dataset. The data consists of 23 channels of EEG
sampled at 200 Hz. There are 995 samples in each channel. Save the multisignal as a dlarray,
specifying the dimensions in order. dlarray permutes the array dimensions to the "CBT" shape
expected by a deep learning network.

load Espiga3
[N,nch] = size(Espiga3);
x = dlarray(Espiga3,"TCB");

Use modwt and modwtmra to obtain the MODWT and MRA of the multisignal down to level 6. By
default, modwt and modwtmra use the sym4 wavelet.

lev = 6;
wt = modwt(Espiga3,lev);
mra = modwtmra(wt);

Compare with modwt

Create a MODWT layer that can be used with the data. Set the transform level to 6. Specify the layer
to use MODWT to compute the output. By default, the layer uses the sym4 wavelet.

mlayer = modwtLayer(Level=lev,Algorithm="MODWT");
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Create a two-layer dlnetwork object containing a sequence input layer and the MODWT layer you
just created. Treat each channel as a feature. For a level-6 decomposition, set the minimum sequence
length to 2^6.

mLength = mlayer.Level;
sqInput = sequenceInputLayer(nch,MinLength=2^mLength);
layers = [sqInput
    mlayer];
dlnet = dlnetwork(layers);

Run the EEG data through the forward method of the network.

dataout = forward(dlnet,x);

The modwt and modwtmra functions return the MODWT and MRA of a multichannel signal as a 3-D
array. The first, second, and third dimensions of the array correspond to the wavelet decomposition
level, signal length, and channel, respectively. Convert the network output to a numeric array.
Permute the dimensions of the network output to match the function output. Compare the network
output with the modwt output.

q = extractdata(dataout);
q = permute(q,[1 4 2 3]);
max(abs(q(:)-wt(:)))

ans = 8.4402e-05

Choose a MODWT result from modwtLayer. Compare with the corresponding channel in the EEG
data. Plot each level of the modwtLayer output. Different levels contain information about the signal
in different frequency ranges. The levels are not time aligned with the original signal because the
layer uses the MODWT algorithm.

channel = 10;
t = 100:400;
subplot(lev+2,1,1)
plot(t,Espiga3(t,channel))
ylabel("Original EEG")
for k=2:lev+1
    subplot(lev+2,1,k)
    plot(t,q(k-1,t,channel))
    ylabel(["Level ",k-1," of MODWT"])
end
subplot(lev+2,1,lev+2)
plot(t,q(lev+1,t,channel))
ylabel(["Scaling","Coefficients","of MODWT"])
set(gcf,Position=[0 0 500 700])
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Compare with modwtmra

Create a second network similar to the first network, except this time specify that modwtLayer use
the MODWTMRA algorithm and aggregate the fourth, fifth, and sixth levels. Do not include the
lowpass level in the aggregation.

sLevels = [4 5 6];
mlayer = modwtLayer(Level=lev, ...
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    SelectedLevels=sLevels, ...
    IncludeLowpass=0, ...
    AggregateLevels=1);
layers = [sqInput
    mlayer];
dlnet2 = dlnetwork(layers);

Run the EEG data through the forward method of the network. Convert the network output to a
numeric array. Permute the dimensions as done previously.

dataout = forward(dlnet2,x);
q = extractdata(dataout);
q = permute(q,[1 4 3 2]);

Aggregate the fourth, fifth, and sixth levels of the MRA. Compare with the network output.

mraAggregate = sum(mra(sLevels,:,:));
max(abs(q(:)-mraAggregate(:)))

ans = 2.1036e-04

Inspect a MODWTMRA result from the layer. Compare with the corresponding channel in the EEG
data. By choosing only the fourth, fifth, and six levels, and not including the lowpass component, the
layer removes several high and low frequency components from the signal. The transformed signal is
smoother than the original signal and the low frequency components are removed so that the offset is
closer to 0. The output is time aligned with the original signal because the layer uses the default
MODWTMRA algorithm. Depending on your goal, preserving time alignment can be useful.

channel = 10;
t = 100:400;
figure
hold on
plot(t, Espiga3(t,channel))
plot(t,q(1,t,1,channel))
hold off
legend(["Original EEG", "Layer Output"], ...
    Location="northwest")
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Comparing MODWT and MODWTMRA

This example demonstrates the differences between the MODWT and MODWTMRA. The MODWT
partitions a signal's energy across detail coefficients and scaling coefficients. The MODWTMRA
projects a signal onto wavelet subspaces and a scaling subspace.

Choose the sym6 wavelet. Load and plot an electrocardiogram (ECG) signal. The sampling frequency
for the ECG signal is 180 hertz. The data are taken from Percival and Walden (2000), p.125 (data
originally provided by William Constantine and Per Reinhall, University of Washington).

load wecg
t = (0:numel(wecg)-1)/180;
wv = 'sym6';
plot(t,wecg)
grid on
title(['Signal Length = ',num2str(numel(wecg))])
xlabel('Time (s)')
ylabel('Amplitude')
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Take the MODWT of the signal.

wtecg = modwt(wecg,wv);

The input data are samples of a function f (x) evaluated at N time points. The function can be
expressed as a linear combination of the scaling function ϕ(x) and wavelet ψ(x) at varying scales and

translations: f (x) = ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) + ∑

j = 1

J0
f j(x), where f j(x) = ∑

k = 0

N − 1
d j, k 2− j/2 ψ(2− jx− k)

and J0 is the number of levels of wavelet decomposition. The first sum is the coarse scale
approximation of the signal, and the f j(x) are the details at successive scales. MODWT returns the N
coefficients {ck} and the ( J0 × N) detail coefficients {d j, k} of the expansion. Each row in wtecg
contains the coefficients at a different scale.

When taking the MODWT of a signal of length N, there are floor(log2(N)) levels of decomposition by
default. Detail coefficients are produced at each level. Scaling coefficients are returned only for the
final level. In this example, N = 2048, J0 = floor(log2(2048)) = 11, and the number of rows in wtecg
is J0 + 1 = 11 + 1 = 12.

The MODWT partitions the energy across the various scales and scaling coefficients:

| | X | |2 = ∑
j = 1

J0
| |W j | |2 + ||V J0 | |2, where X is the input data, W j are the detail coefficients at scale j,

and V J0 are the final-level scaling coefficients.

1 Functions

1-1026



Compute the energy at each scale, and evaluate their sum.

energy_by_scales = sum(wtecg.^2,2);
Levels = {'D1';'D2';'D3';'D4';'D5';'D6';...
    'D7';'D8';'D9';'D10';'D11';'A11'};
energy_table = table(Levels,energy_by_scales);
disp(energy_table)

    Levels     energy_by_scales
    _______    ________________

    {'D1' }         14.063     
    {'D2' }         20.612     
    {'D3' }         37.716     
    {'D4' }         25.123     
    {'D5' }         17.437     
    {'D6' }         8.9852     
    {'D7' }         1.2906     
    {'D8' }         4.7278     
    {'D9' }         12.205     
    {'D10'}         76.428     
    {'D11'}         76.268     
    {'A11'}         3.4192     

energy_total = varfun(@sum,energy_table(:,2))

energy_total=table
    sum_energy_by_scales
    ____________________

           298.28       

Confirm the MODWT is energy-preserving by computing the energy of the signal and comparing it
with the sum of the energies over all scales.

energy_ecg = sum(wecg.^2);
max(abs(energy_total.sum_energy_by_scales-energy_ecg))

ans = 7.4414e-10

Take the MODWTMRA of the signal.

mraecg = modwtmra(wtecg,wv);

MODWTMRA returns the projections of the function f (x) onto the various wavelet subspaces and final

scaling space. That is, MODWTMRA returns ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) and the J0-many {f j(x)}

evaluated at N time points. Each row in mraecg is a projection of f (x) onto a different subspace. This
means the original signal can be recovered by adding all the projections. This is not true in the case
of the MODWT. Adding the coefficients in wtecg will not recover the original signal.

Choose a time point, add the projections of f (x) evaluated at that time point, and compare with the
original signal.

time_point = 1000;
abs(sum(mraecg(:,time_point))-wecg(time_point))
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ans = 3.0849e-13

Confirm that, unlike MODWT, MODWTMRA is not an energy-preserving transform.

energy_ecg = sum(wecg.^2);
energy_mra_scales = sum(mraecg.^2,2);
energy_mra = sum(energy_mra_scales);
max(abs(energy_mra-energy_ecg))

ans = 115.7053

The MODWTMRA is a zero-phase filtering of the signal. Features will be time-aligned. Show this by
plotting the original signal and one of its projections. To better illustrate the alignment, zoom in.

plot(t,wecg,'b')
hold on
plot(t,mraecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Projection','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')

Make a similar plot using the MODWT coefficients at the same scale. Features will not be time-
aligned. The MODWT is not a zero-phase filtering of the input.

plot(t,wecg,'b')
hold on
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plot(t,wtecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Coefficients','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')

More About
Layer Output Format

modwtLayer formats the output as "SCBT", a sequence of 1-D images where the image height
corresponds to the level of the wavelet transform, the second dimension corresponds to the channel,
the third dimension corresponds to the batch, and the fourth dimension corresponds to time. The kth
row, where k ≤ Level, contains the kth level detail of the signal. The (Level+1)th row contains the
Levelth level smooth of the signal.

• You can feed the output of modwtLayer unchanged to a 1-D convolutional layer when you want to
convolve along the level ("S") dimension. For more information, see convolution1dLayer.

• To feed the output of modwtLayer to a 1-D convolutional layer when you want to convolve along
the time ("T") dimension, you must place a flatten layer after the modwtLayer. For more
information, see flattenLayer.
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• You can feed the output of modwtLayer unchanged to a 2-D convolutional layer when you want to
convolve along the level ("S") and time ("T") dimensions jointly. For more information, see
convolution2dLayer.

• To use modwtLayer as part of a recurrent neural network, you must place a flatten layer after the
modwtLayer. For more information, see lstmLayer and gruLayer.

• To use the output of modwtLayer with a fully connected layer as part of a classification workflow,
you must reduce the time ("T") dimension of the output so that it is of size 1. To reduce the time
dimension of the output, place a global pooling layer before the fully connected layer. For more
information, see globalAveragePooling2dLayer and fullyConnectedLayer.

Version History
Introduced in R2022b

See Also
Apps
Deep Network Designer

Functions
dlmodwt | modwt | modwtmra | dlcwt

Objects
cwtLayer | stftLayer | dlarray | dlnetwork

Topics
“Practical Introduction to Multiresolution Analysis”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)
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modwtmra
Multiresolution analysis based on MODWT

Syntax
mra = modwtmra(w)
mra = modwtmra(w,wname)
mra = modwtmra(w,Lo,Hi)
mra = modwtmra( ___ ,'reflection')

Description
mra = modwtmra(w) returns the multiresolution analysis (MRA) of the maximal overlap discrete
wavelet transform (MODWT) matrix, w. The MODWT matrix, w, is the output of the modwt function.
By default, modwtmra assumes that you obtained w using the 'sym4' wavelet with periodic boundary
handling.

mra = modwtmra(w,wname) constructs the MRA using the wavelet corresponding to wname. The
wname wavelet must be the same wavelet used to obtain the MODWT.

mra = modwtmra(w,Lo,Hi) constructs the MRA using the scaling filter Lo and wavelet filter Hi.
The Lo and Hi filters must be the same filters used to obtain the MODWT.

mra = modwtmra( ___ ,'reflection') uses the reflection boundary condition in the construction
of the MRA using any of the arguments from previous syntaxes. If you specify 'reflection',
modwtmra assumes that the column dimension of w is even and equals twice the length of the original
signal.

You must enter the entire character vector 'reflection'. If you added a wavelet named
'reflection' using the wavelet manager, you must rename that wavelet prior to using this option.
'reflection' may be placed in any position in the input argument list after x. By default,
modwtmra uses periodic extension at the boundary.

Examples

Perfect Reconstruction with the MODWTMRA

Obtain the MODWTMRA of a simple time-series signal and demonstrate perfect reconstruction.

Create a time-series signal

t = 1:10;
x = sin(2*pi*200*t);

Obtain the MODWT and the MODWTMRA and sum the MODWTMRA rows.

m = modwt(x);
mra = modwtmra(m);
xrec = sum(mra);
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Use the maximum of the absolute values to show that the difference between the original signal and
the reconstruction is extremely small. The largest absolute value is on the order of 10−25, which
demonstrates perfect reconstruction.

max(abs(x-xrec))

ans = 5.5738e-25

MRA Using Non-Default Wavelet

Construct an MRA of an ECG signal down to level four using the db2 wavelet. The data are taken
from Percival & Walden (2000), p.125 (data originally provided by William Constantine and Per
Reinhall, University of Washington). The sampling frequency for the ECG signal is 180 hertz.

load wecg;
lev = 4;
wtecg = modwt(wecg,'db2',lev);
mra = modwtmra(wtecg,'db2');

Plot the ECG waveform and the MRA.

t = (0:numel(wecg)-1)/180;
subplot(6,1,1)
plot(t,wecg)
for kk = 2:lev+2
    subplot(6,1,kk)
    plot(t,mra(kk-1,:))
end
xlabel('Time (s)')
set(gcf,'Position',[0 0 500 700])
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MRA Using the Default Wavelet

Construct a multiresolution analysis for the Southern Oscillation Index data. The sampling period is
one day. Plot the level eight details corresponding to a scale of 28 days. The details at this scale
capture oscillations on a scale of approximately one year.
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load soi
wtsoi = modwt(soi);
mrasoi = modwtmra(wtsoi);
plot(mrasoi(8,:))
title('Level 8 Details')

MRA Using Minimum Bandwidth Scaling and Wavelet Filters

Obtain the MRA for the Deutsch Mark - U.S. Dollar exchange rate data using the minimum bandwidth
scaling and wavelet filters with four coefficients.

load DM_USD;
Lo = [0.4801755, 0.8372545, 0.2269312, -0.1301477];
Hi = qmf(Lo);
wdm = modwt(DM_USD,Lo,Hi);
mra = modwtmra(wdm,Lo,Hi);

MRA Using Fejér-Korovkin Filters

Load the ECG data.

load wecg
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Obtain the MODWT of the signal using the filters associated with the 8-coefficient Fejér-Korovkin
filters.

[~,~,Lo,Hi] = wfilters("fk8");
wtecg = modwt(wecg,Lo,Hi);

Obtain the MRA of the signal using the filters.

mra = modwtmra(wtecg,Lo,Hi);

Obtain a second MRA of the signal using the wavelet name. Confirm the multiresolution analyses are
equal.

mra2 = modwtmra(wtecg,"fk8");
max(abs(mra(:)-mra2(:)))

ans = 0

MRA Using Reflection Boundary

Obtain the MRA for an ECG signal using 'reflection' boundary handling. The data are taken from
Percival & Walden (2000), p.125 (data originally provided by William Constantine and Per Reinhall,
University of Washington).

load wecg;
wtecg = modwt(wecg,'reflection');
mra = modwtmra(wtecg,'reflection');

Show that the number of columns in the MRA is equal to the number of elements in the original
signal.

isequal(size(mra,2),numel(wecg))

ans = logical
   1

MRA of Multisignal

Load the 23 channel EEG data Espiga3 [3]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Obtain the MRA of the multisignal.

w = modwt(Espiga3);
mra = modwtmra(w);
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Comparing MODWT and MODWTMRA

This example demonstrates the differences between the MODWT and MODWTMRA. The MODWT
partitions a signal's energy across detail coefficients and scaling coefficients. The MODWTMRA
projects a signal onto wavelet subspaces and a scaling subspace.

Choose the sym6 wavelet. Load and plot an electrocardiogram (ECG) signal. The sampling frequency
for the ECG signal is 180 hertz. The data are taken from Percival and Walden (2000), p.125 (data
originally provided by William Constantine and Per Reinhall, University of Washington).

load wecg
t = (0:numel(wecg)-1)/180;
wv = 'sym6';
plot(t,wecg)
grid on
title(['Signal Length = ',num2str(numel(wecg))])
xlabel('Time (s)')
ylabel('Amplitude')

Take the MODWT of the signal.

wtecg = modwt(wecg,wv);

The input data are samples of a function f (x) evaluated at N time points. The function can be
expressed as a linear combination of the scaling function ϕ(x) and wavelet ψ(x) at varying scales and

translations: f (x) = ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) + ∑

j = 1

J0
f j(x), where f j(x) = ∑

k = 0

N − 1
d j, k 2− j/2 ψ(2− jx− k)

1 Functions

1-1036



and J0 is the number of levels of wavelet decomposition. The first sum is the coarse scale
approximation of the signal, and the f j(x) are the details at successive scales. MODWT returns the N
coefficients {ck} and the ( J0 × N) detail coefficients {d j, k} of the expansion. Each row in wtecg
contains the coefficients at a different scale.

When taking the MODWT of a signal of length N, there are floor(log2(N)) levels of decomposition by
default. Detail coefficients are produced at each level. Scaling coefficients are returned only for the
final level. In this example, N = 2048, J0 = floor(log2(2048)) = 11, and the number of rows in wtecg
is J0 + 1 = 11 + 1 = 12.

The MODWT partitions the energy across the various scales and scaling coefficients:

| | X | |2 = ∑
j = 1

J0
| |W j | |2 + ||V J0 | |2, where X is the input data, W j are the detail coefficients at scale j,

and V J0 are the final-level scaling coefficients.

Compute the energy at each scale, and evaluate their sum.

energy_by_scales = sum(wtecg.^2,2);
Levels = {'D1';'D2';'D3';'D4';'D5';'D6';...
    'D7';'D8';'D9';'D10';'D11';'A11'};
energy_table = table(Levels,energy_by_scales);
disp(energy_table)

    Levels     energy_by_scales
    _______    ________________

    {'D1' }         14.063     
    {'D2' }         20.612     
    {'D3' }         37.716     
    {'D4' }         25.123     
    {'D5' }         17.437     
    {'D6' }         8.9852     
    {'D7' }         1.2906     
    {'D8' }         4.7278     
    {'D9' }         12.205     
    {'D10'}         76.428     
    {'D11'}         76.268     
    {'A11'}         3.4192     

energy_total = varfun(@sum,energy_table(:,2))

energy_total=table
    sum_energy_by_scales
    ____________________

           298.28       

Confirm the MODWT is energy-preserving by computing the energy of the signal and comparing it
with the sum of the energies over all scales.

energy_ecg = sum(wecg.^2);
max(abs(energy_total.sum_energy_by_scales-energy_ecg))

ans = 7.4414e-10
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Take the MODWTMRA of the signal.

mraecg = modwtmra(wtecg,wv);

MODWTMRA returns the projections of the function f (x) onto the various wavelet subspaces and final

scaling space. That is, MODWTMRA returns ∑
k = 0

N − 1
ck 2− J0/2ϕ(2− J0 x− k) and the J0-many {f j(x)}

evaluated at N time points. Each row in mraecg is a projection of f (x) onto a different subspace. This
means the original signal can be recovered by adding all the projections. This is not true in the case
of the MODWT. Adding the coefficients in wtecg will not recover the original signal.

Choose a time point, add the projections of f (x) evaluated at that time point, and compare with the
original signal.

time_point = 1000;
abs(sum(mraecg(:,time_point))-wecg(time_point))

ans = 3.0849e-13

Confirm that, unlike MODWT, MODWTMRA is not an energy-preserving transform.

energy_ecg = sum(wecg.^2);
energy_mra_scales = sum(mraecg.^2,2);
energy_mra = sum(energy_mra_scales);
max(abs(energy_mra-energy_ecg))

ans = 115.7053

The MODWTMRA is a zero-phase filtering of the signal. Features will be time-aligned. Show this by
plotting the original signal and one of its projections. To better illustrate the alignment, zoom in.

plot(t,wecg,'b')
hold on
plot(t,mraecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Projection','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')
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Make a similar plot using the MODWT coefficients at the same scale. Features will not be time-
aligned. The MODWT is not a zero-phase filtering of the input.

plot(t,wecg,'b')
hold on
plot(t,wtecg(4,:),'-')
hold off
grid on
xlim([4 8])
legend('Signal','Coefficients','Location','northwest')
xlabel('Time (s)')
ylabel('Amplitude')
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Input Arguments
w — MODWT transform
matrix

MODWT transform of a signal or multisignal down to level LEV, specified as a matrix or 3-D array,
respectively. w is an LEV+1-by-N matrix for the MODWT of an N-point signal, and an LEV+1-by-N-by-
NC array for the MODWT of an N-by-NC multisignal. By default, imodwt assumes that you obtained
the MODWT using the 'sym4' wavelet with periodic boundary handling.
Data Types: single | double

wname — Synthesis wavelet
'sym4' (default) | character vector | string scalar

Synthesis wavelet, specified as a character vector or string scalar. The synthesis wavelet must be the
same wavelet used to obtain the MODWT with the modwt function.

Lo,Hi — Filters
even-length real-valued vectors

Filters, specified as a pair of even-length real-valued vectors. Lo is the scaling filter, and Hi is the
wavelet filter. Lo and Hi must be the same filters used in the analysis with modwt. The filters must
satisfy the conditions for an orthogonal wavelet. The lengths of Lo and Hi must be equal. See
wfilters for additional information. You cannot specify both wname and a filter pair Lo,Hi.
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Note By default, the wfilters function returns two pairs of filters associated with an orthogonal or
biorthogonal wavelet you specify. To agree with the usual convention in the implementation of MODWT
in numerical packages, when you specify an orthogonal wavelet wname, the modwtmra function
internally uses the second pair of filters returned by wfilters. For example,

mra = modwtmra(wt,"db2");
is equivalent to

[~,~,Lo,Hi] = wfilters("db2"); mra = modwtmra(wt,Lo,Hi);
This convention is different from the one followed by most Wavelet Toolbox discrete wavelet
transform functions when decomposing a signal. Most functions internally use the first pair of filters.

Data Types: single | double

Output Arguments
mra — Multiresolution analysis
matrix | 3-D array

Multiresolution analysis, returned as a matrix or 3-D array. mra is a LEV+1-by-N matrix or LEV+1-by-
N-by-NC array where LEV is the level of the MODWT and N is the length of the analyzed signal. The
kth row of mra contains the details for the kth level. The (LEV+1)th row of mra contains the LEVth level
smooth.

By default, mra is the same size as the input w. If you specify reflection boundary handling, then mra
has one half the size of the column dimension as the input w.

Version History
Introduced in R2015b

References
[1] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.

[2] Whitcher, Brandon, Peter Guttorp, and Donald B. Percival. “Wavelet Analysis of Covariance with
Application to Atmospheric Time Series.” Journal of Geophysical Research: Atmospheres 105,
no. D11 (June 16, 2000): 14941–62. https://doi.org/10.1029/2000JD900110.

[3] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
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10.1007/11578079_96.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Wavelet Signal Analyzer | Signal Multiresolution Analyzer

Functions
dlmodwt | modwt | imodwt

Objects
modwtLayer

Topics
“Practical Introduction to Multiresolution Analysis”
“Time-Frequency Gallery”
“Wavelet Analysis of Financial Data”
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modwtvar
Multiscale variance of maximal overlap discrete wavelet transform

Syntax
wvar = modwtvar(w)
wvar = modwtvar(w,wname)
[wvar,wvarci] = modwtvar( ___ )

[ ___ ] = modwtvar(w,wname, ___ ,conflevel)
[ ___ ] = modwtvar(w,wname, ___ ,Name,Value)
[wvar,wvarci,nj] = modwtvar(w,wname, ___ )

wvartable = modwtvar(w,wname,"table")

modwtvar( ___ )

Description
wvar = modwtvar(w) returns unbiased estimates of the wavelet variance by scale for the maximal
overlap discrete wavelet transform (MODWT). The default wavelet type is sym4.

wvar = modwtvar(w,wname) uses the wavelet wname to determine the number of boundary
coefficients by level for unbiased estimates.

[wvar,wvarci] = modwtvar( ___ ) returns the 95% confidence intervals for the variance
estimates by scale.

[ ___ ] = modwtvar(w,wname, ___ ,conflevel) uses conflevel for the coverage probability of
the confidence interval.

[ ___ ] = modwtvar(w,wname, ___ ,Name,Value) returns wavelet variance with additional
options specified by one or more Name,Value pair arguments.

[wvar,wvarci,nj] = modwtvar(w,wname, ___ ) returns the number of coefficients used to form
the variance and confidence intervals by level.

wvartable = modwtvar(w,wname,"table"), where "table" returns a MATLAB table,
wvartable, containing the number of MODWT coefficients by level, the confidence boundaries, and
the variance estimates. You can place "table" anywhere after input w, except after any Name,Value
argument.

modwtvar( ___ ) with no output arguments plots the wavelet variances by scale with lower and
upper confidence bounds. The scaling variance is not included in the plot because the scaling
variance can be much larger than the wavelet variances.

Examples
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Wavelet Variance Using Default Wavelet

Obtain the MODWT of the Southern Oscillation Index data using the default symlets wavelet with 4
vanishing moments. Compute the unbiased estimates of the wavelet variance by scale.

load soi
wsoi = modwt(soi);
wvar = modwtvar(wsoi)

wvar = 10×1

    0.3568
    0.9026
    1.1576
    1.0952
    0.9678
    0.5478
    0.6353
    1.9570
    0.8398
    0.8247

Wavelet Variance Using Specified Wavelet

Obtain the MODWT of the Southern Oscillation Index data using the Daubechies wavelet with 2
vanishing moments ("db2"). Compute the unbiased estimates of the wavelet variance by scale.

load soi
wsoi = modwt(soi,"db2");
wvar = modwtvar(wsoi,"db2")

wvar = 12×1

    0.4296
    0.9204
    1.1370
    1.0847
    0.9255
    0.5932
    0.7630
    1.6672
    0.8048
    0.7555
      ⋮

Variance Estimates and Confidence Intervals Using MODWTVAR

Obtain the MODWT of the Nile River minimum level data using the Fejér- Korovkin wavelet with eight
coefficients down to level five.
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load nileriverminima
wtnile = modwt(nileriverminima,"fk8",5);

Use modwtvar to obtain and plot the variance estimates and 95% confidence intervals.

[wnilevar,wvarci] = modwtvar(wtnile,"fk8");

errlower = (wnilevar-wvarci(:,1)); 
errupper = (wvarci(:,2)-wnilevar);
errorbar(1:5,wnilevar(1:5),errlower(1:5), ...
    errupper(1:5),"ko",markerfacecolor="k")
title("Wavelet Variance by Scale of Nile River Levels",fontsize=14)
ylabel("Variance")
xlabel("Time (Years)")
ax = gca;
ax.XTick = [1:5];
ax.XTickLabel = {"2","4","8","16","32"};

Wavelet Confidence Intervals

Show how different confidence level values affect the width of the confidence intervals. An increased
confidence level value increases the confidence interval width.

Obtain the MODWT of the Southern Oscillation Index data using the Fejér-Korovkin wavelet with
eight coefficients.
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load soi
wsoi = modwt(soi,"fk8");

Obtain the width of the .90, .95, and .99 confidence intervals for each level.

[~,wvarci90] = modwtvar(wsoi,"fk8",0.90);
w90 = wvarci90(:,2)-wvarci90(:,1);
[~,wvarci95] = modwtvar(wsoi,"fk8",0.95);
w95 = wvarci95(:,2)-wvarci95(:,1);
[~,wvarci99] = modwtvar(wsoi,"fk8",0.99);
w99 = wvarci99(:,2)-wvarci99(:,1);

Compare the three columns. The first column shows the .90 confidence level values, the second
the .95 values, and the third the .99 values. Each row is the width of the interval at each wavelet
scale. You can see that the width of the confidence interval increases with larger confidence level
values.

[w90,w95,w99]

ans = 10×3

    0.0195    0.0233    0.0306
    0.0739    0.0880    0.1158
    0.1347    0.1606    0.2113
    0.1798    0.2145    0.2826
    0.2304    0.2751    0.3634
    0.1825    0.2184    0.2900
    0.2858    0.3435    0.4613
    1.5445    1.8757    2.5837
    1.0625    1.3262    1.9551
    2.8460    3.9883    7.8724

Compare Chi2Eta2 and Gaussian Confidence Intervals

Specify non-default confidence methods using name-value arguments to compare the width of their
confidence levels. Note that for Gaussian confidence level intervals, it is possible to obtain negative
lower confidence bounds.

Obtain the MODWT of the Southern Oscillation Index data using the Fejér-Korovkin wavelet with
eight coefficients.

load soi
wsoi = modwt(soi,"fk8");

Use the Chi2Eta and Gaussian confidence methods to obtain the variances and confidence interval
bounds for each method.

[wvar_c,wvarci_c] = modwtvar(wsoi,"fk8",[],ConfidenceMethod="chi2eta1");
[wvar_g,wvarci_g] = modwtvar(wsoi,"fk8",[],ConfidenceMethod="gaussian");

Compute the upper and lower errors for each confidence interval and plot the results. Note that the
Gaussian intervals are slightly shifted to enable better visualization.

errlower_c = wvar_c-wvarci_c(:,1);
errupper_c = wvarci_c(:,2)-wvar_c;
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errlower_g = wvar_g(:,1)-wvarci_g(:,1);
errupper_g = wvarci_g(:,2)-wvar_g;

errorbar(1:10,wvar_c(1:10),errlower_c(1:10),...
    errupper_c(1:10),"ko",markerfacecolor="b")
hold on
xoffset = (1.3:10.3);
errorbar(xoffset,wvar_g(1:10),errlower_g(1:10),...
    errupper_g(1:10),"ro",markerfacecolor="r")

title("Wavelet Chi2Eta2 vs. Gaussian Confidence Intervals",fontsize=14)
ylabel("Variance")
xlabel("Level")
ax = gca;
ax.XTick = [1:10];
legend("Chi2Eta","Gaussian",Location="northwest")
hold off

Compare Number of Coefficients for Unbiased and Biased Variance Estimates

Compare the number of coefficients for unbiased and biased wavelet variance estimates. For the
unbiased (default) estimates, the number of nonboundary coefficients decreases by scale. For biased
estimates, the number of coefficients matches the number of input rows and is constant for every
scale.
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Obtain the MODWT of the Southern Oscillation Index data using the Fejér-Korovkin wavelet with
eight coefficients.

load soi
wsoi = modwt(soi,"fk8");

Compute the unbiased and biased estimates of the wavelet variance down to level ten. The number of
coefficients used in the unbiased estimates decrease by scale.

[wvar_unb,wvarci_unb,nj_unb] = modwtvar(wsoi,"fk8");
[wvar_b,wvarci_b,nj_b] = modwtvar(wsoi,"fk8",[],EstimatorType="biased");
[nj_unb(1:10),nj_b(1:10)]

ans = 10×2

       12991       12998
       12977       12998
       12949       12998
       12893       12998
       12781       12998
       12557       12998
       12109       12998
       11213       12998
        9421       12998
        5837       12998

Table of Wavelet Variance Estimates Using Gaussian Confidence Intervals

Compute the MODWT of the Southern Oscillation Index data using the Fejér- Korovkin wavelet with
eight coefficients.

load soi
wsoi = modwt(soi,"fk8");

Compute a variance table for the data. The table contains the number of nonboundary coefficients,
the lower and upper confidence level bounds, and the variance estimate for each level.

[wvartable] = modwtvar(wsoi,"fk8",0.90,"table", ...
    ConfidenceMethod="gaussian")

wvartable=10×4 table
            NJ       Lower     Variance     Upper 
           _____    _______    ________    _______

    D1     12991     0.3291    0.33848     0.34786
    D2     12977    0.87172     0.9034     0.93508
    D3     12949     1.1041     1.1628      1.2216
    D4     12893     1.0204     1.0933      1.1662
    D5     12781     0.8833    0.98255      1.0818
    D6     12557    0.47178    0.54152     0.61125
    D7     12109    0.41916    0.57934     0.73951
    D8     11213    0.33639      2.055      3.7736
    D9      9421     0.4752    0.83369      1.1922
    D10     5837    0.37485    0.84386      1.3129
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Input Arguments
w — MODWT transform matrix
matrix

MODWT transform, specified as a matrix. w is the output of modwt.
Data Types: double

wname — Wavelet
"sym4" (default) | character vector | string scalar | positive even scalar

Wavelet, specified as a character vector or string scalar corresponding to a valid wavelet, or as a
positive even scalar indicating the length of the wavelet and scaling filters. The wavelet filter length
must match the length used in the MODWT of the input.

If you use Name,Value arguments or the "table" syntax and you do not specify a wname , you must
use [] as the second argument.

conflevel — Confidence level
0.95 (default) | real scalar greater than 0 and less than 1

Confidence level, specified as a real scalar value greater than 0 and less than 1. The confidence level
determines the coverage probability of the confidence intervals. If you specify "table" as an input,
the confidence levels are also shown in wvartable.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ConfidenceMethod="gaussian" specifies the Gaussian method used to compute the
confidence intervals.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'EstimatorType','biased' specifies a biased estimator.

EstimatorType — Estimator
"unbiased" (default) | "biased"

Type of estimator used for variance estimates and confidence bounds, specified as one of these
values.

• "unbiased" — Unbiased estimator, which identifies and removes boundary coefficients prior to
computing the variance estimates and confidence bounds. Unbiased estimates are used more
frequently for wavelet variance computations.

• "biased" — Biased estimator, which uses all coefficients to compute the variance estimates and
confidence bounds.

ConfidenceMethod — Confidence method
"chi2eta3" (default) | "chi2eta1" | "gaussian"

Confidence method used to compute the confidence intervals, specified as one of these values:
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"chi2eta3" Chi-square probability density method three, which determines
the degrees of freedom.[1].

"chi2eta1" Chi-square probability density method one, which determines the
degrees of freedom [1].

"gaussian" Gaussian method [1] . This method can result in negative lower
bounds.

See “Algorithm” on page 1-1051 for information on each of these confidence methods.

Boundary — Boundary condition
"periodic" (default) | "reflection"

Boundary condition used to compute the variance estimates and confidence bounds, specified as one
of these values:

"periodic" Periodic boundary handling, which does not
change the original signal before computing the
MODWT. If modwt uses periodic boundary
handling, you must specify
Boundary="periodic" for modwtvar to obtain
a correct estimate.

"reflection" Reflection boundary handling. If the MODWT
uses reflection boundary handling, you must also
specify Boundary="reflection" for modwtvar
to obtain a correct unbiased estimate. The
MODWT, with reflection boundary handling,
extends the original signal symmetrically at the
right boundary to twice the signal length. The
MODWTVAR algorithm has to know about this
extended signal to calculate the correct unbiased
estimate.
For biased estimators, all the coefficients are
used to form the variance estimates and
confidence intervals regardless of the boundary
handling.

Output Arguments
wvar — Wavelet variance estimates
matrix

Wavelet variance estimates, returned as vector. The number of elements in wvar depends on the
number of scales in the input matrix and, for unbiased estimates, on the wavelet length. For the
unbiased case, modwtvar returns estimates only where nonboundary coefficients exist. This
condition is satisfied when the transform level is not greater than floor(log2(N/(L-1)+1)),
where N is the input signal length and L is the length of the wavelet filter. The number of biased
estimates equals the input signal length. If the final level has sufficient nonboundary coefficients,
modwtvar returns the scaling variance in the final element of wvar.

wvarci — Confidence intervals for each variance estimate
matrix
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Confidence bounds, expressed as upper and lower confidence bounds, for the variance estimates in
wvar, returned as a matrix. The default is 95% confidence bounds, but you can use a different value
using the conflevel input argument. The confidence bounds matrix is M-by-2, where M is the
number of levels. For unbiased estimates, the number of levels is limited by the number of
nonboundary coefficients. For biased estimates, all levels are used. The first column of the confidence
interval matrix contains the lower confidence bound and the second column contains the upper
confidence bound. By default, modwtvar calculates the confidence intervals using the chi-square
probability density, with the equivalent degrees of freedom estimated using the "Chi2Eta3"
confidence method.

nj — Number of coefficients by level
vector

Number of nonboundary coefficients by scale, returned as a vector. For unbiased estimates, nj is the
number of nonboundary coefficients and decreases by level. For biased estimates, nj is a vector of
constants equal to the number of columns in the input matrix.

wvartable — Variance table
table

Variance table, returned as a MATLAB table. The four variables in the table are:

• NJ — Number of MODWT coefficients by level. For biased estimates, NJ is the number of
coefficients in the MODWT. For unbiased estimates, NJ is the number of nonboundary coefficients.

• Lower — Lower confidence bound for the variance estimate.
• Variance — Variance estimate by level.
• Upper — Upper confidence bound for the variance estimate.

The row names of wvartable indicate the type and level of each estimate. For example, D1 indicates
that the row corresponds to a wavelet or detail estimate at level 1. S6 indicates that the row
corresponds to the scaling estimate at level 6. The scaling variance is computed for the final level of
the MODWT. For unbiased estimates, modwtvar computes the scaling variance only when
nonboundary scaling coefficients exist.

Algorithms
The following expressions define the variance and confidence methods used in the MODWTVAR. The
variables are:

• Nj — Number of coefficients at level j
• v2 — Variance
• j — Level
• Wj,t — Wavelet coefficients

The variance estimate is

v j
2 = 1

N j
∑

t = 0

N j− 1W j, t
2

The degrees of freedom for the Chi2Eta1 (chi2eta1) method are defined as
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η1 =
N jv j

4

A j

where

A j = 1
2 ∫
−1/2

1/2
S j

(p) f
2

df .

In this equation, S j
(p) is the spectral density function estimate of the wavelet coefficients at level j.

The chi-square statistic is

η1N jv j
2

v j
2 Χη1

2

The degrees of freedom for the Chi2Eta3 (chi2eta3) method are defined as

η3 = max
N j

2 j , 1

The chi-square statistic is

η3N jv j
2

v j
2 Χη3

2

For the Gaussian method, the statistic

N j
1/2 (v j

2− v j
2)

2A j
1/2

is distributed as N(0,1). The variable A j is as described for chi2eta1.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.
• The input conflevel must be defined as a scalar.
• Plotting is not supported.

See Also
modwtcorr | modwtxcorr | modwt | modwtmra | imodwt

Topics
“Wavelet Analysis of Financial Data”
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modwtxcorr
Wavelet cross-correlation sequence estimates using the maximal overlap discrete wavelet transform
(MODWT)

Syntax
xcseq = modwtxcorr(w1,w2)
xcseq = modwtxcorr(w1,w2,wav)

[xcseq,xcseqci] = modwtxcorr( ___ )
[xcseq,xcseqci] = modwtxcorr(w1,w2,wav,conflevel)
[xcseq,xcseqci,lags] = modwtxcorr( ___ )

[ ___ ] = modwtxcorr( ___ ,'reflection')

Description
xcseq = modwtxcorr(w1,w2) returns the wavelet cross-correlation sequence estimates for the
maximal overlap discrete wavelet transform (MODWT) transforms specified in w1 and w2. xcseq is a
cell array of vectors where the elements in each cell correspond to cross-correlation sequence
estimates. If there are enough nonboundary coefficients at the final level, modwtxcorr returns the
scaling cross-correlation sequence estimate in the final cell of xcseq.

xcseq = modwtxcorr(w1,w2,wav) uses the wavelet wav to determine the number of boundary
coefficients by level.

[xcseq,xcseqci] = modwtxcorr( ___ ) returns in xcseqci the 95% confidence intervals for the
cross-correlation sequence estimates in xcseq, using any arguments from the previous syntaxes.

[xcseq,xcseqci] = modwtxcorr(w1,w2,wav,conflevel) uses conflevel for the coverage
probability of the confidence interval. conflevel is a real scalar strictly greater than 0 and less than
1. If conflevel is unspecified or specified as empty, the coverage probability defaults to 0.95.

[xcseq,xcseqci,lags] = modwtxcorr( ___ ) returns the lags for the wavelet cross-correlation
sequence estimates in a cell array of column vectors.

[ ___ ] = modwtxcorr( ___ ,'reflection') reduces the number of wavelet and scaling
coefficients at each scale by half before computing the cross-correlation sequences. Specifying the
'reflection' option in modwtxcorr is equivalent to first obtaining the MODWT of w1 w2 with
'periodic' boundary handling and then computing the wavelet cross-correlation sequence
estimates. Use this option only when you obtain the MODWT of w1 and w2 using the 'reflection'
boundary condition. You must enter the entire character vector 'reflection'. If you added a
wavelet named 'reflection' using the wavelet manager, you must rename that wavelet prior to
using this option. 'reflection' may be placed in any position in the input argument list after the
input transforms w1 w2.

Examples
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Cross-Correlation Sequence

Obtain the MODWT of the Southern Oscillation Index and Truk Islands pressure data. The sampling
period is one day.

load soi
load truk
wsoi = modwt(soi);
wtruk = modwt(truk);

Compute the wavelet cross-correlation sequences. Examine the level-five cross-correlation sequence
corresponding to a scale of 32-64 days. Determine the index corresponding to a lag of zero and plot
out to 240 lags.

xcseq = modwtxcorr(wsoi,wtruk);
zerolag = floor(numel(xcseq{5})/2)+1;
plot(xcseq{5}(zerolag:zerolag+240),'linewidth',2)
set(gca,'xlim',[1 240]);
title({'Cross-Correlation Sequence Level 5'; 'Scale: 32-64 Days'});
hold off

Cross-Correlation Sequence with Fejér-Korovkin Wavelet

Obtain the MODWT of the Southern Oscillation Index and Truk Islands pressure data using the Fejér-
Korovkin wavelet filter with 8 coefficients. The sampling period of the data is one day.
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load soi
load truk
wsoi = modwt(soi,'fk8');
wtruk = modwt(truk,'fk8');

Compute the wavelet cross-correlation sequences. Examine the level-five cross-correlation sequence
corresponding to a scale of 32-64 days. Determine the index corresponding to a lag of zero and plot
out to 240 lags.

xcseq = modwtxcorr(wsoi,wtruk,'fk8');
zerolag = floor(numel(xcseq{5})/2)+1;
plot(xcseq{5}(zerolag:zerolag+240),'linewidth',2)
set(gca,'xlim',[1 240]);
title({'Cross-Correlation Sequence Level 5'; 'Scale: 32-64 Days'});
hold off

Cross-Correlation Confidence Intervals by Scale

Plot the wavelet cross-correlation with 95% confidence intervals at scale 4 for two 5-Hz sine wave
signals with additive noise.

dt = 0.01;
t = 0:dt:6;
x = cos(2*pi*5*t)+1.5*randn(size(t));
y = cos(2*pi*5*t-pi)+2*randn(size(t));
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wx = modwt(x,'fk14',5);
wy = modwt(y,'fk14',5);
modwtcorr(wx,wy,'fk14')
j = 4;
[xcseq,xcseqci] = modwtxcorr(wx,wy,'fk14');
zerolag = floor(numel(xcseq{j})/2)+1;
lagidx = zerolag-30:zerolag+30;
plot(xcseq{j}(lagidx));
hold on;
grid
plot(xcseqci{j}(lagidx,:),'r--');
xlabel('Samples');
title('Scale: 0.32-0.16 Seconds');

Cross-Correlation .90 and .95 Confidence Intervals Comparison

Compare the .90 and .95 (default) confidence intervals for the wavelet cross-correlation at level four.

Obtain the MODWT for two noisy sine waves using the Fejér-Korovkin with 14 coefficients, and
specify the level to use.

dt = 0.01;
t = 0:dt:6;
x = cos(2*pi*5*t)+1.5*randn(size(t));
y = cos(2*pi*5*t-pi)+2*randn(size(t));
wx = modwt(x,'fk14',4);
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wy = modwt(y,'fk14',4);
lev = 4;

[xcseq,xcseqci] = modwtxcorr(wx,wy,'fk14');
[xcseq90,xcseqci90] = modwtxcorr(wx,wy,'fk14',0.90);
 
zerolag = floor(numel(xcseq{lev})/2)+1;
zerolag90 = floor(numel(xcseq90{lev})/2)+1;
 
lagidx = zerolag-30:zerolag+30;
lagidx90 = zerolag90-30:zerolag90+30;
 
plot(xcseqci{lev}(lagidx,:),'--r');
hold on
plot(xcseqci90{lev}(lagidx90,:),'--b');
plot(xcseq{lev}(lagidx),'-k','LineWidth',1);
grid
title('.90 and .95 Confidence Levels')

Notice that the .95 confidence interval width (in red) is larger than the .90 confidence interval width
(in blue).
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Plot Cross-Correlation Sequences by Lag

Plot the cross-correlation sequence estimate for the Southern Oscillation Index and Truk Island
pressure data. Estimate 95% confidence intervals for scale of 25 days.

load soi
load truk
wsoi = modwt(soi);
wtruk = modwt(truk);
[xcseq,xcseqci,lags] = modwtxcorr(wsoi,wtruk);
plot(lags{5},xcseq{5},'linewidth',2)
hold on
plot(lags{5},xcseqci{5},'r--')
set(gca,'xlim',[-120 120]);
xlabel('Lag (Days)'); 
grid 
title({'Cross-Correlation Sequence Level 5'; 'Scale: 32-64 Days'});
hold off

Cross-Correlation with Reflection Boundary

Obtain the MODWT of 36 years of Southern Oscillation Index and Truk Islands pressure data with
both periodic and reflection boundary conditions. The modwt function with the 'reflection' option
extends the input signal symmetrically at the right boundary. The input signal is then twice its
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original length. MODWTXCORR with the reflection boundary handling reduces the number of wavelet
and scaling coefficients at each half before computing the cross-correlation sequences. The size of
the cross-correlation sequences is the same as acquiring the MODWT with the default periodic
boundary condition.

load soi
load truk

Obtain the MODWT with the default periodic boundary condition.

wsoi_default = modwt(soi); 
wtruk_default = modwt(truk);

Obtain the MODWT with the reflection boundary condition.

wsoi_reflect = modwt(soi,'reflection');
wtruk_reflect = modwt(truk,'reflection');

Obtain the cross-correlation sequences.

xcseq_default = modwtxcorr(wsoi_default,wtruk_default);
xcseq_reflect = modwtxcorr(wsoi_reflect,wtruk_reflect,'reflection');

Compare the number of elements in the cell array output for both boundary conditions.

cellfun(@numel,xcseq_reflect)

ans = 10×1

       25981
       25953
       25897
       25785
       25561
       25113
       24217
       22425
       18841
       11673

cellfun(@numel,xcseq_default)

ans = 10×1

       25981
       25953
       25897
       25785
       25561
       25113
       24217
       22425
       18841
       11673
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Input Arguments
w1 — MODWT transform of signal 1
matrix

MODWT transform of signal 1, specified as a matrix. The input w1 must be the same size as w2 and
must have been obtained with the same wavelet. By default, modwtxcorr assumes that you obtained
the MODWT using the symlet wavelet with four vanishing moments, 'sym4'.
Data Types: double

w2 — MODWT transform of signal 2
matrix

MODWT transform of signal 2, specified as a matrix. The input w2 must be the same size as w1 and
must have been obtained with the same wavelet. By default, modwtxcorr assumes that you obtained
the MODWT using the symlet wavelet with four vanishing moments ('sym4').
Data Types: double

wav — Wavelet
'sym4' (default) | character vector | string scalar | positive even integer

Wavelet, specified as a character vector or string scalar, indicating a valid wavelet, or as a positive
even integer indicating the length of the wavelet and scaling filters. If wav is unspecified or specified
as an empty, [], wav defaults to 'sym4'.
Data Types: double | char | string

conflevel — Confidence level
0.95 (default) | positive scalar less than 1

Confidence level, specified as a positive scalar less than 1. conflevel determines the coverage
probability of the confidence intervals in xcseqci. If unspecified, or specified as empty, [],
conflevel defaults to 0.95.
Data Types: double

Output Arguments
xcseq — Cross-correlation sequences by scale
cell array of vectors

Cross-correlation sequences by scale, returned as a cell array of vectors. The vectors are of size 2NJ-
by-1, where NJ is the number of nonboundary coefficients by level (scale). This level is the minimum
of size(w1,1) and floor(log2(N/(L-1)+1)) where N is the length of the data and L is the filter
length. If there are enough nonboundary coefficients at the final level, modwtxcorr returns the
scaling cross-correlation sequence estimate in the final cell of xcseq.

xcseqci — Confidence intervals by scale
cell array of matrices

Confidence intervals by scale, returned as a cell array of matrices. The size of each matrix is (2NJ-1)-
by-2, where NJ is the number of nonboundary coefficients by level (scale).
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• For the .95 default value, the first column of the ith element of xcseqci contains the lower 95%
confidence bound for the cross-correlation coefficient at each lag.

• For the .95 default value, the second column contains the upper 95% confidence bound.

Confidence bounds are computed using Fisher's Z-transformation. The standard error of Fisher's Z
statistic is the square root of N–3. In this case, N is the equivalent number of coefficients in the
critically sampled discrete wavelet transform (DWT), floor(size(w1,2)/2^LEV), where LEV is the
level of the wavelet transform. modwtcorr returns NaNs for the confidence bounds when N-3 is less
than or equal to zero.

lags — Lags for the cross-correlation sequences
cell array of vectors

Lags for the cross-correlation sequences, returned as a cell array of vectors. lags is a cell array of
column vectors the same length as xcseq. The elements in each cell of xcseq correspond to the
cross-correlation sequence estimates at lags from -(NJ-1) to (NJ-1), where NJ is the number of
nonboundary coefficients at level J. The 0th lag element is located at the index floor((2*NJ-1)/2)+1.

Version History
Introduced in R2015b
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See Also
modwtcorr | modwtvar | modwt | modwtmra | imodwt

Topics
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morlet
Morlet wavelet

Syntax
[psi,x] = morlet(lb,ub,n)

Description
[psi,x] = morlet(lb,ub,n) returns the Morlet wavelet psi evaluated at x, an n-point regular
grid in the interval [lb, ub]. The Morlet wavelet is defined as

The Morlet wavelet has the interval [-4, 4] as effective support. Nearly 100% of the wavelet's energy
is in the interval. Although [-4, 4] is the correct theoretical effective support, a wider effective
support, [-8, 8], is used in the computation to provide more accurate results.

Examples

Morlet Wavelet

This example shows how to create a Morlet wavelet. The wavelet has an effective support of [-4, 4].
Use 1000 sample points.

lb = -4;
ub = 4;
n = 1000;
[psi,xval] = morlet(lb,ub,n);
plot(xval,psi)
grid on
title('Morlet Wavelet')
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Compute the wavelet's energy in the interval. Normalize by the difference between sample points.

e1 = sum(psi.^2)*diff(xval(1:2));
fprintf('%.15f',e1)

0.886226920745597

Create a second Morlet wavelet with support on [-8, 8] using 1000 sample points. Compute the
second wavelet's energy, normalized by the difference between sample points. Return the ratio of the
two energies.

[psi2,xval2] = morlet(-8,8,1000);
e2 = sum(psi2.^2)*diff(xval2(1:2));
fprintf('%.15f',e1/e2)

0.999999994674672

Input Arguments
lb — Lower limit
real-valued scalar

Lower limit of interval, specified as a real-valued scalar.

ub — Upper limit
real-valued scalar
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Upper limit of interval, specified as a real-valued scalar.

n — Number of points
positive integer

Number of sample points, specified as a positive integer.

Output Arguments
psi — Morlet wavelet
real-valued vector

Morlet wavelet, returned as a real-valued vector of length n.

x — Sampling instants
real-valued vector

Sampling instants, returned as a real-valued vector of length n.

Version History
Introduced before R2006a

See Also
waveinfo
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mswcmp
Multisignal 1-D compression using wavelets

Syntax
[xc,deccmp,thresh] = mswcmp('cmp',dec,mthd)
[xc,deccmp,thresh] = mswcmp('cmp',dec,mthd,param)

[xc,thresh] = mswcmp('cmpsig', ___ )
[deccmp,thresh] = mswcmp('cmpdec', ___ )
thresh = mswcmp('thr', ___ )

[ ___ ] = mswcmp(option,dirdec,x,wname,lev,mthd)
[ ___ ] = mswcmp(option,dirdec,x,wname,lev,mthd,param)

[ ___ ] = mswcmp( ___ ,s_or_h)
[ ___ ] = mswcmp( ___ ,s_or_h,keepapp)
[ ___ ] = mswcmp( ___ ,s_or_h,keepapp,idxsig)

Description
mswcmp computes thresholds and, depending on the selected option, performs compression of 1-D
signals using wavelets.

[xc,deccmp,thresh] = mswcmp('cmp',dec,mthd) returns a compressed version xc of the
original multisignal x, whose wavelet decomposition structure is dec. The compression method is
specified by mthd. The output xc is obtained by thresholding the wavelet coefficients. The output
deccmp is the wavelet decomposition associated with xc, and thresh is the matrix of threshold
values.

[xc,deccmp,thresh] = mswcmp('cmp',dec,mthd,param) uses the parameter param
associated with mthd, if required.

[xc,thresh] = mswcmp('cmpsig', ___ ) returns the compressed multisignal and computed
thresholds if 'cmp' in the first or second syntaxes is replaced with 'cmpsig'.

[deccmp,thresh] = mswcmp('cmpdec', ___ ) returns the wavelet decomposition associated
with the compressed multisignal and computed thresholds if 'cmp' in the first or second syntaxes is
replaced with 'cmpdec'.

thresh = mswcmp('thr', ___ ) returns the computed thresholds if 'cmp' in the first or second
syntaxes is replaced with 'thr'.

[ ___ ] = mswcmp(option,dirdec,x,wname,lev,mthd) decomposes the multisignal x to level
lev using the wavelet specified by wname in the direction dirdec before performing a compression
or computing the thresholds.

[ ___ ] = mswcmp(option,dirdec,x,wname,lev,mthd,param) uses the parameter param
associated with mthd, if required.

[ ___ ] = mswcmp( ___ ,s_or_h) applies the threshold rule specified by s_or_h.
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[ ___ ] = mswcmp( ___ ,s_or_h,keepapp) either keeps the approximation coefficients (true) or
does not (false).

[ ___ ] = mswcmp( ___ ,s_or_h,keepapp,idxsig) is a vector, which contains the indices of the
initial signals.

Examples

Compress Multisignal

Load the 23-channel EEG data Espiga3 [8]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2');

Compress the signals to obtain a percentage of zeros near 95% for the wavelet coefficients.

[xr,deccmp,thresh] = mswcmp('cmp',dec,'N0_perf',95);

Plot an original signal, and the corresponding compressed signal.

idx = 3;
plot(Espiga3(:,idx),'r')
hold on
plot(xr(:,idx),'b')
grid on
legend('Original','Compressed')
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Input Arguments
dec — Wavelet decomposition
structure

Wavelet decomposition, specified as a structure. dec is the output of mdwtdec.

mthd — Compression method
'rem_n0' | 'bal_sn' | 'sqrtbal_sn' | 'scarce' | 'scarcehi' | 'scarceme' | 'scarcelo' |
'L2_perf' | 'N0_perf' | 'glb_thr' | 'man_thr'

Compression method, specified as one of the values listed here. For methods that use an associated
parameter, the range of allowable param values is shown.

For methods listed in the following table, param is a sparsity parameter, and it should be specified
such that 1 ≤ param ≤ 10. For the 'scarce' method no control is done.

method Description
'scarce' Scarce, param (any number)
'scarcehi' Scarce high, 2.5 ≤ param ≤ 10
'scarceme' Scarce medium, 1.5 ≤ param ≤ 2.5
'scarcelo' Scarce low, 1 ≤ param ≤ 2
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method Description
'rem_n0' Remove near 0
'bal_sn' Balance sparsity-norm
'sqrtbal_sn' Balance sparsity-norm (sqrt)

For methods listed in the following table, param is a real number, which represents the required
performance: 0 ≤ param ≤ 100.

method Description
'L2_perf' Energy ratio
'N0_perf' Zero coefficients ratio

To apply a global threshold for compression, specify the method 'glb_thr' and any positive real
number param.

To apply a manual compression method, specify the method 'man_thr', and specify param as an
NbSig-by-NbLev or an NbSig-by-(NbLev+1) real-valued matrix, where NbSig is the number of signals,
and NbLev the number of levels of decomposition.

• param(i,j) is the threshold for the detail coefficients of level j for the ith signal (1 ≤ j ≤ NbLev).
• param(i,NbLev+1) is the threshold for the approximation coefficients for the ith signal (if

keepapp is 0).

param — Parameter
real number | matrix

Parameter associated with the compression method mthd, specified as a real number or a real-valued
matrix. For additional information, see mthd.

option — Compression outputs option
'cmp' | 'cmpsig' | 'cmpdec' | 'thr'

Compression outputs option, specified as one of the values listed here.

option Description
'cmp' Return the compressed signal, the associated wavelet decomposition,

and the thresholds.
'cmpsig' Return the compressed signal, and the thresholds.
'cmpdec' Return the wavelet decomposition associated with the compressed

signal, and the thresholds.
'thr' Return the thresholds.

dirdec — Direction indicator
'r' | 'c'

Direction indicator of the wavelet decomposition, specified as one of the following:

• 'r': Take the 1-D wavelet decomposition of each row of x
• 'c': Take the 1-D wavelet decomposition of each column of x
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x — Multisignal
real-valued matrix

Multisignal, specified as a real-valued matrix.
Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal or
biorthogonal. Orthogonal and biorthogonal wavelets are designated as type 1 and type 2 wavelets
respectively in the wavelet manager, wavemngr.

• Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin
("beyl"), Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han
linear-phase moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and
Vaidyanathan ("vaid").

• Valid built-in biorthogonal wavelet families are: Biorthogonal Spline ("bior"), and Reverse
Biorthogonal Spline ("rbio").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1) or biorthogonal (returns 2). For example,
wavemngr("type","db6") returns 1.

lev — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer. mdwtdec does not enforce a maximum level
restriction. Use wmaxlev to ensure that the wavelet coefficients are free from boundary effects. If
boundary effects are not a concern, a good rule is to set lev less than or equal to
fix(log2(length(N))), where N is the number of samples in the 1-D data.

s_or_h — Type of thresholding
'h' (default) | 's'

Type of thresholding to perform, specified as either of the following:

• 's' — Soft thresholding
• 'h' — Hard thresholding

keepapp — Threshold approximation
false or 0 (default) | true or 1

Threshold approximation setting:

• 0 — Approximation coefficients are thresholded
• 1 — Approximation coefficients are not thresholded

idxsig — Indices of initial signals
'all' (default) | vector of positive integers

Indices of initial signals, specified as a vector of positive integers, or 'all'.
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Output Arguments
xc — Compressed multisignal
real-valued matrix

Compressed multisignal, returned as a real-valued matrix.

deccmp — Wavelet decomposition
structure

Wavelet decomposition of the compressed multisignal x, returned as a structure with the following
fields:

• dirDec — Direction indicator: 'r' (row) or 'c' (column)
• level — Level of wavelet decomposition
• wname — Wavelet name
• dwtFilters — Structure with four fields: LoD, HiD, LoR, and HiR
• dwtEXTM — DWT extension mode
• dwtShift — DWT shift parameter (0 or 1)
• dataSize — Size of x
• ca — Approximation coefficients at level lev
• cd — Cell array of detail coefficients, from level 1 to level lev

The coefficients ca and cd{k}, for k from 1 to lev, are matrices and are stored in rows if dirdec =
'r' or in columns if dirdec = 'c'.

thresh — Threshold values
real-valued matrix

Threshold values used in the compression, returned as a real-valued matrix.

Version History
Introduced in R2007a
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mswcmpscr
Multisignal 1-D wavelet compression scores

Syntax
[THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC)

Description
[THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC) computes four matrices: thresholds THR,
compression scores L2SCR and NOSCR, and indices IDXSORT. The decomposition DEC corresponds to
a matrix of wavelet coefficients CFS obtained by concatenation of detail and (optionally)
approximation coefficients, where

CFS = [cd{DEC.level}, ... , cd{1}] or CFS = [ca, cd{DEC.level}, ... , cd{1}]

The concatenation is made row-wise if DEC.dirDec is equal to 'r' or column-wise if DEC.dirDec is
equal to 'c' .

If NbSIG is the number of original signals and NbCFS the number of coefficients for each signal (all or
only the detail coefficients), then CFS is an NbSIG-by-NbCFS matrix. Therefore,

• THR, L2SCR, NOSCR are NbSIG-by-(NbCFS+1) matrices
• IDXSORT is an NbSIG-by-NbCFS matrix
• THR(:,2:end) is equal to CFS sorted by row in ascending order with respect to the absolute

value.
• For each row, IDXSORT contains the order of coefficients and THR(:,1)=0.

For the ith signal:

• L2SCR(i,j) is the percentage of preserved energy (L2-norm), corresponding to a threshold equal
to CFS(i,j-1) (2 ≤ j ≤ NbCFS), and L2SCR(:,1)=100.

• N0SCR(i,j) is the percentage of zeros corresponding to a threshold equal to CFS(i,j-1) (2 ≤ j
≤ NbCFS), and N0SCR(:,1)=0.

Three more optional inputs may be used:

[...] = mswcmpscr(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
• KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not

(false).
• IDXSIG is a vector that contains the indices of the initial signals, or 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples
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Multisignal Compression Scores

Load the 23 channel EEG data Espiga3 [4]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2')

dec = struct with fields:
        dirDec: 'c'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Compute the compression performances for soft and hard thresholding.

[THR_S,L2SCR_S,N0SCR_S] = mswcmpscr(dec,'s');
[THR_H,L2SCR_H,N0SCR_H] = mswcmpscr(dec,'h');

Version History
Introduced in R2007a

References
[1] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: SIAM Ed, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

[4] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

See Also
mdwtdec | mdwtrec | ddencmp | wdencmp
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mswcmptp
Multisignal 1-D compression thresholds and performances

Syntax
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH,PARAM)

Description
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH) or [THR_VAL,L2_Perf,N0_Perf] =
mswcmptp(DEC,METH,PARAM) computes the vectors THR_VAL, L2_Perf and N0_Perf obtained
after a compression using the METH method and, if required, the PARAM parameter (see mswcmp for
more information on METH and PARAM).

For the ith signal:

• THR_VAL(i) is the threshold applied to the wavelet coefficients. For a level dependent method,
THR_VAL(i,j) is the threshold applied to the detail coefficients at level j

• L2_Perf(i) is the percentage of energy (L2_norm) preserved after compression.
• N0_Perf(i) is the percentage of zeros obtained after compression.

You can use three more optional inputs:

[...] = mswcmptp(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
• KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not

(false)
• IDXSIG is a vector which contains the indices of the initial signals, or 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples

Multisignal Compression Thresholds and Performance

Load the 23 channel EEG data Espiga3 [4]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3

Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2')

dec = struct with fields:
        dirDec: 'c'
         level: 2

 mswcmptp
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         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Compute compression thresholds and exact performances obtained after a compression using the
method 'N0_perf' and requiring a percentage of zeros near 95% for the wavelet coefficients.

[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(dec,'N0_perf',95);

Version History
Introduced in R2007a

References
[1] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: SIAM Ed, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

[4] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,
Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

See Also
mdwtdec | mdwtrec | ddencmp | wdencmp
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mswden
Multisignal 1-D denoising using wavelets

Note mswden is no longer recommended. Use wdenoise instead.

Syntax
[XD,DECDEN,THRESH] = mswden('den',...)
THRESH = mswden('thr',...)
[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswden(...,S_OR_H)
[...] = mswden(...,S_OR_H,KEEPAPP)
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

Description
mswden computes thresholds and, depending on the selected option, performs denoising of 1-D
signals using wavelets.

[XD,DECDEN,THRESH] = mswden('den',...) returns a denoised version XD of the original
multisignal matrix X, whose wavelet decomposition structure is DEC. The output XD is obtained by
thresholding the wavelet coefficients, DECDEN is the wavelet decomposition associated to XD (see
mdwtdec), and THRESH is the matrix of threshold values. The input METH is the name of the denoising
method and PARAM is the associated parameter, if required.

Valid denoising methods METH and associated parameters PARAM are:

'rigrsure' Principle of Stein's Unbiased Risk
'heursure' Heuristic variant of the first option
'sqtwolog' Universal threshold sqrt(2*log(.))
'minimaxi' Minimax thresholding (see thselect)

For these methods PARAM defines the multiplicative threshold rescaling:

'one' No rescaling
'sln' Rescaling using a single estimation of level noise based on first level

coefficients
'mln' Rescaling using a level dependent estimation of level noise

Penalization methods

'penal' Penal
'penalhi' Penal high, 2.5 ℜ≤ PARAM ℜ≤ 10
'penalme' Penal medium, 1.5 ℜ≤ PARAM ℜ≤ 2.5
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'penallo' Penal low, 1 ℜ≤ PARAM ℜ≤ 2

PARAM is a sparsity parameter, and it should be such that: 1 ≤ PARAM ≤ 10. For penal method, no
control is done.

Manual method

'man_thr' Manual method

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

• PARAM(i,j) is the threshold for the detail coefficients of level j for the ith signal (1 ≤ j ≤
NbLEV).

• PARAM(i,NbLEV+1) is the threshold for the approximation coefficients for the ith signal (if
KEEPAPP is 0).

where NbSIG is the number of signals and NbLEV the number of levels of decomposition.

Instead of the 'den' input OPTION, you can use 'densig', 'dendec' or 'thr' OPTION to select
output arguments:

[XD,THRESH] = mswden('densig',...) or [DECDEN,THRESH] = mswden('dendec',...)

THRESH = mswden('thr',...) returns the computed thresholds, but denoising is not performed.

The decomposition structure input argument DEC can be replaced by four arguments: DIRDEC, X,
WNAME and LEV.

[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM) before performing a denoising or
computing thresholds, the multisignal matrix X is decomposed at level LEV using the wavelet WNAME,
in the direction DIRDEC.

You can use three more optional inputs:

[...] = mswden(...,S_OR_H) or
[...] = mswden(...,S_OR_H,KEEPAPP) or
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for more details).
• KEEPAPP (true or false) indicates whether to keep approximation coefficients (true) or not

(false).
• IDXSIG is a vector that contains the indices of the initial signals, or 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples

Multisignal 1-D Wavelet Denoising

Load the 23 channel EEG data Espiga3 [8]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3
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Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2')

dec = struct with fields:
        dirDec: 'c'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Denoise the signals using the universal method of thresholding (sqtwolog) and the 'sln' threshold
rescaling (with a single estimation of level noise, based on the first level coefficients).

[xd,decden,thresh] = mswden('den',dec,'sqtwolog','sln');

Plot an original signal, and the corresponding denoised signal.

idxA = 3;
plot(Espiga3(:,idxA),'r')
hold on
plot(xd(:,idxA),'b')
grid on
legend('Original','Denoised')
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Version History
Introduced in R2007a

References
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eds.). New York: Springer-Verlag, 1997, pp. 55–88.
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[3] Donoho, D. L. “Progress in Wavelet Analysis and WVD: A Ten Minute Tour.” Progress in Wavelet
Analysis and Applications (Y. Meyer, and S. Roques, eds.). Gif-sur-Yvette: Editions Frontières,
1993.
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See Also
Functions
mdwtdec | mdwtrec | mswthresh | wthresh | wdenoise

Apps
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mswthresh
Perform multisignal 1-D thresholding

Syntax
Y = mswthresh(X,sorh,T)
Y = mswthresh(X,sorh,T,'c')

Description
Y = mswthresh(X,sorh,T) returns the soft or hard T-thresholding of the matrix X. T can be a
single value, a matrix the same size as X, or a vector. If T is a vector, thresholding is performed row-
wise, and LT = length(T) must be such that size(X,1) ≤ LT. Only the first size(X,1) values
of T are used.

Y = mswthresh(X,sorh,T,'c') performs thresholding column-wise, and LT = length(T) must
be such that size(X,2) ≤ LT. Only the first size(X,2) values of T are used.

Examples

Multisignal Thresholding

Create a 3-by-3 matrix and a 1-by-3 vector of threshold values.

mat = [1 1 3; 1 1 3; 2 2 3]

mat = 3×3

     1     1     3
     1     1     3
     2     2     3

thr = [1 2 3]

thr = 1×3

     1     2     3

Apply soft thresholding to the matrix row-wise. The kth threshold in thr is applied to the kth row of
mat.

mswthresh(mat,'s',thr)

ans = 3×3

     0     0     2
     0     0     1
     0     0     0

 mswthresh

1-1081



Apply soft thresholding to the matrix column-wise. The kth threshold in thr is applied to the kth
column of mat.

mswthresh(mat,'s',thr,'c')

ans = 3×3

     0     0     0
     0     0     0
     1     0     0

Apply hard thresholding to the matrix row-wise.

mswthresh(mat,'h',thr)

ans = 3×3

     0     0     3
     0     0     3
     0     0     0

Apply hard thresholding to the matrix column-wise.

mswthresh(mat,'h',thr,'c')

ans = 3×3

     0     0     0
     0     0     0
     2     0     0

Input Arguments
X — Input data
real-valued matrix

Input data to threshold, specified as a real-valued matrix.
Data Types: double

sorh — Type of thresholding
's' | 'h'

Type of thresholding to perform, specified as:

• 's' — Soft thresholding
• 'h' — Hard thresholding

T — Threshold value
real-valued scalar or vector

Threshold value, specified as a real-valued scalar or vector.
Data Types: double
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Output Arguments
Y — Thresholded data
real-valued matrix

Thresholded data, returned as a real-valued matrix. Y has the same dimensions as X.

Algorithms
• If sorh is 's', Y is the soft thresholding of X: Y = sign(X) · ( X − T)+ where

(x)+ =
x if x ≥ 0
0 otherwise

Soft thresholding is wavelet shrinkage.
• If sorh is 'h', Y is the hard thresholding of X: Y = X · 1( X > T ) where

1( X > T ) =
1 if X > T
0 otherwise

Hard thresholding is cruder than soft thresholding.

Version History
Introduced in R2007a

See Also
wdenoise | mswden | mswcmp | wthresh | wden | wdencmp | wpdencmp
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mtimes
Laurent polynomial or Laurent matrix multiplication

Syntax
Q = mtimes(A,B)
Q = A * B

Description
Q = mtimes(A,B) returns the product of the pair of Laurent polynomials or Laurent matrices A and
B.

Note The laurentPolynomial and laurentMatrix objects have their own versions of mtimes.
The input data type determines which version is executed.

Q = A * B is equivalent to Q = mtimes(A,B).

Examples

Laurent Polynomial Multiplication

Create three Laurent polynomials:

• a(z) = 4z + z−1

• b(z) = 2z2 + 3z + z−1

• c(z) = z3 + 3z2 + 5z + 7

a = laurentPolynomial(Coefficients=[4 0 1],MaxOrder=1);
b = laurentPolynomial(Coefficients=[2 3 0 1],MaxOrder=2);
c = laurentPolynomial(Coefficients=[1 3 5 7],MaxOrder=3);

Multiply a(z) and b(z).

ab = mtimes(a,b)

ab = 
  laurentPolynomial with properties:

    Coefficients: [8 12 2 7 0 1]
        MaxOrder: 3

Compute a(z)c(z)− b(z).

d = a*c-b

d = 
  laurentPolynomial with properties:
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    Coefficients: [4 12 19 28 5 6]
        MaxOrder: 4

Laurent Matrix Multiplication

Create two Laurent polynomials:

• a(z) = z + 1
• b(z) = z2− z−1

lpA = laurentPolynomial(Coefficients=[1 1],MaxOrder=1);
lpB = laurentPolynomial(Coefficients=[1 0 0 -1],MaxOrder=2);

Create two Laurent matrices:

•
lmatA = 

a z 1
1 0

•
lmatB = 

0 2
3 b z

lmatA = laurentMatrix(Elements={lpA,1;1,0});
lmatB = laurentMatrix(Elements={0,2;3,lpB});

Multiply the matrices.

lmat = lmatA*lmatB;
lmat.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 3
        MaxOrder: 0

lmat.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: [1 2 2 -1]
        MaxOrder: 2

lmat.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 0
        MaxOrder: 0

 mtimes

1-1085



lmat.Elements{2,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 2
        MaxOrder: 0

Input Arguments
A — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

B — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Product
laurentPolynomial object | laurentMatrix object

Product of two Laurent polynomials or two Laurent matrices, returned as a laurentPolynomial
object or a laurentMatrix object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
plus | minus

Objects
laurentMatrix | laurentPolynomial
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mpower
Laurent polynomial exponentiation

Syntax
Q = mpower(P,pow)
Q = P^pow

Description
Q = mpower(P,pow) raises the Laurent polynomial P to the power pow.

Q = P^pow is equivalent to Q = mpower(p,pow).

Examples

Laurent Polynomial Exponentiation

Create two Laurent polynomials:

• a(z) = z − 1
• b(z) = − 2z3 + 6z2− 6z + 2

a = laurentPolynomial(Coefficients=[1 -1],MaxOrder=1);
b = laurentPolynomial(Coefficients=[-2 6 -6 2],MaxOrder=3);

Raise a(z) to the third power. Confirm the result is not equal to b(z).

a3 = a^3;
a3 ~= b

ans = logical
   1

Confirm a(z) raised to the third power is equal to −b(z)/2.

b2 = rescale(b,-1/2);
a3 == b2

ans = logical
   1

Input Arguments
P — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.
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pow — Power
integer

Power, specified as an integer. If pow is negative, P must be a monomial.
Example: Q = mpower(lp,3) raises the Laurent polynomial lp to the third power.
Data Types: double

Output Arguments
Q — Laurent polynomial
laurentPolynomial object

Laurent polynomial raised to a nonzero power, returned as a laurentPolynomial object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
laurentMatrix | laurentPolynomial
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ne
Laurent polynomials inequality test

Syntax
tf = ne(A,B)
tf = (A ~= B)

Description
tf = ne(A,B) compares Laurent polynomials A and B and returns 1 (true) if the two are unequal
and 0 (false) otherwise.

tf = (A ~= B) is equivalent to tf = ne(A,B).

Examples

Test Equality of Laurent Polynomials

Create two Laurent polynomials:

• a(z) = 2z3− 3z2 + 4z − 5
• b(z) = 4z3− 6z2 + 8z

a = laurentPolynomial(Coefficients=[2 -3 4 -5],MaxOrder=3);
b = laurentPolynomial(Coefficients=[4 -6 8],MaxOrder=3);

Confirm a(z) and b(z) are not equal.

a ~= b

ans = logical
   1

Confirm 2a(z) + 10 and b(z) are equal.

c = rescale(a,2)+10;
eq(c,b)

ans = logical
   1

Input Arguments
A — Laurent polynomial
laurentPolynomial object
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Laurent polynomial, specified as a laurentPolynomial object.

B — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

Output Arguments
tf — Inequality test result
true or 1 | false or 0

Inequality test result, returned as a numeric or logical 1 (true) or 0 (false).

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eq

Objects
laurentMatrix | laurentPolynomial
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nodeasc
Node ascendants

Syntax
A = nodeasc(T,N)

Description
nodeasc is a tree-management utility.

A = nodeasc(T,N) returns the indices of all the ascendants of the node N in the tree T where N can
be the index node or the depth and position of the node. A is a column vector with A(1) = index of
node N.

A = nodeasc(T,N,'deppos') is a matrix, which contains the depths and positions of all
ascendants. A(i,1) is the depth of the i-th ascendant and A(i,2) is the position of the i-th
ascendant.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create binary tree of depth 3.
t = ntree(2,3); 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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nodeasc(t,[2 2])
ans =
    5 
    2 
    0

nodeasc(t,[2 2],'deppos')
ans =
    2     2 
    1     1 
    0     0

Version History
Introduced before R2006a

See Also
nodedesc | nodepar | wtreemgr
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nodedesc
Node descendants

Syntax
D = nodedesc(T,N)
D = nodedesc(T,N,'deppos')

Description
nodedesc is a tree-management utility.

D = nodedesc(T,N) returns the indices of all the descendants of the node N in the tree T where N
can be the index node or the depth and position of node. D is a column vector with D(1) = index of
node N.

D = nodedesc(T,N,'deppos') is a matrix that contains the depths and positions of all
descendants. D(i,1) is the depth of the i-th descendant and D(i,2) is the position of the i-th
descendant.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create binary tree of depth 3. 
t = ntree(2,3); 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

 nodedesc
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% Node descendants. 
nodedesc(t,2)
ans =
    2
    5
    6
   13
   14

nodedesc(t,2,'deppos')
ans =
    1     1
    2     2
    2     3
    3     6
    3     7

nodedesc(t,[1 1],'deppos')
ans =
    1     1
    2     2
    2     3
    3     6
    3     7

nodedesc(t,[1 1])
ans =
    2
    5
    6
   13
   14

Version History
Introduced before R2006a

See Also
nodeasc | nodepar | wtreemgr
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nodejoin
Recompose node

Syntax
T = nodejoin(T,N)
T = nodejoin(T)
T = nodejoin(T,0)

Description
nodejoin is a tree-management utility.

T = nodejoin(T,N) returns the modified tree T corresponding to a recomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

T = nodejoin(T) is equivalent to T = nodejoin(T,0).

Examples
% Create binary tree of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% Merge nodes of indices 4 and 5.
t = nodejoin(t,5);
t = nodejoin(t,4);
% Plot new tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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Version History
Introduced before R2006a

See Also
nodesplt
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nodepar
Node parent

Syntax
F = nodepar(T,N)
F = nodepar(T,N,'deppos')

Description
nodepar is a tree-management utility.

F = nodepar(T,N) returns the indices of the "parent(s)" of the nodes N in the tree T where N can
be a column vector containing the indices of nodes or a matrix that contains the depths and positions
of nodes. In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the position of the i-th
node.

F = nodepar(T,N,'deppos') is a matrix that contains the depths and positions of returned nodes.
F(i,1) is the depth of the i-th node and F(i,2) is the position of the i-th node.

nodepar(T,0) or nodepar(T,[0,0]) returns -1.

nodepar(T,0,'deppos') or nodepar(T,[0,0],'deppos') returns [-1,0].

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create binary tree of depth 3. 
t = ntree(2,3); 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% Nodes parent.
nodepar(t,[2 2],'deppos')

ans =
    1     1

nodepar(t,[1;7;14])

ans =
    0
    3
    6

Version History
Introduced before R2006a

See Also
nodeasc | nodedesc | wtreemgr

1 Functions
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nodesplt
Split (decompose) node

Syntax
T = nodesplt(T,N)

Description
nodesplt is a tree-management utility.

T = nodesplt(T,N) returns the modified tree T corresponding to the decomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create binary tree (tree of order 2) of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% Split node of index 10. 
t = nodesplt(t,10);

% Plot new tree t. 
plot(t)
% Change Node Label from Depth_Position to Index
% (see the plot function).
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Version History
Introduced before R2006a

See Also
nodejoin
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noleaves
Determine nonterminal nodes

Syntax
N = noleaves(T)
N = noleaves(T,'dp')

Description
N = noleaves(T) returns the indices of nonterminal nodes of the tree T (i.e., nodes that are not
leaves). N is a column vector.

The nodes are ordered from left to right as in tree T.

N = noleaves(T,'dp') returns a matrix N, which contains the depths and positions of nonterminal
nodes.

N(i,1) is the depth of the i-th nonterminal node and
N(i,2) is the position of the i-th nonterminal node.

Examples
% Create initial tree.
ord = 2; 
t = ntree(ord,3);        % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% List nonterminal nodes (index).
ntnodes_ind = noleaves(t)

ntnodes_ind =
     0
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     1
     2
     3
     6

% List nonterminal nodes (Depth_Position).
ntnodes_depo = noleaves(t,'dp')

ntnodes_depo =
     0     0
     1     0
     1     1
     2     0
     2     3

Version History
Introduced before R2006a

See Also
leaves

1 Functions
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ntnode
Number of terminal nodes

Syntax
NB = ntnode(T)

Description
ntnode is a tree-management utility.

NB = ntnode(T) returns the number of terminal nodes in the tree T.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

Examples
% Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Number of terminal nodes. 
ntnode(t)

ans =
    8

Version History
Introduced before R2006a

See Also
wtreemgr
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ntree
NTREE constructor

Syntax
T = ntree(ord,d)
T = ntree(ord,d,s)
T = ntree(ord,d,s,u)
[T,nb] = ntree( ___ )

Description
T = ntree(ord,d) returns an NTREE object, which is a complete tree of order ord and depth d.

• T = ntree is equivalent to T = ntree(2,0).
• T = ntree(ord) is equivalent to T = ntree(ord,0).

T = ntree(ord,d,s) sets a "split scheme" for nodes.

T = ntree(ord,d,s,u) sets the user data field of T.

You can also specify function inputs this way: T =
ntree('order',ord,'depth',d,'spsch',s,'ud',u). For unspecified inputs, the defaults are
ord = 2 and d = 0 , s = ones(ord,1]) , u = {}.

[T,nb] = ntree( ___ ) also returns the number of terminal nodes (leaves) of T.

Examples

Create NTREE Object

Create a binary tree (a tree of order 2) of depth 3.

t2 = ntree(2,3);

Use the plot tree GUI plot to plot the tree.

plot(t2)
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Create a quadtree (a tree of order 4) of depth 2. Split all except the third node.

t4 = ntree(4,2,[1 1 0 1]);
plot(t4)
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Input Arguments
ord — Tree order
2 (default) | positive integer

Tree order, specified as a positive integer.
Data Types: double

d — Tree depth
0 (default) | nonnegative integer

Tree depth, specified as a nonnegative integer.
Data Types: double

s — Split scheme
ones(ord,1) (default) | logical array

Split scheme, specified as an ord-by-1 logical array. The root of the tree can be split and it has ord
children. You can split the jth child if s(j) = 1. Each node that you can split has the same property
as the root node.

1 Functions

1-1106



Example: T = ntree(2,3,[1 0]) splits the first node at every level.

u — User data
{} (default) | array | cell array | structure array

User data to set in the ud field of T, specified as an array, cell array, or structure array.
Example: t = ntree(2,3,[0 1],{1,"aa",rand(3,3)})

Output Arguments
T — Tree
NTREE object

Tree, returned as a NTREE object.

The NTREE object has these fields:

wtbo Parent object
order Tree order
depth Tree depth
spsch Split scheme for nodes
tn Column vector with terminal node indices

The wtbo parent object has these fields:

wtboInfo Object information
ud User data field

For more information on object fields, see the get function or type

help wptree/get

nb — Number of terminal nodes
integer

Number of terminal nodes (leaves) of T.
Data Types: double

Version History
Introduced before R2006a

See Also
wtbo
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numCoefficients
Number of wavelet scattering coefficients

Syntax
ncf = numCoefficients(sf)

Description
ncf = numCoefficients(sf) returns the number of scattering coefficients for each scattering
path in the wavelet time scattering network sf. The number of scattering coefficients depends on the
values of the “SignalLength” on page 1-0 , “InvarianceScale” on page 1-0 , and
“OversamplingFactor” on page 1-0  properties of sf.

Examples

Oversample 1-D Wavelet Scattering Transform

This example shows how to oversample a 1-D wavelet scattering transform.

Load an ECG signal sampled at 180 Hz, and create a wavelet time scattering network to process the
signal. To perform a critically downsampled wavelet scattering transform, do not change the value of
the OversamplingFactor property in sf. Return the number of scattering coefficients for the
scattering network.

load wecg
Fs = 180;
sf = waveletScattering('SignalLength',numel(wecg),'SamplingFrequency',Fs);
ncf = numCoefficients(sf)

ncf = 8

Return the 1-D wavelet scattering transform of wecg, and plot the zeroth-order scattering
coefficients. Confirm the number of zeroth-order scattering coefficients is equal to ncf.

s = scatteringTransform(sf,wecg);
display(['Number of zeroth-order scattering coefficients: ',...
  num2str(numel(s{1}.signals{1}))])

Number of zeroth-order scattering coefficients: 8

plot(s{1}.signals{1},'x-')
grid on
axis tight
title('Zeroth-Order Scattering Coefficients')
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To oversample the scattering coefficients by a factor of 2, set the OversamplingFactor property of
sf equal to 1 (because log22 = 1). Return the number of scattering coefficients for the edited
network. Confirm the number of scattering coefficients has doubled.

sf.OversamplingFactor = 1;
ncf = numCoefficients(sf)

ncf = 16

Return the wavelet scattering transform of wecg using the edited network, and plot the zeroth-order
scattering coefficients. Since the number of coefficients in the critically sampled transform is equal to
8, confirm that the number of zeroth-order coefficients in the oversampled transform is equal to 16.

s = scatteringTransform(sf,wecg);
figure
plot(s{1}.signals{1},'x-')
grid on
axis tight
title('Zeroth-Order Scattering Coefficients')

 numCoefficients

1-1109



Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
waveletScattering

1 Functions
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numfilterbanks
Number of scattering filter banks

Syntax
nfb = numfilterbanks(sf)

Description
nfb = numfilterbanks(sf) returns the number of filter banks in the wavelet time scattering
network, sf. The number of filter banks in a scattering network is equal to ord − 1 where ord is the
number of scattering orders.

Examples

Number of Filter Banks in Wavelet Scattering Network

Calculate the number of filter banks for the default wavelet scattering network.

sf = waveletScattering

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 512
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 1
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0

Nfb = numfilterbanks(sf)

Nfb = 2

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

Version History
Introduced in R2018b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
waveletScattering | waveletScattering2

1 Functions
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numfilterbanks
Number of scattering filter banks

Syntax
nfb = numfilterbanks(sf)

Description
nfb = numfilterbanks(sf) returns the number of filter banks in the wavelet image scattering
network, sf. The number of filter banks in the network is equal to ord − 1 where ord is the number of
scattering orders.

Examples

Number of Filter Banks in 2-D Wavelet Scattering Network

Calculate the number of filter banks for the default 2-D wavelet scattering network.

sf = waveletScattering2

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: 'single'
    OversamplingFactor: 0
          OptimizePath: 1

Nfb = numfilterbanks(sf)

Nfb = 2

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

Version History
Introduced in R2018b
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See Also
waveletScattering | waveletScattering2
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numorders
Number of scattering orders

Syntax
no = numorders(sf)

Description
no = numorders(sf) returns the number of orders for the wavelet time scattering network, sf.
The number of orders is equal to Nfb + 1, where Nfb is the number of filter banks in sf.

Examples

Number of Orders in Wavelet Time Scattering Network

Calculate the number of orders for the default wavelet time scattering network.

sf = waveletScattering

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 512
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 1
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0

no = numorders(sf)

no = 3

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

Version History
Introduced in R2018b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
waveletScattering | waveletScattering2

1 Functions
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numorders
Number of scattering orders

Syntax
no = numorders(sf)

Description
no = numorders(sf) returns the number of orders for the wavelet image scattering network, sf.
The number of orders is equal to Nfb + 1, where Nfb is the number of filter banks in sf.

Examples

Number of Orders in Wavelet Image Scattering Network

Calculate the number of orders for the default wavelet image scattering network.

sf = waveletScattering2

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: 'single'
    OversamplingFactor: 0
          OptimizePath: 1

no = numorders(sf)

no = 3

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

Version History
Introduced in R2018b
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See Also
waveletScattering | waveletScattering2

1 Functions
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numshears
Number of shearlets

Syntax
NS = numshears(sls)

Description
NS = numshears(sls) returns the number of shearlets in the shearlet system sls. The number of
shearlets does not include the lowpass filter, which is not sheared. The total filter size of the shearlet
system is M-by-N-by-NS+1. M and N are the first and second elements, respectively, of the ImageSize
value of sls.

The data type of NS matches the Precision value of the shearlet system.

Examples

Number of Shearlets in Shearlet System

Create a complex-valued shearlet system that can be applied to 256-by-256 images. The system has
four scales.

sls = shearletSystem('ImageSize',[256 256],'TransformType','complex',...
    'NumScales',4);

Obtain the number of shearlets in the shearlet system.

num = numshears(sls)

num = 80

Input Arguments
sls — Shearlet system
shearletSystem object

Shearlet system, specified as a shearletSystem object.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
shearletSystem | filterbank
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orthfilt
Orthogonal wavelet filters

Syntax
[LoD,HiD,LoR,HiR] = orthfilt(W)

Description
[LoD,HiD,LoR,HiR] = orthfilt(W) computes the four lowpass and highpass, decomposition and
reconstruction filters associated with the scaling filter W corresponding to a wavelet.

Examples

Compute Orthogonal Wavelet Filters of Scaling Filter

Create a scaling filter associated with the Daubechies db8 wavelet.

W = dbwavf("db8"); 
stem(W)
title("Original Scaling Filter")
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Compute the four filters associated with the scaling filter.

[LoD,HiD,LoR,HiR] = orthfilt(W); 

Plot the decomposition lowpass and highpass filters.

subplot(2,1,1)
stem(LoD)
title("Decomposition Lowpass Filter")
subplot(2,1,2)
stem(HiD)
title("Decomposition Highpass Filter")

Plot the reconstruction lowpass and highpass filters.

subplot(2,1,1)
stem(LoR)
title("Reconstruction Lowpass Filter")
subplot(2,1,2)
stem(HiR)
title("Reconstruction Highpass Filter")
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Check for orthonormality in the decomposition filters.

df = [LoD;HiD];
rf = [LoR;HiR];
id = df*df'

id = 2×2

    1.0000    0.0000
    0.0000    1.0000

Check for orthonormality in the reconstruction filters.

id2 = rf*rf'

id2 = 2×2

    1.0000   -0.0000
   -0.0000    1.0000

Check for orthogonality by dyadic translation.

df = [LoD 0 0;HiD 0 0]; 
dft = [0 0 LoD; 0 0 HiD]; 
zer = df*dft'
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zer = 2×2
10-12 ×

   -0.1895   -0.0000
         0   -0.1895

Plot the low-frequency transfer modulus.

fftld = fft(LoD); 
freq = [1:length(LoD)]/length(LoD); 
figure
plot(freq,abs(fftld),"x-")
title("Transfer modulus: Lowpass")

Plot the high-frequency transfer modulus.

ffthd = fft(HiD);
plot(freq,abs(ffthd),"x-")
title("Transfer modulus: Highpass")
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Input Arguments
W — Scaling filter
real-valued vector

Scaling filter corresponding to a wavelet, specified as a real-valued vector.

Output Arguments
LoD — Decomposition lowpass filter
real-valued vector

Decomposition lowpass filter associated with the scaling filter W, returned as a real-valued vector.

HiD — Decomposition highpass filter
real-valued vector

Decomposition highpass filter associated with the scaling filter W, returned as a real-valued vector.

LoR — Reconstruction lowpass filter
real-valued vector

Reconstruction lowpass filter associated with the scaling filter W, returned as a real-valued vector.
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HiR — Reconstruction highpass filter
real-valued vector

Reconstruction highpass filter associated with the scaling filter W, returned as a real-valued vector.

Algorithms
For an orthogonal wavelet in the multiresolution framework, start with the scaling function ϕ and the
wavelet function ψ. One of the fundamental relations is the twin-scale relation:

1
2ϕ x

2 = ∑
n ∈ Z

wnϕ(x− n)

All the filters used in the dwt and idwt functions are intimately related to the sequence (wn)n ∈ Z. If ϕ
is compactly supported, the sequence (wn) is finite and can be viewed as an FIR filter. The scaling
filter W is a lowpass FIR filter of length 2N, with the sum 1, and with the norm of 1/√2.

For example, for a db3 scaling filter,

w = dbwavf("db3") 
w = 0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(w)
 = 1.000
norm(w)
 = 0.7071

Define four FIR filters from filter W of length 2N and norm 1.

Filters Low-Pass High-Pass
Decomposition LoD HiD
Reconstruction LoR HiR

The function computes the four filters using the following scheme.

HiR and LoR are quadrature mirror filters: HiR(k) = (-1)kLoR(2N + 1 - k), for k = 1, 2,
… , 2N. Because wrev reverses vectors, HiD and LoD are also quadrature mirror filters.
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Version History
Introduced before R2006a

References
[1] Daubechies, Ingrid. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics 61. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
biorfilt | qmf | wfilters
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otnodes
Order terminal nodes of binary wavelet packet tree

Syntax
[Tn_Pal,Tn_Seq] = otnodes(WPT)
[Tn_Pal,Tn_Seq,I,J] = otnodes(WPT)
[DP_Pal,DP_Seq] = otnodes(WPT,'dp')

Description
[Tn_Pal,Tn_Seq] = otnodes(WPT) returns the terminal nodes of the binary wavelet packet tree,
WPT, in Paley (natural) ordering, Tn_Pal, and sequency (frequency) ordering, Tn_Seq.

[Tn_Pal,Tn_Seq,I,J] = otnodes(WPT) returns the permutations of the terminal node indices
such that Tn_Seq = Tn_Pal(I) and Tn_Pal = Tn_Seq(J).

[DP_Pal,DP_Seq] = otnodes(WPT,'dp') returns the Paley- and frequency-ordered terminal
nodes in node depth-position format.

Examples

Order Terminal Nodes

Order terminal nodes with Paley and frequency ordering.

x = randn(8,1);
wpt = wpdec(x,2,'haar');
[Tn_Pal,Tn_Seq] = otnodes(wpt)

Tn_Pal = 4×1

     3
     4
     5
     6

Tn_Seq = 4×1

     3
     4
     6
     5

Return Permutations for Ordering

Return permutations for Paley and frequency ordering.
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load noisdopp;
wpt = wpdec(noisdopp,6,'sym4');
[Tn_Pal,Tn_Seq,I,J] = otnodes(wpt);
isequal(Tn_Seq(J),Tn_Pal)

ans = logical
   1

isequal(Tn_Seq,Tn_Pal(I))

ans = logical
   1

Order Terminal Nodes by Depth and Position

Order terminal nodes by depth and position.

x = randn(8,1);
wpt = wpdec(x,2,'haar');
[DP_Pal,DP_Seq] = otnodes(wpt,'dp')

DP_Pal = 4×2

     2     0
     2     1
     2     2
     2     3

DP_Seq = 4×2

     2     0
     2     1
     2     3
     2     2

Order Terminal Nodes from Wavelet Packet Tree

Order terminal nodes from a modified wavelet packet tree.

t = wptree(2,2,rand(1,512),'haar');
 t = wpsplt(t,4);
 t = wpsplt(t,5);
 t = wpsplt(t,10);
 plot(t);
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 [tn_Pal,tn_Seq,I,J] = otnodes(t)

tn_Pal = 7×1

     3
     9
    21
    22
    11
    12
     6

tn_Seq = 7×1

     3
    21
    22
     9
     6
    12
    11
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I = 7×1

     1
     3
     4
     2
     7
     6
     5

J = 7×1

     1
     4
     2
     3
     7
     6
     5

Input Arguments
WPT — Binary wavelet packet tree
wptree object

Binary wavelet packet tree, specified as a wptree object. You can use treeord to determine the
order of your wavelet packet tree.

Output Arguments
Tn_Pal — Terminal nodes in Paley (natural) ordering
vector

Terminal nodes in Paley (natural) ordering, returned as a N-by-1 column vector, where N is the
number of terminal nodes.

Tn_Seq — Terminal nodes in sequency ordering
vector

Terminal nodes in sequency ordering, returned as a N-by-1 column vector, where N is the number of
terminal nodes.

I — Permutations of Paley-ordered terminal node indices
vector

Permutations of Paley-ordered terminal node indices, returned as a N-by-1 column vector, where N is
the number of terminal nodes. The permutations are such that Tn_Seq = Tn_Pal(I).

J — Permutations of sequency-ordered terminal node indices
vector

Permutations of sequency-ordered terminal node indices, returned as a N-by-1 column vector, where
N is the number of terminal nodes. The permutations are such that Tn_Pal = Tn_Seq(J).
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DP_Pal — Paley-ordered terminal nodes in depth-position format
matrix

Paley-ordered terminal nodes in depth-position format, returned as a N-by-2 matrix, where N is the
number of terminal nodes. The first column contains the depth index, and the second column contains
the position index.

DP_Seq — Sequency-ordered terminal nodes in depth-position format
matrix

Sequency-ordered terminal nodes in depth-position format, returned as a N-by-2 matrix, where N is
the number of terminal nodes. The first column contains the depth index, and the second column
contains the position index.

More About
Paley (Natural) and Sequency (Frequency) Ordering

The discrete wavelet packet transform iterates on both approximation and detail coefficients at each
level. In this transform, A denotes the lowpass (approximation) filter followed by downsampling. D
denotes the highpass (detail) filter followed by downsampling. The figure represents a wavelet packet
transform in Paley ordering acting on a time series of length 8. The transform has a depth of two.

Because of aliasing introduced by downsampling, the frequency content extracted by the operator AD
is higher than the frequency content extracted by the DD operator. Therefore, the terminal nodes in
frequency (sequency) order are: AA,DA,DD,AD. The terminal nodes in Paley order have the following
indices: 3,4,5,6. The frequency order has the indices: 3,4,6,5.

Version History
Introduced in R2010b
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References
[1] Wickerhauser, Mladen Victor. Lectures on Wavelet Packet Algorithms, Technical Report,

Washington University, Department of Mathematics, 1992.

See Also
leaves | treeord
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pat2cwav
Build wavelet from pattern

Syntax
[psi,xval,nc] = pat2cwav(ypat,method,poldegree,regularity)

Description
[psi,xval,nc] = pat2cwav(ypat,method,poldegree,regularity) returns an admissible
wavelet psi for the continuous wavelet transform (CWT) adapted to the pattern ypat. The wavelet
psi is evaluated at xval, a regular grid in the interval [0,1], and has L2-norm equal to 1.

The constant nc is such that nc×psi approximates ypat on the interval [0,1] by least-squares fitting
using the method specified by method, and a polynomial of degree poldegree with boundary
constraints specified by regularity.

Examples

Create Wavelet for Continuous Wavelet Transform

This example illustrates how to generate a new wavelet starting from a pattern.

The principle for designing a new wavelet for CWT is to approximate a given pattern using least-
squares optimization under constraints leading to an admissible wavelet well suited for the pattern
detection using the continuous wavelet transform [1].

Load and plot a pattern.

load ptpssin1
plot(X,Y)
grid on
title('Original Pattern')
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Integrate the pattern over the interval. The integral does not equal 0. However, the pattern is a good
candidate since it oscillates like a wavelet.

dX = X(2)-X(1);
patternInt = dX*sum(Y);
disp(['Integral: ',num2str(patternInt)]);

Integral: 0.15915

To synthesize a new wavelet adapted to the given pattern, use a least-squares polynomial
approximation of degree 6 with constraints of continuity at the beginning and the end of the pattern.

[psi,xval,nc] = pat2cwav(Y,'polynomial',6,'continuous');

Plot the new wavelet.

plot(X,Y,'-',xval,nc*psi,'--')
grid on
legend('Original Pattern','Adapted Wavelet','Location','NorthWest')
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Check that psi satisfies the definition of a wavelet by confirming that it integrates to zero and has L2
norm is equal to 1.

dxval = xval(2)-xval(1);
psiIntegral = dxval*sum(psi);
disp(['Integral: ',num2str(psiIntegral)])

Integral: 1.9626e-05

psiSqN = dxval*sum(psi.^2);
disp(['L2-norm: ',num2str(psiSqN)])

L2-norm: 1

Input Arguments
ypat — Pattern
real-valued vector

Pattern to approximate, specified as a real-valued vector.

method — Least-squares fitting method
'polynomial' | 'orthconst'

Least-squares fitting method to use to approximate the pattern, specified as one of the following:
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• 'polynomial' — Use a polynomial of degree poldegree
• 'orthconst' — Use a projection onto the space of functions orthogonal to constants

Note Specifying the 'orthconst' option does not produce an orthogonal wavelet. Any wavelet psi
produced using pat2cwav is a type 4 wavelet (wavelet without a scaling function) in wavemngr.

poldegree — Degree of polynomial
integer

Degree of polynomial to use in least-squares fitting, specified as an integer.

regularity — Boundary constraints
'continuous' | 'differentiable' | 'none'

Boundary constraints at the points 0 and 1, specified as 'continuous', 'differentiable', or
'none'. When method is equal to 'polynomial':

• If regularity is equal to 'continuous', poldegree must be greater than or equal to 3.
• If regularity is equal to 'differentiable', poldegree must be greater than or equal to 5.

Output Arguments
psi — Admissible wavelet
real-valued vector

Admissible wavelet for CWT, returned as a real-valued vector. The length of psi equals the length of
ypat. The wavelet psi integrates to zero and has L2-norm equal to 1.

xval — Sampling instants
real-valued vector

Sampling instants where psi is evaluated, returned as a real-valued vector. The sampling instants
xval are a regular n-point grid spanning the interval [0,1], where n is the length of ypat: xval =
linspace(0,1,length(ypat)).

nc — Normalizing constant
scalar

Normalizing constant, returned as a scalar. The constant nc is such that nc×psi approximates ypat
on the interval [0,1] by least-squares fitting using the method specified by method.

Version History
Introduced before R2006a

References
[1] Misiti, M., Y. Misiti, G. Oppenheim, and J.-M. Poggi. Les ondelettes et leurs applications. France:

Hermes Science/Lavoisier, 2003.
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See Also
wavemngr
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paths
Scattering network paths

Syntax
spaths = paths(sf)
[spaths,npaths] = paths(sf)

Description
spaths = paths(sf) returns the scattering paths for the scattering network, sf. spaths is a NO-
by-1 cell array of MATLAB tables, where NO is the number of orders in the network.

[spaths,npaths] = paths(sf) returns the number of wavelet scattering paths by order. npaths
is a NO-by-1 vector, where NO is the number of orders in the scattering network. The ith element of
npaths contains the number of scattering paths in the (i-1)th order.

Examples

Wavelet Scattering Paths

Create two wavelet scattering networks, both for a signal of length 500. In the second network, set
the OptimizePath value to true.

sf = waveletScattering('SignalLength',500);
sfOpt = waveletScattering('SignalLength',500,'OptimizePath',true);

Obtain the path information of both networks. Determine the total number of scattering paths in both
networks.

[spaths,npaths] = paths(sf);
[spathsOpt,npathsOpt] = paths(sfOpt);
str = sprintf('Paths in default network: %d\nPaths in path-optimized network: %d\n',...
    sum(npaths),sum(npathsOpt));
fprintf(str)

Paths in default network: 65
Paths in path-optimized network: 52

Both networks have two filter banks. Visualize the scattering paths that include the wavelets in the
second filter bank. Create a directed graph. For every wavelet filter that is on at least one path, label
the corresponding node as waveletNumber.filterbank. For each path, connect the corresponding
nodes. Use the helper function helperPlotScatteringGraph to construct the graphs. Plot the
graphs of both networks.

scatGraph = helperPlotScatteringGraph(spaths);
plot(scatGraph)
title({'Scattering Paths',['OptimizePath: ',num2str(sf.OptimizePath)]})
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figure
scatGraphOpt = helperPlotScatteringGraph(spathsOpt);
plot(scatGraphOpt)
title({'Scattering Paths',['OptimizePath: ',num2str(sfOpt.OptimizePath)]})
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Supporting Functions

plotScatteringGraph

function dirGraph = helperPlotScatteringGraph(networkPaths)
% This function is intended for use only in this example. It may change or
% be removed in a future release.

path = networkPaths{3}.path;
% set to 0 if want to show the multiple paths between 0 and each
% first level node
mkunique = 1; 

if mkunique == 1
    f1 = path(:,1:2);
    c = unique(f1,'rows');
else
    c = path(:,1:2);
end

p1 = string(c(:,1));
p2 = string(c(:,2)+.1);
p3 = string(path(:,2)+.1);
p4 = string(path(:,3)+.2);
dirGraph = digraph([p1;p3],[p2;p4]);

 paths
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end

Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

Output Arguments
spaths — Scattering paths
cell array

Scattering paths, returned as a NO-by-1 cell array of MATLAB tables, where NO is the number of
orders of the scattering network.

Each MATLAB table in spaths contains three variables:

• path — Scattering network paths. In the kth element of spaths, path is a N-by-k matrix where
each row contains a path from the input data through the (k-1)th wavelet filter bank. For example,
when k equals 1, N is equal to 1 and the only path is 0 denoting the input data. When k equals 2,
N is equal to the number of wavelet filters in the first filter bank and path is a N-by-2 matrix
describing the path from the input data, 0, through the wavelet filters in the first filter bank. The
second column of path contains the wavelet filters in the first filter bank ordered by decreasing
center frequency.

• log2ds — The incremental base-2 log downsampling factor for the scalogram coefficients
corresponding to the cumulative path in the same row.

• log2res — The base-2 log resolution of the scalogram coefficients corresponding to the
cumulative path in the same row.

npaths — Number of wavelet scattering paths
vector

Number of wavelet scattering paths in the network by order, returned as a vector. npaths is a NO-
by-1 vector where NO is the number of orders in the network. The ith element of npaths contains the
number of scattering paths in the (i-1)th order. The sum of the elements of npaths is the total
number of scattering paths.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
waveletScattering | filterbank
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paths
Scattering paths

Syntax
spaths = paths(sf)
[spaths,npaths] = paths(sf)

Description
spaths = paths(sf) returns the scattering paths for all orders of the scattering network, sf.
spaths is a cell array of MATLAB tables with n elements, where n is the number of orders in the
scattering network.

[spaths,npaths] = paths(sf) returns the number of paths in each order as n-by-1 column
vector, where n is the number of orders in the scattering network. The sum of the elements of
npaths is the total number of scattering paths.

Examples

Scattering Paths of Wavelet Image Scattering Network

Create an image scattering network with an image size of 256-by-256 and invariance scale equal to
the minimum of the image size. The default OptimizePath value is 1 (true).

sf = waveletScattering2('ImageSize',[256 256],'InvarianceScale',128)

sf = 
  waveletScattering2 with properties:

             ImageSize: [256 256]
       InvarianceScale: 128
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: "single"
    OversamplingFactor: 0
          OptimizePath: 1

Obtain the number of scattering paths in each order. Display the total number of scattering paths.

[spaths,npaths] = paths(sf);
sum(npaths)

ans = 391

Set the OptimizePath value of the network to false. Display the total number of scattering paths.
For the modified network, the scattering transform does not reduce the number of paths to compute
based on a bandwidth consideration.
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sf.OptimizePath = false;
[spaths,npaths] = paths(sf);
sum(npaths)

ans = 571

Wavelets on Scattering Path

This example shows how the OptimizePath property can affect the scattering paths that include a
specific wavelet.

Create the default wavelet image scattering network. Obtain all the wavelet filters and center spatial
frequencies for the network. Obtain all the scattering paths. Display the total number of paths.

sf = waveletScattering2

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: 'single'
    OversamplingFactor: 0
          OptimizePath: 1

[~,psifilters,f] = filterbank(sf);
[spaths,npaths] = paths(sf);
disp(['Total Number of Paths: ',num2str(sum(npaths))])

Total Number of Paths: 241

Display the number of wavelet filters in each filter bank.

disp(['Filter Bank 1: ',num2str(size(psifilters{1},3))])

Filter Bank 1: 24

disp(['Filter Bank 2: ',num2str(size(psifilters{2},3))])

Filter Bank 2: 24

Choose a wavelet from the first filter bank and display its spatial center frequency. Use spaths to
find all the three-element paths that include the chosen wavelet. Display the paths.

waveletA = 14;
disp(['Center Frequency: ',num2str(f{1}(waveletA,:))])

Center Frequency: 0.08119    0.046875

ind = find(spaths{3}.path(:,2)==waveletA);
spaths{3}(ind,:)

ans=6×1 table
        path     
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    _____________

    0    14    19
    0    14    20
    0    14    21
    0    14    22
    0    14    23
    0    14    24

Plot the center frequencies of the wavelet filters on the paths.

plot(f{1}(waveletA,1),f{1}(waveletA,2),'k^')
xlabel('f_x')
ylabel('f_y')
hold on
waveletBs = spaths{3}.path(ind,3);
plot(f{2}(waveletBs,1),f{2}(waveletBs,2),'bx')
hold off
grid on
legend('First Filter Bank Wavelet','Second Filter Bank Wavelets',...
    'Location','northeastoutside')

Now set the OptimizePath property of the scattering network sf to false. Obtain the wavelet
filters, center spatial frequencies, and scattering paths of the network.

sf.OptimizePath = false
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sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: 'single'
    OversamplingFactor: 0
          OptimizePath: 0

[~,psifilters2,f2] = filterbank(sf);
[spaths2,npaths2] = paths(sf);
disp(['Total Number of Paths: ',num2str(sum(npaths2))])

Total Number of Paths: 385

Choose the same wavelet as above. To confirm it is the same wavelet, display its spatial center
frequency. Use spaths to find all the three-element paths that include the wavelet. Because
OptimizePath is set to false, the wavelet filter has more children.

waveletA = 14;
disp(['Center Frequency: ',num2str(f2{1}(waveletA,:))])

Center Frequency: 0.08119    0.046875

ind = find(spaths2{3}.path(:,2)==waveletA);
spaths2{3}(ind,:)

ans=12×1 table
        path     
    _____________

    0    14    13
    0    14    14
    0    14    15
    0    14    16
    0    14    17
    0    14    18
    0    14    19
    0    14    20
    0    14    21
    0    14    22
    0    14    23
    0    14    24

Plot the center frequencies of the wavelet filters on the paths. Some of child filters have center
frequencies higher than the chosen wavelet.

plot(f2{1}(waveletA,1),f2{1}(waveletA,2),'k^')
xlabel('f_x')
ylabel('f_y')
hold on
waveletBs = spaths2{3}.path(ind,3);
plot(f2{2}(waveletBs,1),f2{2}(waveletBs,2),'bx')
hold off
grid on
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legend('First Filter Bank Wavelet','Second Filter Bank Wavelets',...
    'Location','northeastoutside')

Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

Output Arguments
spaths — Scattering paths
cell array

Scattering paths of all orders of the scattering network, returned as a cell array of MATLAB tables.
spaths has n elements, where n is the number of orders in the scattering network.

Each MATLAB table in spaths contains a single variable, path. The variable path is a row vector
with one column for each element of the path. The scalar 0 denotes the original image. Positive
integers in the Lth column denote the corresponding wavelet filter in the (L−1)th filter bank. Wavelet
bandpass filters are ordered by decreasing center frequency. There are NumRotations wavelets per
center frequency pair.
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npaths — Number of scattering paths
column vector

Number of scattering paths in each order of the scattering network. npaths is a no-by-1 column
vector where no is the number of orders in the scattering network. The sum of the elements of
npaths is the total number of scattering paths.

Version History
Introduced in R2019a

See Also
waveletScattering2 | coefficientSize
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plot
Plot tree GUI

Syntax
plot(t)
fig = plot(t)
newt = plot(trobj,'read',fig)

Description
plot is a graphical tree-management utility.

plot(t) plots the tree t. The figure that contains the tree is a GUI tool.

• You can change the Node Label to Depth_Position (default) or Index.
• You can change the Node Action to Visualize (default) or Split-Merge.

You can click the nodes to execute the current Node Action.

fig = plot(t) returns the handle to the figure.

newt = plot(trobj,'read',fig) returns the tree plotted in fig. You can use this syntax to
return the tree after performing some split or merge actions.

Examples

Plot Wavelet Packet Trees

This example shows how to plot wavelet packet trees.

Load a 1-D signal.

load noisbloc

Obtain the wptree object that corresponds to a level 2 wavelet packet decomposition of the signal
using the db2 wavelet.

x = noisbloc;
t = wpdec(x,2,'db2');

Plot the tree.

plot(t)
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Change Node Label from Depth_Position to Index. Click node (3) to obtain the following figure.

 plot
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Set the Node Label back to Depth_Position. Change Node Action to Split-Merge. Click on the
(1,1) node to get the following figure. The figure shows the discrete wavelet transform down to
level 2.

1 Functions

1-1152



Load an image. Obtain the wptree object that corresponds to a level 1 wavelet packet decomposition
of the image using the sym4 wavelet.

load woman2
t = wpdec2(X,1,'sym4');

Plot the tree.

plot(t)
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Change Node Label from Depth_Position to Index. Click the node (1). You get the following
figure.
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Input Arguments
t — Tree
ntree object | dtree object | wptree object

Tree, specified as an ntree, dtree, or wptree object.

trobj — Object
NTREE-parented object

Object, specified as an NTREE-parented object. trobj is an object constructor name returning an
NTREE-parented object.
Example: newt = plot(ntree,'read',fig), newt = plot(dtree,'read',fig), newt =
plot(wptree,'read',fig)

Output Arguments
fig — Figure
Figure object

 plot
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Figure containing plot, returned as a Figure object.

Version History
Introduced before R2006a

See Also
ntree | dtree | wptree
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plotdt
Plot dual-tree or double-density wavelet transform

Syntax
plotdt(wt)

Description
plotdt(wt) plots the coefficients of the 1-D or 2-D wavelet filter bank decomposition, wt.

Examples

Plot Complex Dual-Tree Wavelet Transform of 1-D Signal

Plot the complex dual-tree wavelet transform of the noisy Doppler signal.

Load the noisy Doppler signal. Obtain the complex dual-tree wavelet transform down to level 4.

load noisdopp;
wt = dddtree('cplxdt',noisdopp,4,'dtf1');

Plot the coefficients.

plotdt(wt)
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Plot Complex Oriented Dual-Tree Wavelet Transform of 2-D Image

Plot the complex oriented dual-tree wavelet transform of an image.
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Load the xbox image. Obtain the complex oriented dual-tree wavelet transform down to level 3.

load xbox;
wt = dddtree2('cplxdt',xbox,3,'dtf1');

Plot the coefficients.

plotdt(wt)
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Select the desired level detail coefficients from the drop-down list.
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Input Arguments
wt — Wavelet transform
structure

Wavelet transform, returned as a structure from dddtree or dddtree2 with these fields:

type — Type of wavelet decomposition (filter bank)
'dwt' | 'ddt' | 'realdt' | 'cplxdt' | 'realdddt' | 'cplxdddt'

Type of wavelet decomposition (filter bank), specified as one of 'dwt', 'ddt', 'realdt',
'cplxdt',, 'realdddt', or 'cplxdddt'. 'realdt' and 'realdddt' are only valid for the 2-D
wavelet transform. The type, 'dwt', is a critically sampled (nonredundant) discrete wavelet
transform for 1-D data or 2-D images. The other decomposition types are oversampled wavelet
transforms. For details about transform types see dddtree for 1-D wavelet transforms and dddtree2
for 2-D wavelet transforms.

level — Level of the wavelet decomposition
positive integer

Level of the wavelet decomposition, specified as a positive integer.

filters — Decomposition (analysis) and reconstruction (synthesis) filters
structure

Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these
fields:

Fdf — First-stage analysis filters
matrix | cell array

First level decomposition filters specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage analysis filters for the corresponding tree.

Df — Analysis filters for levels > 1
matrix | cell array

Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the analysis filters for the corresponding tree.

Frf — First-level reconstruction filters
matrix | cell array

First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
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The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage synthesis filters for the corresponding tree.

Rf — Reconstruction filters for levels > 1
matrix | cell array

Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet
transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms.
The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first
column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass)
filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the
second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each
element of the cell array contains the first-stage synthesis filters for the corresponding tree.

cfs — Wavelet transform coefficients
cell array of matrices

Wavelet transform coefficients, specified as a 1-by-(level+1) cell array of matrices. The size and
structure of the matrix elements of the cell array depend on the type of wavelet transform and
whether the decomposition is 1-D or 2-D. For a 1-D wavelet transform, the coefficients are organized
by transform type as follows:

• 'dwt' — cfs{j}

• j = 1,2,...level is the level.
• cfs{level+1} are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,k)

• j = 1,2,... level is the level.
• k = 1,2 is the wavelet filter.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,m)

• j = 1,2,... level is the level.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realdddt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• k = 1,2 is the wavelet transform tree.
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• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

For a 2-D wavelet transform, the coefficients are organized by transform type as follows:

• 'dwt' — cfs{j}(:,:,d)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'ddt' — cfs{j}(:,:,d)

• j = 1,2,... level is the level.
• d = 1,2,3,4,5,6,7,8 is the orientation.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realddt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'realdddt' — cfs{j}(:,:,d,k)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

• 'cplxdddt' — cfs{j}(:,:,d,k,m)

• j = 1,2,... level is the level.
• d = 1,2,3 is the orientation.
• k = 1,2 is the wavelet transform tree.
• m = 1,2 are the real and imaginary parts.
• cfs{level+1}(:,:) are the lowpass, or scaling, coefficients.

Version History
Introduced in R2013b

 plotdt

1-1163



See Also
dddtree | dddtree2 | dddtreecfs | dualtree | dualtree2

Topics
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
“Critically Sampled and Oversampled Wavelet Filter Banks”
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plus
Laurent polynomial or Laurent matrix addition

Syntax
Q = plus(A,B)
Q = A + B

Description
Q = plus(A,B) returns the sum of the pair of Laurent polynomials or Laurent matrices A and B.

Note The laurentPolynomial and laurentMatrix objects have their own versions of plus. The
input data type determines which version is executed.

Q = A + B is equivalent to Q = plus(A,B).

Examples

Laurent Polynomial Addition

Create two Laurent polynomials:

• a(z) = z2 + 2z + 3 + 5z−1 + 8z−2 + 13z−3

• b(z) = 8z + 4 + 2z−1 + z−2

a = laurentPolynomial(Coefficients=[1 2 3 5 8 13],MaxOrder=2);
b = laurentPolynomial(Coefficients=[8 4 2 1],MaxOrder=1);

Add a(z) and b(z).

c = a+b

c = 
  laurentPolynomial with properties:

    Coefficients: [1 10 7 7 9 13]
        MaxOrder: 2

Add a(z) and the negative of b(z).

d = plus(a,-b)

d = 
  laurentPolynomial with properties:

    Coefficients: [1 -6 -1 3 7 13]

 plus
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        MaxOrder: 2

Laurent Matrix Addition

Create two Laurent polynomials:

• a(z) = z + 1
• b(z) = z2− z−1

lpA = laurentPolynomial(Coefficients=[1 1],MaxOrder=1);
lpB = laurentPolynomial(Coefficients=[1 0 0 -1],MaxOrder=2);

Create two Laurent matrices:

•
lmatA = 

a z 1
1 0

•
lmatB = 

0 2
3 b z

lmatA = laurentMatrix(Elements={lpA,1;1,0});
lmatB = laurentMatrix(Elements={0,2;3,lpB});

Sum the matrices.

lmat = lmatA+lmatB;
lmat.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: [1 1]
        MaxOrder: 1

lmat.Elements{1,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: 3
        MaxOrder: 0

lmat.Elements{2,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: 4
        MaxOrder: 0

lmat.Elements{2,2}

1 Functions

1-1166



ans = 
  laurentPolynomial with properties:

    Coefficients: [1 0 0 -1]
        MaxOrder: 2

Input Arguments
A — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

B — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Sum
laurentPolynomial object | laurentMatrix object

Sum of two Laurent polynomials or two Laurent matrices, returned as a laurentPolynomial object
or a laurentMatrix object, respectively.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minus | mtimes

Objects
laurentMatrix | laurentPolynomial
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polyphase
Polyphase components of Laurent polynomial

Syntax
[E,O] = polyphase(P)

Description
[E,O] = polyphase(P) returns the even part E and odd part O of the Laurent polynomial P.

Examples

Polyphase Decomposition of Laurent Polynomial

Create the Laurent polynomial b(z) = z3 + 3z2− 1 + 2z−1.

b = laurentPolynomial(Coefficients=[1 3 0 -1 0 2],MaxOrder=3);

Use the polyphase function to obtain the even and odd parts of b(z). Use the helper function
helperPrintLaurent to print the Laurent polynomials in algebraic form.

[evenP,oddP] = polyphase(b);
resE = helperPrintLaurent(evenP);
disp(resE)

3*z - 1 + 2*z^(-1)

resO = helperPrintLaurent(oddP);
disp(resO)

z^(2)

Confirm the identity E(z2) + z−1O(z2) = = b(z), where E(z) and O(z) are the even and odd parts,
respectively, of b(z).

evenPz2 = dyadup(evenP);
oddPz2 = dyadup(oddP);
lpz = laurentPolynomial(Coefficients=1,MaxOrder=-1);
leftSide = evenPz2+(lpz*oddPz2);
areEqual = (leftSide == b)

areEqual = logical
   1

Input Arguments
P — Laurent polynomial
laurentPolynomial object
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Laurent polynomial, specified as a laurentPolynomial object.

Output Arguments
E — Even part
laurentPolynomial object

Even part of the Laurent polynomial P, returned as a laurentPolynomial object. The polynomial E
is such that:

E(z2) = [P(z) + P(-z)]/2.

O — Odd part
laurentPolynomial object

Odd part of the Laurent polynomial P, returned as a laurentPolynomial object. The polynomial O
is such that:

O(z2) = [P(z) - P(-z)]/ [ 2 z-1].

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dyaddown | dyadup

Objects
laurentMatrix | laurentPolynomial
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powerbw
CWT filter bank 3 dB bandwidths

Syntax
bw = powerbw(fb)

Description
bw = powerbw(fb) returns 3 dB (half-power) bandwidths for the wavelet filters in the filter bank
fb. bw is a Ns-by-4 MATLAB table, where Ns is the number of wavelet bandpass frequencies (equal
to the number of scales). For every filter in fb, the table contains the corresponding bandpass
frequency, the 3 dB bandwidth, and the lower frequency and upper frequency limits of the 3 dB
bandwidth.

The 3 dB bandwidth limits mark where the filter power is half its peak value. The magnitude
frequency response at the limits is equal to 1/√2 times the peak magnitude. Since the passbands in fb
are normalized with peak magnitudes approximately equal to 2, the magnitude frequency response at
each limit is approximately equal to 2/√2. The 3 dB bandwidth is also known as the half-power
bandwidth because 20log10

1
2 ≈ − 3.

Examples

Half-Power Wavelet Bandwidths

Create a CWT filter bank.

fb = cwtfilterbank;

Obtain the 3 dB (half-power) bandwidths of the filter bank. Obtain the frequency responses of the
wavelets.

bw = powerbw(fb);
[psidft,f] = freqz(fb);

Choose a wavelet bandpass filter from the filter bank. Extract from the table bw the 3 dB limits of the
bandpass filter.

wv = 5;
frq = bw.Frequencies(wv);
lfb = bw.LowFrequencyBorder(wv);
hfb = bw.HighFrequencyBorder(wv);

Plot the frequency response and 3 dB limits. Since the frequency response is scaled to have a
maximum value equal to 2, inspect the plot to confirm the lower and upper frequency borders
intersect the frequency response at 2.

plot(f,psidft(wv,:))
grid on
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hold on
plot([lfb lfb],[0 2],'r')
plot([hfb hfb],[0 2],'r')
xlabel('Normalized Frequency (cycles/sample)')
ylabel('Magnitude')
title(['Bandpass Frequency: ' num2str(frq) ' cycles/sample'])

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
bw — 3 dB (half-power) bandwidths
table

3 dB (half-power) bandwidths, returned as an Ns-by-4 table, where Ns is the number of wavelet
bandpass frequencies (equal to the number of scales). The table has four variables:

Frequencies — Bandpass frequency
positive scalar
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Bandpass frequency, returned as a positive scalar (see centerFrequencies).
Data Types: double

HalfPowerBandwidth — Half-power bandwidth
positive scalar

Half-power bandwidth, returned as a positive scalar.
Data Types: double

LowFrequencyBorder — Lower frequency edge
positive scalar

Lower frequency edge of the 3 dB bandwidth, returned as a positive scalar.
Data Types: double

HighFrequencyBorder — High frequency edge
positive scalar

High frequency edge of the 3 dB bandwidth, returned as a positive scalar.
Data Types: double

Data Types: table

Version History
Introduced in R2018a

See Also
cwtfilterbank | freqz | centerFrequencies
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powerbw
DWT filter bank power bandwidth

Syntax
bwtable = powerbw(fb)

Description
bwtable = powerbw(fb) returns a MATLAB table bwtable containing the theoretical and
measured bandwidths of the discrete wavelet transform (DWT) filter bank fb. The table contains the
following variables by level:

• DWT frequency bands
• Measured wavelet and scaling filter 3 dB bandwidths
• Proportions of the total energy in the reported bands

Examples

DWT Filter Bank Power Bandwidth

Obtain the 3 dB bandwidths of a level-4 discrete wavelet transform with the Fejér-Korovkin fk18
wavelet. Obtain the frequency responses of the wavelets. Plot the one-sided frequency responses for
the wavelet filters.

fb = dwtfilterbank('Wavelet','fk18','Level',4);
bw = powerbw(fb);
[psidft,f] = freqz(fb);
freqz(fb)
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Choose the wavelet bandpass filter whose peak magnitude is equal to 2. Obtain the lower and upper
bounds of the 3 dB bandwidth of the filter.

wv = 2;
wvBw = bw.Wavelet3dBBandwidth(wv,:);

Plot the magnitude frequency response of the filter and the 3 dB limits. Since the frequency response
has a maximum value equal to 2, confirm the lower and upper frequency bounds intersect the
frequency response at 2.

filLength = size(psidft,2);
plot(f(filLength/2+1:end),abs(psidft(wv,filLength/2+1:end)))
hold on
plot([wvBw(1) wvBw(1)],[0 2],'r')
plot([wvBw(2) wvBw(2)],[0 2],'r')
grid on
title(['Proportion of Wavelet Power in 3 dB Band: ',num2str(bw.WaveletPowerIn3dBBand(wv))])
xlabel('Normalized Frequency (cycles/sample)')
ylabel('Magnitude')
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
bwtable — Theoretical and measured bandwidths
table

Theoretical and measured bandwidths of the DWT filter bank fb, returned as a MATLAB table.
bwtable is L-by-8, where L is the wavelet transform level of the filter bank. Levels are ordered by
decreasing resolution. bwtable has the following eight variables:

Level — Level of DWT decomposition
positive integer

Level of DWT decomposition, returned as a positive integer.

DWTBand — Theoretical DWT frequency bands
two-element real-valued vector
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Theoretical DWT frequency bands by level, returned as a two-element real-valued vector.

Wavelet3dBBandwidth — Measured wavelet 3 dB bandwidths
two-element real-valued vector

Measured wavelet 3 dB bandwidths by level, returned as a two-element real-valued vector.

Scaling3dBBandwidth — Measured scaling filter 3 dB bandwidths
two-element real-valued vector

Measured scaling filter 3 dB bandwidths by level, returned as a two-element real-valued vector.

WaveletPowerIn3dBBand — Proportion of total wavelet power
positive scalar

Proportion of total wavelet power in the measured 3 dB band by level, returned as a positive scalar.

ScalingPowerIn3dBBand — Proportion of total scaling filter power
positive scalar

Proportion of total scaling filter power in the measured 3 dB band by level, returned as a positive
scalar.

WaveletPowerInDWTBand — Proportion of total wavelet power
positive scalar

Proportion of total wavelet power in the theoretical DWT band by level, returned as a positive scalar.

ScalingPowerInDWTBand — Proportion of total scaling filter power
positive scalar

Proportion of total scaling filter power in the theoretical DWT band by level, returned as a positive
scalar.

Version History
Introduced in R2018a

See Also
dwtfilterbank | dwtpassbands
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qbiorthfilt
First-level dual-tree biorthogonal filters

Syntax
[LoD,HiD,LoR,HiR] = qbiorthfilt(name)

Description
[LoD,HiD,LoR,HiR] = qbiorthfilt(name) returns the first-level biorthogonal filters for
Kingsbury's Q-shift complex dual-tree transform specified by name.

Examples

DTCWT First-Level Biorthogonal Filters

Obtain the decomposition and reconstruction filters associated with the biorthogonal wavelet
nearsym5_7.

fname = 'nearsym5_7';
[LoD,HiD,LoR,HiR] = qbiorthfilt(fname);

Use the dwtfilterbank function to create a 7-level discrete wavelet transform filter bank with the
biorthogonal filters. Specify the wavelet filter type as analysis. Because the filters are not of even
lengths, extend the filters appropriately to match powers of their z-transforms.

scal(:,1) = [0 0 LoD' 0];
scal(:,2) = [0 LoR'];
wavf(:,1) = [0 HiD'];
wavf(:,2) = [0 0 HiR' 0];
fb = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',scal,...
    'CustomWaveletFilter',wavf,...
    'Level',7,...
    'FilterType','analysis');

Obtain the time-domain wavelets corresponding to the wavelet passband filters. Plot the coarsest-
scale wavelet.

[psi,t] = wavelets(fb);
plot(t,psi(end,:))
grid on
xlabel('Time')
ylabel('Amplitude')
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Input Arguments
name — First-level biorthogonal filter
'nearsym5_7' | 'nearsym13_19' | 'antonini' | 'legall'

First-level biorthogonal filter used in Kingsbury's Q-shift complex dual-tree transform, specified by
one of the values listed here.

• 'nearsym5_7' — (5,7)-tap near-orthogonal filter [1]
• 'nearsym13_19' — (13,19)-tap near-orthogonal filter [2]
• 'antonini' — (9,7)-tap Antonini filter [1]
• 'legall' — LeGall 5/3 filter [3]

Output Arguments
LoD — Lowpass analysis filter
real-valued vector

Lowpass (scaling) analysis filter associated with the biorthogonal filter name, returned as a real-
valued vector. The length of LoD does not equal the length of HiD.

HiD — Highpass analysis filter
real-valued vector
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Highpass (wavelet) analysis filter associated with the biorthogonal filter name, returned as a real-
valued vector. The length of LoD does not equal the length of HiD.

LoR — Lowpass synthesis filter
real-valued vector

Lowpass (scaling) synthesis filter associated with the biorthogonal filter name, returned as a real-
valued vector. The length of LoR does not equal the length of HiR.

HiR — Highpass synthesis filter
real-valued vector

Highpass (wavelet) synthesis filter associated with the biorthogonal filter name, returned as a real-
valued vector. The length of LoR does not equal the length of HiR.

Version History
Introduced in R2020a

References
[1] Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies. “Image Coding Using Wavelet

Transform.” IEEE Transactions on Image Processing 1, no. 2 (April 1992): 205–20. https://
doi.org/10.1109/83.136597.

[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Le Gall, D., and A. Tabatabai. “Sub-Band Coding of Digital Images Using Symmetric Short Kernel
Filters and Arithmetic Coding Techniques.” In ICASSP-88., International Conference on
Acoustics, Speech, and Signal Processing, 761–64. New York, NY, USA: IEEE, 1988. https://
doi.org/10.1109/ICASSP.1988.196696.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dualtree3 | dualtree2 | dualtree | qorthwavf

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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qfactor
CWT filter bank quality factor

Syntax
qf = qfactor(fb)

Description
qf = qfactor(fb) returns the quality factor for the wavelet bandpass filters in fb. The quality
factor is the ratio of the 3-dB bandwidth to the center frequency, where the center frequency is the
geometric mean of the bandwidth frequencies. The larger the quality factor, the more frequency
localized the wavelet. For reference, a half-band filter has a quality factor of sqrt(2).

Examples

Quality Factor of CWT Filter Bank

Create a CWT filter bank using the default analytic Morse (3,60) wavelet.

fb = cwtfilterbank;

Compute the quality factor of the filter bank.

qf = qfactor(fb)

qf = 4.6296

Create a CWT filter bank using the analytic Morse (3,10) wavelet. Compute the quality factor of the
filter bank. The analytic Morlet (3,10) wavelet is not localized in frequency as well as the Morse
(3,60) wavelet. Confirm that the quality factor of the second filter bank is smaller than the first filter
bank.

fb2 = cwtfilterbank('Timebandwidth',10);
qf2 = qfactor(fb2)

qf2 = 1.8445

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
qf — Quality factor
positive number
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Quality factor, returned as a positive real number.
Data Types: double

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cwtfilterbank | powerbw
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qfactor
DWT filter bank quality factor

Syntax
qf = qfactor(fb)

Description
qf = qfactor(fb) returns the quality factor for the discrete wavelet transform (DWT) filter bank
fb.

The quality factor qf is defined to be the geometric mean frequency of the lower and upper 3 dB
bandwidth frequencies divided by the 3 dB bandwidth. For orthogonal wavelets, the measured quality
factor approximates the theoretical value of √2.

Examples

DWT Filter Bank Quality Factor

Obtain the quality factor for the Coiflet coif4. Since the wavelet is orthogonal, confirm the quality
factor approximates the theoretical value of 2.

wvOrth = 'coif4';
fb = dwtfilterbank('Wavelet',wvOrth);
orthogAnalysis = qfactor(fb);
abs(orthogAnalysis-sqrt(2))

ans = 5.7311e-11

Compare with the quality factor for the biorthogonal wavelet bior6.8. Since the wavelet is
biorthogonal, confirm the quality factor does not approximate 2.

wvBior = 'bior6.8';
fb2 = dwtfilterbank('Wavelet',wvBior);
biorthogAnalysis = qfactor(fb2);
abs(biorthogAnalysis-sqrt(2))

ans = 0.1339

By default, fb and fb2 filter banks have the default filter type Analysis. Create two new filter banks
of filter type Synthesis for the same wavelets. Compare the quality factors with the filter type
Analysis filter banks. Confirm the quality factors using the orthogonal wavelet are equal.

fb3 = dwtfilterbank('Wavelet',wvOrth,'FilterType','Synthesis');
fb4 = dwtfilterbank('Wavelet',wvBior,'FilterType','Synthesis');
orthogSynthesis = qfactor(fb3);
abs(orthogSynthesis-sqrt(2))

ans = 5.7311e-11
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biorthogSynthesis = qfactor(fb4);
abs(biorthogSynthesis-sqrt(2))

ans = 0.1141

Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Version History
Introduced in R2018a

See Also
dwtfilterbank
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qmf
Scaling and wavelet filter

Syntax
Y = qmf(X)
Y = qmf(X,P)

Description
Y = qmf(X) changes the signs of the even-indexed elements of the reversed vector filter coefficients
X.

Y = qmf(X,P) changes the signs of the even-indexed elements of the reversed vector filter
coefficients X if P is 0. If P is 1, the signs of the odd-indexed elements are reversed. Changing P
changes the phase of the Fourier transform of the resulting wavelet filter by π radians.

Examples

Create Quadrature Mirror Filter

This example shows how to create a quadrature mirror filter associated with the db10 wavelet.

Obtain the scaling filter associated with the db10 wavelet.

sF = dbwavf("db10");

dbwavf normalizes the filter coefficients so that the norm is equal to 1/ 2. Normalize the coefficients
so that the filter has norm equal to 1.

G = sqrt(2)*sF;

Obtain the wavelet filter coefficients by using qmf. Plot the filters.

H = qmf(G);
subplot(2,1,1)
stem(G)
title("Scaling (Lowpass) Filter G")
grid on
subplot(2,1,2)
stem(H)
title("Wavelet (Highpass) Filter H")
grid on
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Save the current extension mode. Set the extension mode to Periodization. Generate a random signal
of length 64. Perform a single-level wavelet decomposition of the signal using G and H. For purposes
of reproducibility, set the random seed to the default value.

origmode = dwtmode("status","nodisplay");
dwtmode("per","nodisplay")
n = 64;
rng default
sig = randn(1,n);
[a,d] = dwt(sig,G,H);

The lengths of the approximation and detail coefficients are both 32. Confirm that the filters preserve
energy.

[sum(sig.^2) sum(a.^2)+sum(d.^2)]

ans = 1×2

   92.6872   92.6872

Compute the frequency responses of G and H. Zeropad the filters when taking the Fourier transform.

n = 128;
F = 0:1/n:1-1/n;
Gdft = fft(G,n);
Hdft = fft(H,n);
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Plot the magnitude of each frequency response.

figure
plot(F(1:n/2+1),abs(Gdft(1:n/2+1)),"r")
hold on
plot(F(1:n/2+1),abs(Hdft(1:n/2+1)),"b")
grid on
title("Frequency Responses")
xlabel("Normalized Frequency")
ylabel("Magnitude")
legend("Lowpass Filter","Highpass Filter","Location","east")
hold off

Confirm the sum of the squared magnitudes of the frequency responses of G and H at each frequency
is equal to 2.

sumMagnitudes = abs(Gdft).^2+abs(Hdft).^2;
[min(sumMagnitudes) max(sumMagnitudes)]

ans = 1×2

    2.0000    2.0000

Confirm that the filters are orthonormal.

df = [G;H];
id = df*df'
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id = 2×2

    1.0000   -0.0000
   -0.0000    1.0000

Restore the original extension mode.

dwtmode(origmode,"nodisplay")

Controlling Phase of a Quadrature Mirror Filter

This example shows the effect of setting the phase parameter of the qmf function.

Obtain the decomposition lowpass filter associated with a Daubechies wavelet.

lowfilt = wfilters("db4");

Use the qmf function to obtain the decomposition lowpass filter for a wavelet. Then, compare the
signs of the values when the qmf phase parameter is set to 0 or 1. The reversed signs indicates a
phase shift of π radians, which is the same as multiplying the DFT by eiπ.

p0 = qmf(lowfilt,0)

p0 = 1×8

    0.2304   -0.7148    0.6309    0.0280   -0.1870   -0.0308    0.0329    0.0106

p1 = qmf(lowfilt,1)

p1 = 1×8

   -0.2304    0.7148   -0.6309   -0.0280    0.1870    0.0308   -0.0329   -0.0106

Compute the magnitudes and display the difference between them. Unlike the phase, the magnitude
is not affected by the sign reversals.

abs(p0)-abs(p1)

ans = 1×8

     0     0     0     0     0     0     0     0

Input Arguments
X — Filter coefficients
vector

Filter coefficients, specified as a vector.
Data Types: single | double
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P — Phase parameter
0 (default) | 1

Phase parameter, specified as follows.

• 0 — Change signs of even-indexed elements of the reversed vector X
• 1 — Change signs of odd-indexed elements of the reversed vector X

Data Types: single | double

More About
Quadrature Mirror Filters

Let x be a finite energy signal. Two filters F0 and F1 are quadrature mirror filters (QMF) if, for any x,

y0
2 + y1

2 = x 2

where y0 is a decimated version of the signal x filtered with F0, so y0 is defined by x0 = F0(x) and y0(n)
= x0(2n). Similarly, y1 is defined by x1 = F1(x) and y1(n) = x1(2n). This property ensures a perfect
reconstruction of the associated two-channel filter banks scheme (see [1] p. 103).

For example, if F0 is a Daubechies scaling filter with norm equal to 1 and F1 = qmf(F0), then the
transfer functions F0(z) and F1(z) of the filters F0 and F1 satisfy the condition:

F0(z) 2 + F1(z) 2 = 2.

Version History
Introduced before R2006a

References
[1] Strang, Gilbert, and Truong Nguyen. Wavelets and Filter Banks. Rev. ed. Wellesley, Mass:

Wellesley-Cambridge Press, 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wfilters | dwtfilterbank

Topics
“Add Quadrature Mirror and Biorthogonal Wavelet Filters”
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qorthwavf
Kingsbury Q-shift filters

Syntax
[LoDa,LoDb,HiDa,HiDb,LoRa,LoRb,HiRa,HiRb] = qorthwavf(num)

Description
[LoDa,LoDb,HiDa,HiDb,LoRa,LoRb,HiRa,HiRb] = qorthwavf(num) returns the Kingsbury Q-
shift filters for the Q-shift complex dual-tree transform. The integer num refers to the number of
nonzero coefficients (taps) in the filter. Valid options for num are 6, 10, 14, 16, and 18. All filters are of
even lengths and the tree B filters are the time reverse of the tree A filters.

Examples

Kingsbury Q-shift Filters

Obtain the Q-shift filters for the case with 10 nonzero coefficients.

[LoDa,LoDb,HiDa,HiDb,LoRa,LoRb,HiRa,HiRb] = qorthwavf(10);

Use the dwtfilterbank function and create two discrete wavelet transform filter banks. Use the
tree A analysis filters in the first filter bank, and the tree B analysis filters in the second filter bank.

fbTreeA = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',LoDa,...
    'CustomWaveletFilter',HiDa);
fbTreeB = dwtfilterbank('Wavelet','Custom',...
    'CustomScalingFilter',LoDb,...
    'CustomWaveletFilter',HiDb);

Plot the coarsest-scale wavelets of each filter bank.

[psiA,t] = wavelets(fbTreeA);
[psiB,~] = wavelets(fbTreeB);
plot(t,psiA(end,:))
hold on
plot(t,psiB(end,:))
grid on
hold off
legend('Tree A','Tree B')
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Confirm both filter banks are orthogonal.

isOrthogonal(fbTreeA)

ans = logical
   1

isOrthogonal(fbTreeB)

ans = logical
   1

Input Arguments
num — Number of nonzero coefficients
6 | 10 | 14 | 16 | 18

Number of nonzero coefficients in the Kingsbury Q-shift filters, specified as one of the listed values.

Output Arguments
LoDa — Tree A lowpass analysis filter
real-valued vector
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Tree A lowpass (scaling) analysis filter associated with the Q-shift filter, returned as a real-valued
vector.

LoDb — Tree B lowpass analysis filter
real-valued vector

Tree B lowpass (scaling) analysis filter associated with the Q-shift filter, returned as a real-valued
vector.

HiDa — Tree A highpass analysis filter
real-valued vector

Tree A highpass (wavelet) analysis filter associated with the Q-shift filter, returned as a real-valued
vector.

HiDb — Tree B highpass analysis filter
real-valued vector

Tree B highpass (wavelet) analysis filter associated with the Q-shift filter, returned as a real-valued
vector.

LoRa — Tree A lowpass synthesis filter
real-valued vector

Tree A lowpass (scaling) synthesis filter associated with the Q-shift filter, returned as a real-valued
vector.

LoRb — Tree B lowpass synthesis filter
real-valued vector

Tree B lowpass (scaling) synthesis filter associated with the Q-shift filter, returned as a real-valued
vector.

HiRa — Tree A highpass synthesis filter
real-valued vector

Tree A highpass (wavelet) synthesis filter associated with the Q-shift filter, returned as a real-valued
vector.

HiRb — Tree B highpass synthesis filter
real-valued vector

Tree B highpass (wavelet) synthesis filter associated with the Q-shift filter, returned as a real-valued
vector.

Version History
Introduced in R2020a

References
[1] Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies. “Image Coding Using Wavelet

Transform.” IEEE Transactions on Image Processing 1, no. 2 (April 1992): 205–20. https://
doi.org/10.1109/83.136597.
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[2] Kingsbury, Nick. “Complex Wavelets for Shift Invariant Analysis and Filtering of Signals.” Applied
and Computational Harmonic Analysis 10, no. 3 (May 2001): 234–53. https://doi.org/10.1006/
acha.2000.0343.

[3] Le Gall, D., and A. Tabatabai. “Sub-Band Coding of Digital Images Using Symmetric Short Kernel
Filters and Arithmetic Coding Techniques.” In ICASSP-88., International Conference on
Acoustics, Speech, and Signal Processing, 761–64. New York, NY, USA: IEEE, 1988. https://
doi.org/10.1109/ICASSP.1988.196696.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
qbiorthfilt | dualtree3 | dualtree2 | dualtree

Topics
“Dual-Tree Complex Wavelet Transforms”
“Critically Sampled and Oversampled Wavelet Filter Banks”
“Analytic Wavelets Using the Dual-Tree Wavelet Transform”
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rbiowavf
Reverse biorthogonal spline wavelet filters

Syntax
[RF,DF] = rbiowavf(wname)

Description
[RF,DF] = rbiowavf(wname) returns the reconstruction (synthesis) and decomposition (analysis)
scaling filters, RF and DF, respectively, associated with the reverse biorthogonal wavelet specified by
wname.

Examples

Reverse Biorthogonal Scaling Filter

Obtain the reverse biorthogonal reconstruction and decomposition scaling filters for the 'rbio3.1'
wavelet. The 'rbio3.1' wavelet has three vanishing moments for the decomposition (analysis)
wavelet and one vanishing moment for the reconstruction (synthesis) wavelet.

[RF,DF] = rbiowavf('rbio3.1');

The reconstruction scaling filter, RF, and the decomposition filter, DF, are equal to the filters returned
by wfilters scaled by 2.

[LoD,HiD,LoR,HiR] = wfilters('rbio3.1');
max(abs(sqrt(2)*DF-LoD))

ans = 0

max(abs(sqrt(2)*RF-LoR))

ans = 0

Input Arguments
wname — Name of reverse biorthogonal wavelet
character vector | string scalar

Name of reverse biorthogonal wavelet, specified as 'rbioNd.Nr' where possible values for Nd and
Nr are as follows:

Nd = 1 Nr = 1 , 3 or 5
Nd = 2 Nr = 2 , 4 , 6 or 8
Nd = 3 Nr = 1 , 3 , 5 , 7 or 9
Nd = 4 Nr = 4
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Nd = 5 Nr = 5
Nd = 6 Nr = 8

Nd and Nr are the numbers of vanishing moments for the decomposition and reconstruction filters,
respectively.
Example: 'rbiowavf3.7'

Output Arguments
RF — Reconstruction filter
real-valued vector

Reconstruction filter associated with the reverse biorthogonal wavelet wname, returned as a real-
valued vector.

DF — Decomposition filter
real-valued vector

Decomposition filter associated with the reverse biorthogonal wavelet wname, returned as a real-
valued vector.

Version History
Introduced before R2006a

See Also
biorfilt | waveinfo
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read
Read values of WPTREE

Syntax
value = read(T,propname,propparam)

Description
value = read(T,propname,propparam) returns the value of the wavelet packet tree T property
specified by propname. propparam is an optional parameter depending on the value of propname.

You can specify one or more properties in any order. propname-propparam arguments must appear
after other arguments. For example, [value1,value2,value3,value4] =
read(T,propname1,propname2,propname3,propparam3,propname4,propparam4).

Examples

Wavelet Packet Tree Properties

Create a wavelet packet tree.

x = rand(1,512);
t = wpdec(x,3,"db3");
t = wpjoin(t,[4;5]);

Display the tree.

plot(t)
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Obtain the size of the data at the nodes.

sAll = read(t,"sizes")

sAll = 11×2

     1   512
     1   258
     1   258
     1   131
     1   131
     1   131
     1   131
     1    68
     1    68
     1    68
      ⋮

sNod = read(t,"sizes",[0,4,5])

sNod = 3×2
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     1   512
     1   131
     1   131

Obtain the entropy.

eAll = read(t,"ent")

eAll = 11×1

  116.3597
   45.9147
   39.1646
  -30.2074
   17.6607
   20.8560
   18.8364
 -114.8913
   11.4664
    9.2578
      ⋮

eNod = read(t,"ent",[0,4,5])

eNod = 3×1

  116.3597
   17.6607
   20.8560

Obtain the wavelet filters and wavelet coefficients.

[loD,hiD,loR,hiR] = read(t,"wfilters");
[loD1,loR1,hiD1,hiR1] = read(t,"wfilters","l","wfilters","h");
[max(abs(loD-loD1)) max(abs(hiD-hiD1)) ...
    max(abs(loR-loR1)) max(abs(hiR-hiR1))]

ans = 1×4

     0     0     0     0

dAll = read(t,"data");
dNod = read(t,"data",[4;5]);
[ent,cfs4,cfs5]  = read(t,"ent","cfs",4,"cfs",5);
[max(abs(dNod{1}-cfs4)) max(abs(dNod{2}-cfs5))]

ans = 1×2

     0     0

plot(cfs4)
title("Node 4 Wavelet Coefficients")
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Input Arguments
T — Wavelet packet tree
WPTREE object

Wavelet packet tree, specified as a WPTREE object.

propname — Wavelet packet tree property name
character vector | string scalar

Wavelet packet tree property name, specified as one of the following:

Property Name (propname) Property Parameter (propparam)
"ent", "ento" or "sizes" (see
wptree)

Without propparam or with propparam = Vector of node
indices, value contains the entropy (or optimal entropy,
or size) of the tree nodes in ascending node index order.

"cfs" With propparam = One terminal node index. value =
read(T,"cfs",NODE) is equivalent to value =
read(T,"data",NODE) and returns the coefficients of
the terminal node NODE.
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Property Name (propname) Property Parameter (propparam)
"entName", "entPar", "wavName"
(see wptree) or "allcfs"

Without propparam. value = read(T,"allcfs") is
equivalent to value = read(T,"data"). value
contains the desired information in ascending node index
order of the tree nodes.

"wfilters" (see wfilters) Without propparam or with propparam =
"d","r","l","h".

"data" Without propparam or with propparam = One terminal
node index or propparam = Column vector of terminal
node indices. In this last case, value is a cell array.
Without propparam, value contains the coefficients of
the tree nodes in ascending node index order.

Example: [value1,value2,value3,value4] =
read(T,"wavName","allcfs","cfs",4,"wfilters","h")

propparam — Property parameter
integer | vector of integers

Parameter associated with the property propname, specified as an integer or vector of integers.

Version History
Introduced before R2006a

See Also
disp | get | set | wptree | write
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readtree
(To be removed) Read wavelet packet decomposition tree from figure

Note Wavelet Analyzer will be removed in a future release. readtree is part of Wavelet Analyzer.
For recommended alternatives, see Version History.

Syntax
T = readtree(F)

Description
T = readtree(F) reads the wavelet packet decomposition tree from the figure whose handle is F.

Examples
% Create a wavelet packet tree.
x   = sin(8*pi*[0:0.005:1]);
t   = wpdec(x,3,'db2');

% Display the generated tree in a Wavelet Packet 1-D GUI window.
fig = drawtree(t);

%-------------------------------------
% Use the GUI to split or merge Nodes.
%-------------------------------------
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t = readtree(fig);
plot(t)

% Click the node (3,0), (see the plot function).

Version History
Introduced before R2006a

R2022b: To be removed
Warns starting in R2022b

The Wavelet Analyzer app is no longer recommended and will be removed in a future release.
readtree is part of Wavelet Analyzer.

• For time-frequency analysis, use the Wavelet Time-Frequency Analyzer app.
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• For wavelet signal denoising, use the Wavelet Signal Denoiser app.
• For signal multiresolution analysis, use the Signal Multiresolution Analyzer app.
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reflect
Laurent polynomial or Laurent matrix reflection

Syntax
Q = reflect(P)

Description
Q = reflect(P) returns the reflection of the Laurent polynomial or the Laurent matrix specified by
P. If P is a Laurent matrix, the function reflects the matrix elements.

Note The laurentPolynomial and laurentMatrix objects have their own versions of reflect.
The input data type determines which version is executed.

Examples

Laurent Polynomial Reflection

Create a Laurent polynomial a(z) = 5z6 + 4z5 + 3z4 + 2z3.

a = laurentPolynomial(Coefficients=[5 4 3 2],MaxOrder=6)

a = 
  laurentPolynomial with properties:

    Coefficients: [5 4 3 2]
        MaxOrder: 6

Obtain the reflection of a(z). Confirm the maximum order of the reflection is –3.

b = reflect(a)

b = 
  laurentPolynomial with properties:

    Coefficients: [2 3 4 5]
        MaxOrder: -3

Laurent Matrix Reflection

Create two Laurent polynomials:

• a(z) = − z3 + 2z2− 3z + 4

 reflect
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• b(z) = 5z2− z − z−1 + z−2

lpA = laurentPolynomial(Coefficients=[-1 2 -3 4],MaxOrder=3);
lpB = laurentPolynomial(Coefficients=[5 -1 0 -1 1],MaxOrder=1);

Create the Laurent matrix 
a z 0

1 b z
.

lmat = laurentMatrix(Elements={lpA,0;1,lpB});

Obtain the reflection of the matrix. Inspect the diagonal elements of the reflection.

lmatref = reflect(lmat);
lmatref.Elements{1,1}

ans = 
  laurentPolynomial with properties:

    Coefficients: [4 -3 2 -1]
        MaxOrder: 0

lmatref.Elements{2,2}

ans = 
  laurentPolynomial with properties:

    Coefficients: [1 -1 0 -1 5]
        MaxOrder: 3

Input Arguments
P — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Reflection
laurentPolynomial object | laurentMatrix object

Reflection of a Laurent polynomial or a Laurent matrix, returned as a laurentPolynomial object or
a laurentMatrix object. The reflection of a Laurent polynomial P(z) is the Laurent polynomial Q(z)
= P(1/z).

Version History
Introduced in R2021b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
uminus

Objects
laurentMatrix | laurentPolynomial

 reflect
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removeLabelDefinition
Remove label definition from labeled signal set

Syntax
removeLabelDefinition(lss,lblname)

Description
removeLabelDefinition(lss,lblname) removes the label definition lblname from the labeled
signal set lss. If you want to remove a sublabel, specify lblname as a two-element string array or
two-element cell array of character vectors:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Examples

Remove Label Definition

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Retrieve a hierarchical list of labels and sublabels.

labelDefinitionsHierarchy(lss)

ans = 
    'WhaleType
       Sublabels: []
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: TrillPeaks
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     '

Remove the sublabel that labels peaks in the trill regions.

removeLabelDefinition(lss,{'TrillRegions' 'TrillPeaks'})

labelDefinitionsHierarchy(lss)

ans = 
    'WhaleType
       Sublabels: []
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: []
     '

Remove the label that specifies the whale type.

removeLabelDefinition(lss,"WhaleType")

getLabelNames(lss)

ans = 2x1 string
    "MoanRegions"
    "TrillRegions"

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.
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Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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removeMembers
Remove members from labeled signal set

Syntax
removeMembers(lss,midxvect)

Description
removeMembers(lss,midxvect) removes the members specified in midxvect from the labeled
signal set lss.

Examples

Remove Member

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Remove the second member of the set.

removeMembers(lss,2)
lss

lss = 
  labeledSignalSet with properties:

             Source: {[79572x1 double]}
         NumMembers: 1
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [1x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
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 Use setLabelValue to add data to the set.

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midxvect — Subset member row numbers
vector of positive integers

Subset member row numbers, specified as a vector of positive integers. Each element of midxvect
specifies a member row number as it appears in the “Labels” on page 1-0  table of the
labeledSignalSet object lss.
Example: [2 3 5 7 11 13 17] chooses a subset of signals indexed by prime numbers.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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removePointValue
Remove row from point label

Syntax
removePointValue(lss,midx,lblname)
removePointValue(lss,midx,lblname,'LabelRowIndex',ridx)
removePointValue(lss,midx,lblname,'SublabelRowIndex',sridx)
removePointValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx)

Description
removePointValue(lss,midx,lblname) removes all rows of the point label lblname for the
member specified by midx.

• If lblname is a character vector or a string scalar, the function targets a parent label.
• If lblname is a two-element string array or a two-element cell array of character vectors, the

function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of a point label.
• Removes all the points of the sublabel.

removePointValue(lss,midx,lblname,'LabelRowIndex',ridx) removes a row, specified by
ridx, of the point label lblname for the member midx.

If lblname is a two-element string array or a two-element cell array of character vectors, the
function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of a point label.
• Removes all the points of the sublabel contained in row ridx.

removePointValue(lss,midx,lblname,'SublabelRowIndex',sridx) removes the sublabel
row specified by sridx. In this case, lblname must be a two-element string array or a two-element
cell array of character vectors:

• The first element is the name of a parent attribute label.
• The second element is the sublabel name of a point label.

removePointValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx) removes the sublabel row specified by sridx of the ROI or point label row specified by ridx.
In this case, lblname must be a two-element string array or a two-element cell array of character
vectors:

• The first element is the name of a parent ROI or point label.
• The second element is the sublabel name of a point label.

 removePointValue
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Examples

Remove Point Value

Load a labeled signal set containing recordings of whale songs. Get the names of the labels and the
number of members.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

nm = lss.NumMembers;

Define a point label associated with the signal maximum.

themax = signalLabelDefinition('Maximum','LabelType','point', ...
    'LabelDataType','numeric')

themax = 
  signalLabelDefinition with properties:

                      Name: "Maximum"
                 LabelType: "point"
             LabelDataType: "numeric"
        ValidationFunction: []
    PointLocationsDataType: "double"
              DefaultValue: []
                 Sublabels: [0x0 signalLabelDefinition]
                       Tag: ""
               Description: ""

 Use labeledSignalSet to create a labeled signal set.

addLabelDefinitions(lss,themax)

Find the maxima of the signals and add their values to the labeled set.

figure
for idx = 1:nm
    sg = getSignal(lss,idx);
    [mx,ix] = max(sg);
    setLabelValue(lss,idx,'Maximum',ix,mx)
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    subplot(nm,1,idx)
    plot((0:length(sg)-1)/lss.SampleRate,sg,ix/lss.SampleRate,mx,'*')
end

Verify that the set includes the new point label.

getLabelValues(lss)

ans=2×4 table
                 WhaleType    MoanRegions    TrillRegions      Maximum  
                 _________    ___________    ____________    ___________

    Member{1}      blue       {3x2 table}    {1x3 table}     {1x2 table}
    Member{2}      blue       {3x2 table}    {1x3 table}     {1x2 table}

Remove the 'Maximum' value for the first member of the set. Verify that the label is empty for the
first member.

removePointValue(lss,1,'Maximum')

getLabelValues(lss,1)

ans=1×4 table
                 WhaleType    MoanRegions    TrillRegions      Maximum  
                 _________    ___________    ____________    ___________

    Member{1}      blue       {3x2 table}    {1x3 table}     {0x2 table}
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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removeRegionValue
Remove row from ROI label

Syntax
removeRegionValue(lss,midx,lblname)
removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx)
removeRegionValue(lss,midx,lblname,'SublabelRowIndex',sridx)
removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx)

Description
removeRegionValue(lss,midx,lblname) removes all rows of the ROI label lblname for the
member specified by midx.

• If lblname is a character vector or a string scalar, the function targets a parent label.
• If lblname is a two-element string array or a two-element cell array of character vectors, the

function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of an ROI label.
• Removes all the regions of the sublabel.

removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx) removes a row, specified by
ridx, of the ROI label lblname for the member midx.

If lblname is a two-element string array or a two-element cell array of character vectors, the
function:

• Interprets the first element as the name of a parent label.
• Interprets the second element as the sublabel name of an ROI label.
• Removes all the regions of the sublabel contained in row ridx.

removeRegionValue(lss,midx,lblname,'SublabelRowIndex',sridx) removes the sublabel
row specified by sridx. In this case, lblname must be a two-element string array or a two-element
cell array of character vectors:

• The first element is the name of a parent attribute label.
• The second element is the sublabel name of an ROI label.

removeRegionValue(lss,midx,lblname,'LabelRowIndex',ridx,'SublabelRowIndex',
sridx) removes the sublabel row specified by sridx of the ROI or point label row specified by ridx.
In this case, lblname must be a two-element string array or a two-element cell array of character
vectors:

• The first element is the name of a parent ROI or point label.
• The second element is the sublabel name of an ROI label.

 removeRegionValue
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Examples

Remove Region Value

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Get the names and values of the labels in the set. For the following, concentrate on the second
member of the set.

lbldefs = getLabelValues(lss)

lbldefs=2×3 table
                 WhaleType    MoanRegions    TrillRegions
                 _________    ___________    ____________

    Member{1}      blue       {3x2 table}    {1x3 table} 
    Member{2}      blue       {3x2 table}    {1x3 table} 

idx = 2;

Retrieve the moan and trill regions. Use a signalMask (Signal Processing Toolbox) object to plot the
signal and highlight the moans and trills.

mvals = getLabelValues(lss,idx,"MoanRegions");
tvals = getLabelValues(lss,idx,"TrillRegions");

tb = [mvals;tvals];
tb.Value = categorical( ...
    [repmat("moan",height(mvals),1);repmat("trill",height(tvals),1)], ...
    ["moan" "trill"]);

sm = signalMask(tb,SampleRate=lss.SampleRate);

plotsigroi(sm,getSignal(lss,idx))
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Remove the second moan from the labels. Plot the signal again. Highlight the moans and trills.

removeRegionValue(lss,idx,"MoanRegions",LabelRowIndex=2)

mvals = getLabelValues(lss,idx,"MoanRegions");

tb = [mvals;tvals];
tb.Value = categorical( ...
    [repmat("moan",height(mvals),1);repmat("trill",height(tvals),1)], ...
    ["moan" "trill"]);

sm = signalMask(tb,SampleRate=lss.SampleRate);

plotsigroi(sm,getSignal(lss,idx))
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
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• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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rescale
Rescale Laurent polynomial

Syntax
Q = rescale(P,c)

Description
Q = rescale(P,c) scales the coefficients of the Laurent polynomial P by the nonzero scalar c.

Examples

Rescale Laurent Polynomial

Create the Laurent polynomial a(z) = 4z + 6 + 10z−1 + 14z−2 + 22z−3 + 26z−4.

a = laurentPolynomial(Coefficients=[4 6 10 14 22 26],MaxOrder=1);

Divide the coefficients of a(z) by 2.

b = rescale(a,1/2)

b = 
  laurentPolynomial with properties:

    Coefficients: [2 3 5 7 11 13]
        MaxOrder: 1

Input Arguments
P — Laurent polynomial
laurentPolynomial object

Laurent polynomial, specified as a laurentPolynomial object.

c — Scale factor
nonzero scalar

Scale factor, specified as a nonzero scalar.
Example: Q = rescale(P,5) multiplies the coefficients of P by 5.
Data Types: double
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Output Arguments
Q — Scaled Laurent polynomial
laurentPolynmial object

Scaled Laurent polynomial, returned as a laurentPolynmial object.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
laurentMatrix | laurentPolynomial
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resetLabelValues
Reset labels to default values

Syntax
resetLabelValues(lss)
resetLabelValues(lss,midx)

resetLabelValues(lss,midx,lblname)
resetLabelValues( ___ ,'LabelRowIndex',ridx)

Description
resetLabelValues(lss) resets all label values for all members of the labeled signal set lss.

resetLabelValues(lss,midx) resets all label values for the signals in the member specified by
midx.

resetLabelValues(lss,midx,lblname) resets the values of label lblname for the signals in the
member specified by midx. To reset a sublabel, make lblname a two-element string array or a two-
element cell array of character vectors, with the first element containing the parent label name and
the second element containing the sublabel name.

By default, the function resets all sublabels of a parent label. To target a sublabel of an ROI or point
parent label, specify the parent label row index using ridx.

resetLabelValues( ___ ,'LabelRowIndex',ridx) specifies the row index of the ROI or point
parent label for which you want to reset a sublabel value.

Examples

Reset Label Values

Load a labeled signal set containing recordings of whale songs. Get the names of the labels.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.
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getLabelNames(lss)

ans = 3x1 string
    "WhaleType"
    "MoanRegions"
    "TrillRegions"

Get the label values corresponding to the trill regions for the second signal in the set.

idx = 2;
getLabelValues(lss,idx,'TrillRegions')

ans=1×2 table
     ROILimits      Value
    ____________    _____

    11.1      13    {[1]}

Reset the values. Verify that 'TrillRegions' becomes an empty array.

resetLabelValues(lss,idx,'TrillRegions')

getLabelValues(lss,idx,'TrillRegions')

ans =

  0x2 empty table

getLabelValues(lss,idx)

ans=1×3 table
                 WhaleType    MoanRegions    TrillRegions
                 _________    ___________    ____________

    Member{2}      blue       {3x2 table}    {0x3 table} 

Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.
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lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:

• The first element is the name of the parent label.
• The second element is the name of the sublabel.

Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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scal2frq
Scale to frequency

Syntax
frq = scal2frq(A,wname,delta)
frq = scal2frq(A,wname)

Description
frq = scal2frq(A,wname,delta) returns the pseudo-frequencies corresponding to the scales
given by A and the wavelet specified by wname and the sampling period delta. The output frq is
real-valued and has the same dimensions as A.

frq = scal2frq(A,wname) is equivalent to frq = scal2frq(A,wname,1).

Examples

Scales and Pseudo-Frequencies

This example shows how the pseudo-frequency changes as you double the scale.

Construct a vector of scales with 10 voices per octave over five octaves.

vpo = 10;
no = 5;
a0 = 2^(1/vpo);
ind = 0:vpo*no;
sc = a0.^ind;

Verify that the range of scales covers five octaves.

log2(max(sc)/min(sc))

ans = 5.0000

If you plot the scales, you can use a data cursor to confirm that the scale at index n + 10 is twice the
scale at index n. Set the y-ticks to mark each octave.

plot(ind,sc)
title('Scales')
xlabel('Index')
ylabel('Scale')
grid on
set(gca,'YTick',2.^(0:5))
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Convert the scales to pseudo-frequencies for the real-valued Morlet wavelet. First, assume the
sampling period is 1.

pf = scal2frq(sc,"morl");
T = [sc(:) pf(:)];
T = array2table(T,'VariableNames',{'Scale','Pseudo-Frequency'});
disp(T)

    Scale     Pseudo-Frequency
    ______    ________________

         1          0.8125    
    1.0718         0.75809    
    1.1487         0.70732    
    1.2311         0.65996    
    1.3195         0.61576    
    1.4142         0.57452    
    1.5157         0.53605    
    1.6245         0.50015    
    1.7411         0.46666    
    1.8661         0.43541    
         2         0.40625    
    2.1435         0.37904    
    2.2974         0.35366    
    2.4623         0.32998    
     2.639         0.30788    
    2.8284         0.28726    
    3.0314         0.26803    
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     3.249         0.25008    
    3.4822         0.23333    
    3.7321          0.2177    
         4         0.20313    
    4.2871         0.18952    
    4.5948         0.17683    
    4.9246         0.16499    
     5.278         0.15394    
    5.6569         0.14363    
    6.0629         0.13401    
     6.498         0.12504    
    6.9644         0.11666    
    7.4643         0.10885    
         8         0.10156    
    8.5742        0.094761    
    9.1896        0.088415    
    9.8492        0.082494    
    10.556         0.07697    
    11.314        0.071816    
    12.126        0.067006    
    12.996        0.062519    
    13.929        0.058332    
    14.929        0.054426    
        16        0.050781    
    17.148        0.047381    
    18.379        0.044208    
    19.698        0.041247    
    21.112        0.038485    
    22.627        0.035908    
    24.251        0.033503    
    25.992         0.03126    
    27.858        0.029166    
    29.857        0.027213    
        32        0.025391    

Assume that data is sampled at 100 Hz. Construct a table with the scales, the corresponding pseudo-
frequencies, and periods. Since there are 10 voices per octave, display every tenth row in the table.
Observe that for each doubling of the scale, the pseudo-frequency is cut in half.

Fs = 100;
DT = 1/Fs;
pf = scal2frq(sc,"morl",DT);
T = [sc(:)/Fs pf(:) 1./pf(:)];
T = array2table(T,'VariableNames',{'Scale','Pseudo-Frequency','Period'});
T(1:vpo:end,:)

ans=6×3 table
    Scale    Pseudo-Frequency     Period 
    _____    ________________    ________

    0.01           81.25         0.012308
    0.02          40.625         0.024615
    0.04          20.313         0.049231
    0.08          10.156         0.098462
    0.16          5.0781          0.19692
    0.32          2.5391          0.39385
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Note the presence of the Δt = 1
Fs factor in scal2frq. This is necessary in order to achieve the

proper scale-to-frequency conversion. The Δt is needed to adjust the raw scales properly. For
example, with:

f = scal2frq(1,'morl',0.01);

You are really asking what happens to the center frequency of the mother Morlet wavelet, if you
dilate the wavelet by 0.01. In other words, what is the effect on the center frequency if instead of
ψ(t), you look at ψ(t/0 . 01). The Δt provides the correct adjustment factor on the scales.

You could have obtained the same results by first converting the scales to their adjusted sizes and
then using scal2frq without specifying Δt.

scadjusted = sc.*0.01;
pf2 = scal2frq(scadjusted,'morl');
max(pf-pf2)

ans = 0

Plot CWT with Frequencies in a Contour Plot

The example shows how to create a contour plot of the CWT using approximate frequencies in Hz.

Create a signal consisting of two sine waves with disjoint support in additive noise. Assume the signal
is sampled at 1 kHz.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = 1.5*cos(2*pi*100*t).*(t<0.25)+1.5*cos(2*pi*50*t).*(t>0.5 & t<=0.75);
x = x+0.05*randn(size(t));

Obtain the CWT of the input signal and plot the result.

[cfs,f] = cwt(x,Fs);
contour(t,f,abs(cfs).^2); 
axis tight;
grid on;
xlabel('Time');
ylabel('Approximate Frequency (Hz)');
title('CWT with Time vs Frequency');
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Input Arguments
A — Scales
positive real-valued vector

Scales, specified as a positive real-valued vector.

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. See wavefun for more information.

delta — Sampling period
1 (default) | positive real-valued scalar

Sampling period, specified as a real-valued scalar.
Example: pf = scal2frq([1:5],"db4",0.01)

More About
Pseudo-Frequencies

There is only an approximate answer for the relationship between scale and frequency.
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In wavelet analysis, the way to relate scale to frequency is to determine the center frequency of the
wavelet, Fc, and use the following relationship:

Fa =
Fc
a

where

• a is a scale.
• Fc is the center frequency of the wavelet in Hz.
• Fa is the pseudo-frequency corresponding to the scale a, in Hz.

The idea is to associate with a given wavelet a purely periodic signal of frequency Fc. The frequency
maximizing the Fourier transform of the wavelet modulus is Fc. The centfrq function computes the
center frequency for a specified wavelet. From the above relationship, it can be seen that scale is
inversely proportional to pseudo-frequency. For example, if the scale increases, the wavelet becomes
more spread out, resulting in a lower pseudo-frequency.

Some examples of the correspondence between the center frequency and the wavelet are shown in
the following figure.
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Center Frequencies for Real and Complex Wavelets
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As you can see, the center frequency-based approximation (red) captures the main wavelet
oscillations (blue). The center frequency is a convenient and simple characterization of the dominant
frequency of the wavelet.

Version History
Introduced before R2006a

References
[1] Abry, P. Ondelettes et turbulence. Multirésolutions, algorithmes de décomposition, invariance

d'échelles et signaux de pression. Diderot, Editeurs des sciences et des arts, Paris, 1997.

See Also
centfrq
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scales
CWT filter bank scales

Syntax
rs = scales(fb)
[rs,cs] = scales(fb)

Description
rs = scales(fb) returns the raw (unitless) scales used in creating the wavelet bandpass filters.
Scales are ordered from finest to coarsest.

[rs,cs] = scales(fb) returns the wavelet scales converted to units of the sampling frequency or
sampling period.

Examples

CWT Filter Bank Scales

Create a CWT filter bank with sampling period equal to 0.001 seconds.

fb = cwtfilterbank('SamplingPeriod',seconds(0.001));

Obtain the raw and converted scales used in creating the wavelet bandpass filters.

[rs,cs] = scales(fb);

Obtain the filter bank bandpass center periods.

P = centerPeriods(fb);

Compare the finest converted scale with the smallest bandpass center period normalized by the
sampling period.

min(cs)

ans = 2.3035

min(P)/seconds(0.001)

ans = 2.3035

The scales should increase by a factor of approximately 21/ |NV|, where NV is the number of voices
per octave. The default value of NV is 10. Plot the ratios of successive scales and compare with 21/10.

len = length(rs);
plot(rs(2:len)./rs(1:len-1),'rx-')
hold on
plot(1:len-1,2^(1/10)*ones(1,len-1),'b')
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title('Successive Scale Ratios')
legend('Scale Ratio','Scale Factor')

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
rs — Raw scales
real-valued vector

Raw scales used in creating the wavelet bandpass filters, returned as a real-valued vector of length
Ns, where Ns is the number of wavelet bandpass frequencies (equal to the number of scales).
Data Types: double

cs — Converted scales
real-valued vector
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Converted scales used in creating the wavelet bandpass filters, returned as a real-valued vector of
length Ns, where Ns is the number of wavelet bandpass frequencies (equal to the number of scales).
cs is in units of the sampling frequency or sampling period.
Data Types: double

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cwtfilterbank | centerPeriods | centerFrequencies
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scaleSpectrum
Scale-averaged wavelet spectrum

Syntax
savgp = scaleSpectrum(fb,x)
savgp = scaleSpectrum(fb,cfs)
[savgp,scidx] = scaleSpectrum( ___ )

[ ___ ] = scaleSpectrum( ___ ,Name,Value)

scaleSpectrum( ___ )

Description
savgp = scaleSpectrum(fb,x) returns the scale-averaged wavelet power spectrum of the signal
x using the CWT filter bank fb. By default, savgp is obtained by scale-averaging the magnitude-
squared scalogram over all scales.

savgp = scaleSpectrum(fb,cfs) returns the scale-averaged wavelet spectrum for the CWT
coefficients cfs.

Note When using this syntax, the power of the scale-averaged wavelet spectrum is normalized to
equal the variance of the last signal processed by the filter bank object function wt.

[savgp,scidx] = scaleSpectrum( ___ ) also returns the scale indices over which the scale-
averaged wavelet spectrum is computed. If you do not specify FrequencyLimits or PeriodLimits,
scidx is a vector from 1 to the number of scales.

[ ___ ] = scaleSpectrum( ___ ,Name,Value) specifies additional options using name-value pair
arguments. These arguments can be added to any of the previous input syntaxes. For example,
'Normalization','none' specifies no normalization of the scale-averaged wavelet spectrum.

scaleSpectrum( ___ ) with no output arguments plots the scale-averaged wavelet power spectrum
in the current figure.

Examples

Scale-Averaged Wavelet Spectrum

Load an audio file containing a fragment of Handel's "Hallelujah Chorus" sampled at 8192 Hz.

load handel         % To hear, type soundsc(y,Fs)

Create a CWT filter bank that can be applied to the signal. Use the default Morse wavelet.

fb = cwtfilterbank('SignalLength',length(y),'SamplingFrequency',Fs);
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Plot the scalogram and scale-averaged wavelet power spectrum using the default settings.

scaleSpectrum(fb,y)

Normalize Scale-Averaged Wavelet Spectrum

Load a time series of solar magnetic field magnitudes recorded hourly over the south pole of the sun
by the Ulysses spacecraft from 21:00 UT on December 4, 1993 to 12:00 UT on May 24, 1994. See [2]
pp. 218–220 for a complete description of this data. Create a CWT filter bank that can be applied to
the data. Plot the scalogram and the scale-averaged wavelet spectrum.

load solarMFmagnitudes
fb = cwtfilterbank('SignalLength',length(sm),'SamplingPeriod',hours(1));
scaleSpectrum(fb,sm)
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Obtain the scale-averaged wavelet spectrum of the signal using default values. By default,
scaleSpectrum normalizes the power of the scale-averaged wavelet spectrum to equal the variance
of the signal. Verify that the sum of the spectrum equals the variance of the signal.

savg = scaleSpectrum(fb,sm);
[var(sm) sum(savg)]

ans = 1×2

    0.0448    0.0447

Obtain the scale-averaged wavelet spectrum of the signal, but instead normalize the power as a
probability density function. Verify that the sum is equal to 1.

savg = scaleSpectrum(fb,sm,'Normalization','pdf');
sum(savg)

ans = 1.0000

If you set SpectrumType to 'density', scaleSpectrum normalizes the weighted integral of the
wavelet spectrum according to the value of Normalization. In this case, the spectrum mimics a
probability density function whose integral, numerically evaluated, equals the value specified by
Normalization.

Plot the scalogram and the scale-averaged wavelet spectrum with spectrum type 'density' and
'pdf' normalization.
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figure
scaleSpectrum(fb,sm,'SpectrumType','density','Normalization','pdf')

To confirm the integral of the spectrum equals 1, first obtain the scale-averaged wavelet spectrum
with 'density' spectrum type and 'pdf' normalization.

savg = scaleSpectrum(fb,sm,'SpectrumType','density','Normalization','pdf');

By default, the filter bank uses the analytic Morse (3,60) wavelet. Obtain the admissibility constant
for the wavelet and numerically integrate the wavelet spectrum using the trapezoidal rule. Confirm
that the integral equals 1.

ga = 3;
tbw = 60;

be = tbw/ga;
anorm = 2*exp(be/ga*(1+(log(ga)-log(be))));
cPsi = anorm^2/(2*ga).*(1/2)^(2*(be/ga)-1)*gamma(2*be/ga);

numInt = 2/cPsi*1/length(sm)*trapz(1:length(savg),savg)

numInt = 1

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object
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Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

x — Input data
vector

Input data, specified as a real- or complex-valued vector. The input data x must have at least four
samples.
Data Types: single | double
Complex Number Support: Yes

cfs — CWT coefficients
matrix | 3-D array

CWT coefficients, specified as a 2-D matrix or as an M-by-N-by-2 array. cfs should be the output of
the wt object function of the CWT filter bank fb.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: scaleSpectrum(fb,x,'FrequencyLimits',[0.2 0.4]) returns the scale-averaged
wavelet spectrum averaged over the frequency limits [0.2 0.4].

Normalization — Normalization
'var' (default) | 'pdf' | 'none'

Normalization of the scale-averaged wavelet spectrum, specified as a comma-separated pair
consisting of 'Normalization' and one of the following:

• 'var' — Normalize to equal the variance of the time series x. If you provide the cfs input, the
scaleSpectrum function uses the variance of the last time series processed by the filter bank
object function wt.

• 'pdf' — Normalize to equal 1.
• 'none' — No normalization is applied.

SpectrumType — Type of wavelet spectrum
'power' (default) | 'density'

Type of wavelet spectrum to return, specified as a comma-separated pair consisting of
'SpectrumType' and either 'power' or 'density'. If specified as 'power', the averaged sum of
the scale-averaged wavelet spectrum over all scales is normalized according to the value specified in
'Normalization'. If specified as 'density', the weighted integral of the wavelet spectrum over all
scales is normalized according to the value specified in 'Normalization'.

FrequencyLimits — Frequency limits
two-element vector
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Frequency limits over which the magnitude-squared scalogram is averaged, specified as a comma-
separated pair consisting of 'FrequencyLimits' and a two-element vector with nondecreasing
elements. The FrequencyLimits values must lie between the lowest and highest center frequencies
returned by the centerFrequencies object function of fb. The base 2 logarithm of the ratio of the
maximum frequency to the minimum frequency must be greater than or equal to 1/NV, where NV is
the value of the 'VoicesPerOctave' property of the filter bank fb.

If a region of the specified limits falls outside the frequency limits of the filter bank fb,
scaleSpectrum truncates computations to within the range specified by
centerFrequencies(fb). FrequencyLimits cannot be completely outside of the Nyquist range.

PeriodLimits — Period limits
two-element vector

Period limits over which the magnitude-squared scalogram is averaged, specified as a comma-
separated pair consisting of 'PeriodsLimits' and a two-element vector with nondecreasing
durations. The elements of PeriodLimits agree in type and format with the 'SamplingPeriod'
property of the filter bank fb. The SamplingPeriod values must lie between the lowest and highest
center periods returned by the centerPeriods object function of fb. The base 2 logarithm of the
ratio of the minimum period to the maximum period must be less than or equal to -1/NV, where NV is
the value of the 'VoicesPerOctave' property of the filter bank fb.

If a region of the specified limits falls outside the period limits of the filter bank fb, scaleSpectrum
truncates computations to within the range specified by centerPeriods(fb). SamplingPeriod
cannot be completely outside the Nyquist range of [2*Ts,N*Ts], where Ts is the 'SamplingPeriod'
and N is the signal length.

Output Arguments
savgp — Scale-averaged wavelet power spectrum
real-valued vector | real-valued 3-D array

Scale-averaged wavelet power spectrum, returned as a real-valued vector or real-valued 3-D array. If
x is real-valued, savgp is a 1-by-N vector where N is the length of x. If x is complex-valued, savgp is
a 1-by-N-by-2 array, where the first page is the scale-averaged wavelet spectrum for the positive
scales (analytic part or counterclockwise component), and the second page is the scale-averaged
wavelet spectrum for the negative scales (anti-analytic part or clockwise component).

scidx — Scale indices
vector

Scale indices over which the scale-average wavelet spectrum is computed, returned as a vector. If you
do not specify 'FrequencyLimits' or 'PeriodLimits', scidx is a vector from 1 to the number of
scales.

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• PeriodLimits name-value pair is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cwtfilterbank | timeSpectrum
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scalingfunctions
DWT filter bank time-domain scaling functions

Syntax
phi = scalingfunctions(fb)
[phi,t] = scalingfunctions(fb)

Description
phi = scalingfunctions(fb) returns the time-centered scaling functions for each level of the
discrete wavelet transform (DWT) filter bank fb.

[phi,t] = scalingfunctions(fb) returns the sampling instants, t.

Examples

DWT Filter Bank Scaling Functions

Create a seven-level DWT filter bank for a length 2048 signal, using the Daubechies db2 wavelet and
a sampling frequency of 1 kHz.

wv = "db2";
len = 2048;
Fs = 1e3;
lev = 7;
fb = dwtfilterbank('SignalLength',len,'Wavelet',wv,'Level',lev,'SamplingFrequency',Fs);

Plot the scaling functions for each level of the filter bank.

[phi,t] = scalingfunctions(fb);
plot(t,phi')
grid on
xlim([-len/2*1e-3 len/2*1e-3])
title('Scaling Functions')
legend('A1','A2','A3','A4','A5','A6','A7')
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
phi — Time-centered scaling functions
real-valued matrix

Time-centered scaling functions of the filter bank fb, returned as a real-valued L-by-N matrix, where
L is the filter bank Level and N is the SignalLength. The scaling functions are ordered in phi from
the finest scale resolution to the coarsest scale resolution.

t — Sampling instants
real-valued vector

Sampling instants, returned as a real-valued vector t of length N, where N is the filter bank
SignalLength. Sampling instants lie in the interval −½ N DT, ½ N DT , where DT is the filter bank
sampling period (reciprocal of the filter bank sampling frequency).
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Version History
Introduced in R2018a

See Also
dwtfilterbank | wavelets | freqz
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1-1245



scattergram
Visualize scattering or scalogram coefficients

Syntax
img = scattergram(sf,S)
img = scattergram(sf,U)
img = scattergram( ___ ,Name,Value)
scattergram( ___ )

Description
img = scattergram(sf,S) returns the scattergram as a matrix for the first-order scattering
coefficients, S. The matrix S is the output of scatteringTransform computed using the wavelet
time scattering network, sf.

img = scattergram(sf,U) returns the scattergram as a matrix for the first-order scalogram
coefficients, U. The matrix U is the output of scatteringTransform computed using the wavelet
time scattering network, sf.

img = scattergram( ___ ,Name,Value) returns the scattergram with additional options specified
by one or more Name,Value pair arguments. You can use this syntax with any of the input syntaxes
shown previously.

scattergram( ___ ) with no output arguments plots the scattergram in the current figure. You can
use any of the input syntaxes shown previously.

Examples

Visualize Scattergram

Load an ECG signal sampled at 180 Hz. Create a wavelet time scattering network that can be used
with the signal.

load wecg
Fs = 180;
sf = waveletScattering('SignalLength',numel(wecg),...
    'SamplingFrequency',Fs);

Calculate the scattering transform of the signal.

[S,U] = scatteringTransform(sf,wecg);

Visualize the scattergram for the first-order scattering and scalogram coefficients.

scattergram(sf,S,'FilterBank',1)
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figure
scattergram(sf,U,'FilterBank',1)
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Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

S — Scattering coefficients
cell array

Scattering coefficients, specified as a cell array. S is the output of scatteringTransform computed
using the scattering network, sf. For more information, see scatteringTransform.

U — Scalogram coefficients
cell array

Scalogram coefficients, specified as a cell array. U is the output of scatteringTransform computed
using the scattering network, sf. For more information, see scatteringTransform.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FilterBank',1 specifies the first filter bank.

FilterBank — Filter bank index
positive integer between 1 and the number of filter banks in sf inclusive

Filter bank index, specified as a positive number between 1 and the number of filter banks in sf
inclusive. scattergram returns the scattergram for the specified filter bank in sf. The number of
filter banks in sf is equal to the number of specified QualityFactors in sf.

If FilterBank is greater than 1, scattergram averages the scalogram or scattering coefficients
over all paths terminating at each wavelet bandpass filter. To obtain paths with a common parent, use
the 'Parent' name-value pair.

P — Path parent index
nonnegative integer

Path parent index, specified as a nonnegative integer. The scalar P is a nonnegative integer
representing the P-th wavelet filter at the filter bank FilterBank − 1. scattergram returns the
scattergram for the path at the specified filter bank with parent P. If FilterBank is equal to 1, the
zeroth filter bank corresponds to the input signal in the case of the scalogram coefficients and the
lowpass filtering of the input signal with the scaling function in the case of the scattering coefficients.
Lower values of P correspond to wavelets with higher bandpass frequencies.

If you specify P, you must specify the FilterBank name-value pair.

If you specify a value for P which results in a single child, the output img is a vector. The scattergram
of a single child is a line plot. If you specify a value for P that results in no children, scattergram
returns the scattergram for the filter bank specified by FilterBank.

Output Arguments
img — Scattergram
real-valued matrix | real-valued vector

Scattergram, returned as a real-valued matrix or vector. If you use the Parent name-value pair and
specify a value which results in a single child, img is a vector. If the parent has more than one child,
img is a matrix.

Version History
Introduced in R2018b

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
waveletScattering
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scatteringTransform
Wavelet 1-D scattering transform

Syntax
s = scatteringTransform(sf,x)
[s,u] = scatteringTransform(sf,x)

Description
s = scatteringTransform(sf,x) returns the wavelet 1-D scattering transform of x with
metadata for the wavelet time scattering network, sf. x is a real-valued vector, matrix, or 3-D array.

The precision of the scattering coefficients depends on the precision specified in the scattering
network sf.

[s,u] = scatteringTransform(sf,x) also returns the scalogram coefficients for each of the
scattering orders.

The precision of the scalogram coefficients depends on the precision specified in the scattering
network sf.

Examples

Scattering Transform of ECG Signal

This example shows how to return the wavelet 1-D scattering transform of a real-valued signal.

Load an ECG signal sampled at 180 Hz.

load wecg
Fs = 180;

Create a wavelet time scattering network to apply to the signal. Compute the scattering transform of
the signal.

sf = waveletScattering('SignalLength',numel(wecg),...
    'SamplingFrequency',Fs)

sf = 
  waveletScattering with properties:

          SignalLength: 2048
       InvarianceScale: 5.6889
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 180
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0
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[S,U] = scatteringTransform(sf,wecg);

Plot the signal and the zeroth-order scattering coefficients. Note that the invariance scale is one half
the duration of the signal.

t = [0:length(wecg)-1]/Fs;
subplot(2,1,1)
plot(t,wecg)
grid on
axis tight
xlabel('Seconds')
title('ECG Signal')
subplot(2,1,2)
plot(S{1}.signals{1},'x-')
grid on
axis tight
title('Zeroth-Order Scattering Coefficients')

Visualize the scattergram for the first-order scalogram coefficients.

figure
scattergram(sf,U,'FilterBank',1)

1 Functions

1-1252



Input Arguments
sf — Wavelet time scattering network
waveletScattering object

Wavelet time scattering network, specified as a waveletScattering object.

x — Input data
vector | matrix | 3-D array

Input data, specified as a real-valued vector, matrix, or 3-D array. If x is a vector, the number of
samples in x must equal the SignalLength value of sf. If x is a matrix or 3-D array, the number of
rows in x must equal the SignalLength value of sf. If x is 2-D, the first dimension is assumed to be
time and the columns of x are assumed to be separate channels. If x is 3-D, the dimensions of x are
Time-by-Channel-by-Batch.
Data Types: single | double

Output Arguments
s — Scattering coefficients
cell array

Scattering coefficients, returned as a NO-by-1 cell array, where NO is the number of orders in sf.
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Each element of s is a MATLAB table with the following variables:

signals — Scattering coefficients
cell array

Scattering coefficients, returned as a cell array. If x is a vector, each element of signals is a Ns-by-1
vector, where Ns is the number of scattering coefficients. If x is 2-D, each element of signals is a
Ns-by-Nc matrix, where Nc is the number of channels in x. If x is 3-D, each element of signals is a
Ns-by-Nc-by-Nb array, where Nb is the number of batches in x.
Data Types: single | double

path — Scattering path
row vector

Scattering path used to obtain the scattering coefficients, returned as a row vector. Each column of
path corresponds to one element of the path. The scalar 0 denotes the original signal. Positive
integers in the Lth column denote the corresponding wavelet filter in the (L-1)th filter bank. Wavelet
bandpass filters are ordered by decreasing center frequency.
Data Types: double

bandwidth — Bandwidth of scattering coefficients
scalar

Bandwidth of the scattering coefficients, returned as a scalar. If you specify a sampling frequency in
the scattering network, the bandwidth is in hertz. Otherwise, the bandwidth is in cycles/sample.
Data Types: double

resolution — Base-2 log resolution
scalar

Base-2 log resolution of the scattering coefficients, returned as a scalar.
Data Types: double

u — Scalogram coefficients
cell array

Scalogram coefficients, returned as a NO-by-1 cell array, where NO is the number of orders in sf.
The ith element of u are the scalogram coefficients for the ith row of s.

Each element of u is a MATLAB table with the following variables:

coefficients — Scalogram coefficients
cell array

Scalogram coefficients, returned as a cell array. If x is a vector, each element of coefficients is a
Nu-by-1 vector, where Nu is the number of scalogram coefficients. If x is 2-D, each element of
coefficients is a Nu-by-Nc matrix, where Nc is the number of channels in x. If x is 3-D, each
element of coefficients is a Nu-by-Nc-by-Nb array, where Nb is the number of batches in x.

Note that u{1} contains the original data in the coefficients variable.
Data Types: single | double
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path — Scattering path
row vector

Scattering path used to obtain the scalogram coefficients, returned as a row vector. Each column of
path corresponds to one element of the path. The scalar 0 denotes the original signal. Positive
integers in the Lth column denote the corresponding wavelet filter in the (L-1)th filter bank. Wavelet
bandpass filters are ordered by decreasing center frequency.
Data Types: double

bandwidth — Bandwidth of scalogram coefficients
scalar

Bandwidth of the scalogram coefficients, returned as a scalar. If you specify a sampling frequency in
the scattering network, the bandwidth is in hertz. Otherwise, the bandwidth is in cycles/sample.
Data Types: double

resolution — Base-2 log resolution
scalar

Base-2 log resolution of the scalogram coefficients, returned as a scalar.
Data Types: double

Tips
• The scatteringTransform function calls featureMatrix to generate the scattering and

scalogram coefficients. If you only require the coefficients themselves, for improved performance
the recommended approach is to use featureMatrix. Use scatteringTransform if you are
also interested in the coefficients metadata.

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
waveletScattering | featureMatrix
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scatteringTransform
Wavelet 2-D scattering transform

Syntax
s = scatteringTransform(sf,im)
[s,u] = scatteringTransform(sf,im)

Description
s = scatteringTransform(sf,im) returns the wavelet 2-D scattering transform of im for sf, the
image scattering network. im is a real-valued 2-D matrix or 3-D matrix. If im is 3-D, the size of the
third dimension must equal 3. The row and column sizes of im must match the ImageSize value of
sf. The output s is a cell array with Nfb+1 elements, where Nfb is the number of filter banks in the
scattering network. Nfb is equal to the number of elements in the QualityFactors property of sf.
Equivalently, the number of elements in s is equal to the number of orders in the scattering network.
Each element of s is a MATLAB table.

[s,u] = scatteringTransform(sf,im) also returns the wavelet scalogram coefficients for im.
The output u is a cell array with Nfb+1 elements, where Nfb is the number of filter banks in the
scattering network. Nfb is equal to the number of elements in the QualityFactors property of sf.
Equivalently, the number of elements in u is equal to the number of orders in the scattering network.
Each element of u is a MATLAB table.

Examples

Compare Scattering and Scalogram Coefficients

This example shows that scattering coefficients are lowpassed versions of scalogram coefficients.

Load an RGB image. Display the red channel.

im = imread('circle.jpg');
size(im)

ans = 1×3

   256   256     3

figure
imagesc(im(:,:,1))
colormap gray;
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For RGB images, the size of the third dimension must be 3. You only have to specify the row and
column sizes of the image when you create the scattering network. Create a scattering network to
apply to the image and take the scattering transform.

sf = waveletScattering2('ImageSize',[256 256],'InvarianceScale',32,...
    'NumRotations',[8 8]);
[S,U] = scatteringTransform(sf,im);

The image and coefficient fields in S and U are M-by-N-by-3. The M-by-N dimensions are constant
only in the scattering images because the scaling function has fixed bandwidth, while the wavelets
have different bandwidths.

Use a for-loop and plot the red channel for the scalogram and scattering coefficients for the 8
rotation angles in the scattering transform. Note how the scattering coefficients are lowpass versions
of the scalogram coefficients.

[~,~,~,filterparams] = sf.filterbank();
theta = filterparams{1}.rotations;
figure
for k = 1:numel(theta)
    subplot(2,1,1)
    imagesc(U{2}.coefficients{k}(:,:,1));
    axis xy
    title(['$$\Theta =  $$' num2str(theta(k))],'Interpreter','Latex');
    subplot(2,1,2)
    imagesc(S{2}.images{k}(:,:,1)); 
    axis xy
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    pause(1)
end

The above for-loop results in an animation identical to the one below.
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Input Arguments
sf — Wavelet image scattering network
waveletScattering2 object

Wavelet image scattering network, specified as a waveletScattering2 object.

im — Input image
real-valued matrix

Input image, specified as a real-valued 2-D matrix or 3-D matrix. If im is 3-D, im is assumed to be a
color image in the RGB color space, and the size of the third dimension must equal 3. The row and
column sizes of im must match the ImageSize property of sf.

Output Arguments
s — Scattering coefficients
cell array

Scattering coefficients, returned as a cell array. s is a cell array with Nfb+1 elements where Nfb is
the number of filter banks in the scattering network. Nfb is equal to the number of elements in the
QualityFactors property of sf. Equivalently, the number of elements in s is equal to the number of
orders in the scattering network. Each element of s is a MATLAB table with these variables:
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images — Scattering coefficients
cell array

Scattering coefficients, returned as a cell array. Each element of images is an M-by-N or M-by-N-by-3
matrix.

path — Scattering path
row vector

Scattering path used to obtain the scattering coefficients, returned as a row vector. Each column of
path corresponds to one element of the path. The scalar 0 denotes the original image. Positive
integers in the Lth column denote the corresponding wavelet filter in the (L−1)th filter bank. Wavelet
bandpass filters are ordered by decreasing center frequency.

There are NumRotations wavelets per center frequency pair.

bandwidth — Bandwidth of scattering coefficients
scalar

Bandwidth of scattering coefficients, returned as a scalar. The bandwidth is symmetric in the x and y
directions.

resolution — Base-2 log resolution
scalar

Base-2 log resolution of the scattering coefficients, returned as a scalar.

u — Scalogram coefficients
cell array

Scalogram coefficients, returned as a cell array. u is a cell array with Nfb+1 elements, where Nfb is
the number of filter banks in the scattering network. Nfb is equal to the number of elements in the
QualityFactors property of sf. Equivalently, the number of elements in u is equal to the number of
orders in the scattering network. Each element of u is a MATLAB table with these variables:

coefficients — Scalogram coefficients
cell array

Scalogram coefficients, returned as a cell array. Each element of coefficients is an M-by-N or M-
by-N-by-3 matrix.

path — Scattering path
row vector

Scattering path used to obtain the scalogram coefficients, returned as a row vector. Each column of
path corresponds to one element of the path. The scalar 0 denotes the original image. Positive
integers in the Lth column denote the corresponding wavelet filter in the (L−1)th filter bank. Wavelet
bandpass filters are ordered by decreasing center frequency.

There are NumRotations wavelets per center frequency pair.

bandwidth — Bandwidth of scalogram coefficients
scalar

Bandwidth of scalogram coefficients, returned as a scalar.
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resolution — Base-2 log resolution
scalar

Base-2 log resolution of the scattering coefficients, returned as a scalar.

Version History
Introduced in R2019a

See Also
waveletScattering2
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sensingDictionary
Sensing dictionary for sparse signal recovery

Description
Use sensingDictionary to create a sensing dictionary object for sparse approximations of 1-D
signals. The sensingDictionary function provides built-in support for a variety of frames,
including wavelet, discrete cosine transform (DCT), Fourier, and Gaussian and Bernoulli random
distributions. You can also create and use custom dictionaries. You can apply your dictionary for
signal sparse recovery using matching pursuit or basis pursuit. Additionally, the basis pursuit
algorithm supports custom dictionaries created using tall arrays. You can apply these custom
dictionaries to tall array inputs.

Creation

Syntax
A = sensingDictionary
A = sensingDictionary(Name=Value)

Description

A = sensingDictionary creates a sensing dictionary that corresponds to the 100-by-100 identity
matrix.

A = sensingDictionary(Name=Value) creates a sensing dictionary with properties on page 1-
1262 specified by name-value arguments. For example, A = sensingDictionary(Type={'dct'})
creates a sensing dictionary corresponding to the dct basis type. You can specify multiple name-
value arguments.

Properties
Size — Sensing dictionary size
[100 100] (default) | positive integer | two-element vector

Sensing dictionary size, specified as a positive integer or two-element vector of positive integers. If
you specify the size as [m,n], the number of rows in the sensing dictionary is m, and the number of
columns is n. If you specify the size as a scalar m, the number of rows in the dictionary is m, and the
number of columns depends on the type of dictionary. For random dictionaries, you must specify the
size as a two-element vector.

Note You cannot change the size of an existing sensing dictionary. For example, if the size of the
sensing dictionary A is [100 100], you cannot assign a different Size to A.
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Example: A = sensingDictionary(Size=[50 50],Type={'dct','poly'}) creates a sensing
dictionary A consisting of the basis types 'dct' and 'poly'. The size of the matrix of each type is
50-by-50 and A.Size = [50 100].
Data Types: double

Type — Dictionary basis type
cell array of character vectors

Dictionary basis type, specified as a cell array of character vectors. Each character vector specifies a
basis type in the sensing dictionary A. For each basis type, the basis elements are arranged
columnwise in the matrix. Each basis element is length N, where N = A.Size(1). The
sensingDictionary object supports the following basis types:

• 'eye' (default) — Dictionary corresponds to an identity matrix.
• 'dct' — Dictionary corresponds to the discrete cosine transform-II basis. The DCT-II orthonormal

basis is:

ϕk(n) =

1
N k = 0

2
Ncos π

N n + 1
2 k k = 1, 2, …, N − 1.

• 'dwt' — Dictionary corresponds to a specific wavelet basis from a certain level of decomposition.
•

'fourier' — Dictionary corresponds to the Fourier basis. The Fourier basis is ϕk(t) = e2πikt/N

N ,

where k = 0, …, N-1, and t = 0, …, N-1.
• 'poly' — The kth column of the dictionary matrix corresponds to monomials of the form

t.^(k-1), where t is the time interval specified by linspace(0,1,N) and k = 1,...,N.
• 'rand' — Dictionary matrix entries are either an independent identically distributed (IID)

Gaussian matrix (default) or a Bernoulli matrix.
• 'walsh' — Dictionary matrix entries are generated from Walsh code.

Example: A = sensingDictionary('Type',{'eye','dct'}) creates a sensing dictionary with
basis types 'eye' and 'dct'.
Data Types: char | string

Name — Basis name
cell array of character vectors

Basis name, specified as a cell array of character vectors. Name is supported only for the following
basis types.

• 'dwt' — Character vectors are the names of orthogonal wavelets supported by the modwt
function:

• 'haar' or 'db1' (default) — Haar wavelet.
• 'dbN' — Extremal phase Daubechies wavelet with N vanishing moments, where N is a positive

integer from 2 to 45.
• 'symN' — Symlets wavelet with N vanishing moments, where N is a positive integer from 2 to

45.
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• 'coifN' — Coiflets wavelet with N vanishing moments, where N is a positive integer from 1 to
5.

• 'fkN' — Fejér-Korovkin wavelet with N coefficients, where N = 4, 6, 8, 14, 18 and 22.
• 'rand' — Character vectors are the names of random matrices:

• 'Gaussian' (default) — IID Gaussian matrix.
• 'Bernoulli' — Bernoulli matrix.

If not all basis types specified in Type support Name, insert an empty character vector in the
corresponding positions in Name.

Command Result
A = sensingDictionary(Size=[50 50],...
    Type={'dwt','rand'},...
    Name={'coif4','Bernoulli'});

Creates a sensing dictionary that corresponds to
the coif4 wavelet basis and a random Bernoulli
matrix.

A = sensingDictionary(Size=[50 50],...
    Type={'dwt','dct','rand'},...
    Name={'coif4','','Bernoulli'});

Creates a sensing dictionary that corresponds to
the coif4 wavelet basis, DCT basis, and a
random Bernoulli matrix.

Data Types: char | string

Level — Decomposition level
floor(log2(A.Size(1))) (default) | integer | vector

Decomposition level of the wavelet basis, specified as an integer or vector of positive integers. You
can specify Level only if you specify at least one wavelet basis in Type. If you specify wavelet and
other basis types in Type, you can either set the level of the other basis to 0, or omit it. The number
of nonzero elements you specify must be less than or equal to the number of 'dwt' types.

Command Result
A = sensingDictionary(Type={'dwt'},...
    Name={'db2'},...
    Level=[3]);

Creates a sensing dictionary that corresponds to
the level 3 db2 wavelet details.

A = sensingDictionary(Type={'dwt','fourier'},...
    Name={'db2'},...
    Level=[3 0]);

or

A = sensingDictionary(Type={'dwt','fourier'},...
    Name={'db2'},...
    Level=[3]);

Creates a sensing dictionary that corresponds to
the level 3 db2 wavelet details and the Fourier
basis.

Data Types: double

CustomDictionary — Custom sensing dictionary matrix
matrix

Custom sensing dictionary matrix, specified as a matrix. You cannot simultaneously specify
CustomDictionary and any other property.
Example: A = sensingDictionary(CustomDictionary=xmat) creates a sensing dictionary
using the custom matrix xmat.
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Data Types: single | double
Complex Number Support: Yes

Object Functions
matchingPursuit Recover sparse signal using matching pursuit algorithm
basisPursuit Recover sparse signal using the basis pursuit algorithm
horzcat Horizontal concatenation of two sensing dictionaries
subdict Extract submatrix from a sensing dictionary

Examples

Create Sensing Dictionary

Create the sensing dictionary that is a concatenation of the level 2 db1 wavelet and DCT bases.

A = sensingDictionary(Size=100,Type={'dwt','dct'},...
    Name={'db1'},...
    Level=[2 0])

A = 
  sensingDictionary with properties:

                Type: {'dwt'  'dct'}
                Name: {'db1'  ''}
               Level: [2 0]
    CustomDictionary: []
                Size: [100 200]

Obtain Best Fit Using Matching Pursuit

Create a sensing dictionary consisting of basis types eye and poly. The size of each basis type is
150-by-150.

A = sensingDictionary(Size=150,Type={'eye','poly'});

Use the subdict object function to extract one basis vector from each basis type. Create a signal by
multiplying the sum of the vectors by 2.

indA = 20;        % basis vector in 'eye'
indB = 160;       % basis vector in 'poly'
btv = subdict(A,1:150,[indA indB]);
sig = 2*sum(btv,2);

Obtain the best fit of the signal using the sensing dictionary A and matching pursuit algorithm with
default settings.

[Xr,YI,I,R] = matchingPursuit(A,sig);
norm(sig-YI)

ans = 6.1693e-09

Inspect the indices.

 sensingDictionary

1-1265



I

I = 1×2

    20   160

Inspect the coefficients.

Xr(I)

ans = 2×1

    2.0000
    2.0000

Version History
Introduced in R2022a

Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.

This function fully supports tall arrays. For more information, see “Tall Arrays”.

See Also
Topics
“Signal Deconvolution and Impulse Denoising Using Pursuit Methods”
“Matching Pursuit Algorithms”
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set
WPTREE field contents

Syntax
T = set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2, ...)

Description
T = set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2, ...) sets the content
of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can set the subfield contents, giving the name of
these subfields as 'FieldName' values.

The valid choices for 'FieldName' are

'dtree' DTREE parent object
'wavInfo' Structure (wavelet information)

The fields of the wavelet information structure, 'wavInfo', are also valid for 'FieldName':

'wavName' Wavelet name
'Lo_D' Low Decomposition filter
'Hi_D' High Decomposition filter
'Lo_R' Low Reconstruction filter
'Hi_R' High Reconstruction filter

'entInfo' Structure (entropy information)

The fields of the entropy information structure, 'entInfo', are also valid for 'FieldName':

'entName' Entropy name
'entPar' Entropy parameter

Or fields of DTREE parent object:

'ntree' NTREE parent object
'allNI' All nodes information
'terNI' Terminal nodes information

Or fields of NTREE parent object:

'wtbo' WTBO parent object
'order' Order of the tree
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'depth' Depth of the tree
'spsch' Split scheme for nodes
'tn' Array of terminal nodes of the tree

Or fields of WTBO parent object:

'wtboInfo' Object information
'ud' Userdata field

Caution  The set function should only be used to set the field 'ud'.

Version History
Introduced before R2006a

See Also
disp | get | read | write
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setLabelValue
Set label value in labeled signal set

Syntax
setLabelValue(lss,midx,lblname,val)
setLabelValue(lss,midx,lblname,limits,val)
setLabelValue(lss,midx,lblname,locs,val)
setLabelValue( ___ ,'LabelRowIndex',ridx)
setLabelValue( ___ ,'SublabelRowIndex',sridx)

Description
setLabelValue(lss,midx,lblname,val) sets the attribute label lblname to value val, for the
member of labeled signal set lss specified in midx. Omit val if lblname has a default value and you
want to set the label to the default value.

setLabelValue(lss,midx,lblname,limits,val) adds regions delimited by limits to the ROI
label named lblname. The number of rows of limits specifies the number of added regions.

setLabelValue(lss,midx,lblname,locs,val) adds points to the point label named lblname.
locs specifies the number of added points and their locations.

setLabelValue( ___ ,'LabelRowIndex',ridx) specifies the row index, ridx, of an ROI or point
label. The specified value replaces the current value of that row. If you omit this argument, the
function appends ROI or point values to any existing label values.

setLabelValue( ___ ,'SublabelRowIndex',sridx) specifies the row index, sridx, of an ROI
or point sublabel. The specified value replaces the current value of that sublabel row.

Examples

Set Label Value

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
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 Use setLabelValue to add data to the set.

Add a new label to the signal set, corresponding to the maximum value of each member.

theMax = signalLabelDefinition('Maximum', ...
    'LabelDataType','numeric', ...
    'Description','Maximum value of the signal');
addLabelDefinitions(lss,theMax)

For each labeled signal, set the value of the new label to the signal maximum. Plot the signals and
their maxima.

fs = lss.SampleRate;
for k = 1:lss.NumMembers
    sg = getSignal(lss,k);
    [mx,ix] = max(sg);
    
    setLabelValue(lss,k,'Maximum',mx)
    
    subplot(2,1,k)
    plot((0:length(sg)-1)/fs,sg,ix/fs,mx,'*')
end

Display the names and values of the labels in the set.

lbldefs = getLabelValues(lss)
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lbldefs=2×4 table
                 WhaleType    MoanRegions    TrillRegions     Maximum  
                 _________    ___________    ____________    __________

    Member{1}      blue       {3x2 table}    {1x3 table}     {[0.2850]}
    Member{2}      blue       {3x2 table}    {1x3 table}     {[0.3791]}

Decide that the signal maximum is better represented as a point label than as an attribute. Remove
the numeric definition and redefine the maximum.

removeLabelDefinition(lss,'Maximum')
theMax = signalLabelDefinition('Maximum', ...
    'LabelType','point','LabelDataType','numeric', ...
    'Description','Maximum value of the signal');
addLabelDefinitions(lss,theMax)

For each labeled signal, set the value of the new label to the signal maximum.

for k = 1:lss.NumMembers
    sg = getSignal(lss,k);
    [mx,ix] = max(sg);
    setLabelValue(lss,k,'Maximum',ix/fs,mx)
end

Plot the signals and their maxima.

for k = 1:lss.NumMembers
    subplot(2,1,k)
    sg = getSignal(lss,k);
    peaks = getLabelValues(lss,k,'Maximum');
    plot((0:length(sg)-1)/fs,sg, ...
        peaks.Location,cell2mat(peaks.Value),'*')
end
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

lblname — Label or sublabel name
character vector | string scalar | cell array of character vectors | string array

Label name, specified as a character vector or string scalar.

Label or sublabel name. To specify a label, use a character vector or a string scalar. To specify a
sublabel, use a two-element cell array of character vectors or a two-element string array:
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• The first element is the name of the parent label.
• The second element is the name of the sublabel.

When targeting a sublabel of an ROI or point label, you must also specify the 'LabelRowIndex' of
the parent label whose label you want to set. The row of the parent must already exist before you can
set a sublabel value to it.
Example: signalLabelDefinition("Asleep",'LabelType','roi') specifies a label of name
"Asleep" for a region of a signal in which a patient is asleep during a clinical trial.
Example: {'Asleep' 'REM'} or ["Asleep" "REM"] specifies a region of a signal in which a
patient undergoes REM sleep.

val — Label values
numeric value or array | logical value or array | categorical value or array | character vector or cell
array of character vectors | string or string array | table or table array | timetable or timetable array

Label values, specified as a numeric, logical, or categorical value, as a string, as a table, or as a
timetable. val can also be an array of any of the previous types. val must be of the data type
specified for lblname.

• If you specify locs, then val must have the same number of elements as locs.
• If you specify limits, then val must have a number of elements equal to the number of rows in

limits.

• If limits has more than one row, and lblname is of type 'numeric' or 'logical', then
val must be a vector or a cell array.

• If limits has more than one row, and lblname is of type 'string' or 'categorical', then
val must be a string array or a cell array of character vectors.

• If limits has more than one row, and lblname is of type 'table' or 'timetable', then
val must be a cell array of tables or timetables.

Assign Nonscalar Label Values

To assign nonscalar label values to several points or regions of interest, you must use cell arrays. For
example, given the labeled signal set

lss = labeledSignalSet(randn(10,1), [...
    signalLabelDefinition('pl','LabelType','point', ...
                               'LabelDataType','numeric') ...
    signalLabelDefinition('rl','LabelType','ROI', ...
                               'LabelDataType','numeric')]);

the commands

setLabelValue(lss,1,'pl',5,{[3 4]'})
setLabelValue(lss,1,'rl',[2 3; 8 9],{[2 1]' [6 7]})

label point 5 with the column vector [3 4]', the region limited by 2 and 3 with the column vector [2
1]', and the region limited by 8 and 9 with the row vector [6 7].

limits — Region limits
two-column matrix

Region limits, specified as a two-column matrix.
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• If lss does not have time information, then limits defines the minimum and maximum indices
over which the regions are defined.

• If lss has time information, then limits defines the minimum and maximum instants over which
the regions are defined.

limits must be of the data type specified by the “ROILimitsDataType” on page 1-0  property of
the label definition for lblname.
Example: seconds([0:3;1:4]')
Example: [0:3;1:4]'

locs — Point locations
vector

Point locations, specified as a vector.

• If lss does not have time information, then locs defines the indices corresponding to the point
locations.

• If lss has time information, then locs defines the instants corresponding to the point locations.

locs must be of the data type specified by the “PointLocationsDataType” on page 1-0  property of
the label definition for lblname.

ridx — Label row index
positive integer

Label row index, specified as a positive integer. This argument applies only for ROI and point labels.

sridx — Sublabel row index
positive integer

Sublabel row index, specified as a positive integer. This argument applies only when a label and
sublabel pair has been specified in lblname and the sublabel is of type ROI or point.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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setMemberNames
Set member names in labeled signal set

Syntax
setMemberNames(lss,mnames)
setMemberNames(lss,mnames,midx)

Description
setMemberNames(lss,mnames) sets the names of the members of the labeled signal set lss to
mnames. The length of mnames must be equal to the number of members.

setMemberNames(lss,mnames,midx) sets the name of the member specified by midx.

Examples

Set Member Names

Load a labeled signal set containing recordings of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Set the names of the set members to the whales' nicknames.

setMemberNames(lss,{'Brutus' 'Lucy'})

Return a string array with the names of the members.

getMemberNames(lss)

ans = 2x1 string
    "Brutus"
    "Lucy"
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

mnames — Member names
character vector | string scalar | cell array of character vectors | string array

Member names, specified as a character vector, a string scalar, a cell array of character vectors, or a
string array.
Example: labeledSignalSet({randn(100,1) randn(10,1)},'MemberNames',{'llama'
'alpaca'}) specifies a set of random signals with two members, 'llama' and 'alpaca'.

midx — Member row number
positive integer

Member row number, specified as a positive integer. midx specifies the member row number as it
appears in the “Labels” on page 1-0  table of a labeled signal set.

Version History
Introduced in R2019a

See Also
labeledSignalSet | signalLabelDefinition
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shanwavf
Complex Shannon wavelet

Syntax
[PSI,X] = shanwavf(LB,UB,N,FB,FC)

Description
[PSI,X] = shanwavf(LB,UB,N,FB,FC) returns values of the complex Shannon wavelet. The
complex Shannon wavelet is defined by a bandwidth parameter FB, a wavelet center frequency FC,
and the expression

PSI(X) = (FB^0.5)*(sinc(FB*X).*exp(2*i*pi*FC*X))

on an N point regular grid in the interval [LB,UB].

FB and FC must be such that FC > 0 and FB > 0.

Output arguments are the wavelet function PSI computed on the grid X.

Examples

Complex Shannon Wavelet

Obtain and plot a complex Shannon wavelet. Set the bandwidth and center frequency parameters.

fb = 1;
fc = 1.5;

Set the effective support and number of sample points.

lb = -20; 
ub = 20; 
n = 1000;

Obtain the complex-valued Shannon wavelet and plot the real and imaginary parts.

[psi,x] = shanwavf(lb,ub,n,fb,fc);
subplot(2,1,1)
plot(x,real(psi))
title('Complex Shannon Wavelet')
xlabel('Real Part')
grid on
subplot(2,1,2)
plot(x,imag(psi))
xlabel('Imaginary Part')
grid on
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Version History
Introduced before R2006a

References
Teolis, A. (1998), Computational signal processing with wavelets, Birkhäuser, p. 62.

See Also
waveinfo
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shearletSystem
Cone-adapted bandlimited shearlet system

Description
The shearletSystem object represents a cone-adapted bandlimited shearlet system. After you
create the shearlet system, you can use sheart2 to obtain the shearlet transform of a real-valued 2-D
image. You can also use isheart2 to obtain the inverse transform. Additional “Object Functions” on
page 1-1280 are provided.

Creation

Syntax
sls = shearletSystem
sls = shearletSystem(Name,Value)

Description

sls = shearletSystem creates a cone-adapted real-valued bandlimited shearlet system for a real-
valued image of size 128-by-128 with the number of scales equal to 4. The system sls is a
nondecimated shearlet system. Shearlets extending beyond the 2-D frequency bounds are periodically
extended. Using real-valued shearlets with periodic boundary conditions results in real-valued
shearlet coefficients.

The implementation of shearletSystem follows the approach described in Häuser and Steidl [6]

sls = shearletSystem(Name,Value) creates a cone-adapted bandlimited shearlet system with
“Properties” on page 1-1279 specified by one or more Name,Value pairs. For example,
shearletSystem('ImageSize',[100 100]) creates a shearlet system for images of size 100-
by-100. Properties can be specified in any order as Name1,Value1,...,NameN,ValueN. Enclose
each property name in single quotes (' ') or double quotes (" ").

Note Property values of a shearlet system are fixed. For example, if the shearlet system SLS is
created with an ImageSize of [128 128], you cannot change that ImageSize to [200 200].

Properties
ImageSize — Image size
[128 128] (default) | two-element integer-valued vector

Image size for the shearlet system, specified as a two-element integer-valued vector [numrows
numcolumns]. Images must be at least 16-by-16.
Example: sls = shearletSystem('ImageSize',[100 200]) creates a shearlet system for 100-
by-200 images.
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Data Types: single | double

NumScales — Number of scales
4 (default) | positive integer

Number of scales in the shearlet system, specified as a positive integer less than or equal to
log2(min([M N]))–3, where M and N are the row and column dimensions of the input image. For a 16-
by-16 input image, log2(min([16 16]))–3 = 4–3 = 1, so the smallest image compatible with
shearletSystem has a minimum dimension of 16. For the default image size 128-by-128, the
number of scales equals 4.
Example: sls = shearletSystem('NumScales',1) creates a shearlet system with NumScales
equal to 1.
Data Types: single | double

TransformType — Shearlet system type
'real' (default) | 'complex'

Shearlet system type, specified as 'real' or 'complex'. Real-valued shearlets have two-sided 2-D
frequency spectra, while complex-valued shearlets have one-sided 2-D spectra. If FilterBoundary is
set to 'periodic', shearlets at the finest spatial scales have energy that wraps around in the 2-D
frequency response. For both 'real' and 'complex' shearlet systems, the Fourier transforms of
the shearlets are real valued.

FilterBoundary — Shearlet filter boundary handling
'periodic' (default) | 'truncated'

Shearlet filter boundary handling, specified as 'periodic' or 'truncated'. When set to
'periodic', shearlets extending beyond the 2-D frequency boundaries are periodically extended.
When set to 'truncated', shearlets are truncated at the 2-D frequency boundaries.

PreserveEnergy — Shearlet system analysis normalization
false or 0 (default) | true or 1

Shearlet system analysis normalization, specified as a numeric or logical 1 (true) or 0 (false).
When set to true, the shearlet system is normalized to be a Parseval frame, and the energy of the
input image is preserved in the shearlet transform coefficients.
Example: sls = shearletSystem('PreserveEnergy',true)
Data Types: logical

Precision — Shearlet system precision
'double' (default) | 'single'

Shearlet system precision, specified as 'double' or 'single'. All computations are done using the
specified precision.

Note To obtain the shearlet transform of an image, the precision of the image must match the
precision of the shearlet system.

Object Functions
sheart2 Shearlet transform
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isheart2 Inverse shearlet transform
framebounds Shearlet system frame bounds
filterbank Shearlet system filters
numshears Number of shearlets

Examples

Create Energy-Preserving Shearlet System

Load an image. Create two real-valued shearlet systems that can be applied to the image. Normalize
the first system so that energy is preserved in the shearlet transform coefficients. Leave the second
shearlet system with the default (false) normalization.

load mask
[numRows,numCols] = size(X);
slsA = shearletSystem('ImageSize',[numRows numCols],'PreserveEnergy',true);
slsB = shearletSystem('ImageSize',[numRows numCols]);

Take the shearlet transform of the image using both shearlet systems.

cfA = sheart2(slsA,X);
cfB = sheart2(slsB,X);

Determine the energy of the input image and both sets of transform coefficients. Confirm that only
the first shearlet system preserved energy.

energyA = sum(cfA(:).^2);
energyB = sum(cfB(:).^2);
energyImage = sum(X(:).^2)

energyImage = 2.4655e+09

diffSystemA = abs(energyImage-energyA)

diffSystemA = 4.7684e-07

diffSystemB = abs(energyImage-energyB)

diffSystemB = 1.4869e+07

Limitations
• Boundary effects of a real-valued shearlet transform of a non-square image can result in complex-

valued coefficients. As implemented, shearletSystem constructs shearlets in the 2-D Fourier
domain. For a real-valued shearlet transform, the shearlets in the 2-D Fourier domain should be
symmetric in the positive and negative 2-D frequency plane. Shearlets constructed for square
images are symmetric. However, as the image aspect ratio increases, the shearlets constructed
become less symmetric. If the support of the lowpass filter in the 2-D frequency plane is too large,
boundary effects can increase. Whenever possible, use square images. See “Boundary Effects in
Real-Valued Bandlimited Shearlet Systems” for additional information and strategies to mitigate
boundary effects.
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Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cwtft2 | dddtree2

Topics
“Shearlet Systems”
“Boundary Effects in Real-Valued Bandlimited Shearlet Systems”
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sheart2
Shearlet transform

Syntax
coefs = sheart2(sls,im)

Description
coefs = sheart2(sls,im) returns the shearlet transform or shearlet analysis of the real-valued 2-
D image im for the shearlet system sls. If the shearlet system is real-valued with periodic boundary
conditions, then coefs is real-valued. Otherwise, coefs is complex-valued. The size and class (data
type) of im must match the ImageSize and Precision values, respectively, of sls.

Examples

Shearlet Transform of Circle

This example shows how to take the shearlet transform of an image and reconstruct the image using
only coefficients corresponding to zero shearing.

Load and display an image of a circle.

load circleGS
imagesc(circleGS)
colormap gray
axis equal
axis tight
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Create a shearlet system that can be used with the image. Obtain the shearlet filters defined by the
system, as well as their geometric interpretations.

[numRows,numCols] = size(circleGS);
sls = shearletSystem('ImageSize',[numRows numCols],'FilterBoundary','truncated');
[psi,scale,shear,cone] = filterbank(sls);

Obtain the shearlet transform of the image.

cfs = sheart2(sls,circleGS);

Find the indices of the shearlet filters that correspond to zero shearing. Keep in mind that the
lowpass filter also corresponds to zero shearing.

ind = find((shear==0).*(scale~=-1))'

ind = 1×10

     3     6    10    15    20    25    31    38    46    55

Plot one of the shearlets in the frequency plane. Because the shearlet corresponds to zero shearing,
confirm the frequency response is concentrated along either the horizontal or vertical axis.

sh = 31;
omegax = -1/2:1/numCols:1/2-1/numCols;
omegay = omegax;
figure
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surf(omegax,flip(omegay),psi(:,:,sh),'EdgeColor','none')
view(0,90)
xlabel('\omega_x')
ylabel('\omega_y')
axis equal
axis tight
title(['Zero Shear Shearlet: Scale = ',num2str(scale(sh)),', Cone - ',cone{sh}])

Create an array that only contains the shearlet coefficients that correspond to the zero shearing
filters.

cfsx = zeros(size(cfs));
for k=1:length(ind)
    cfsx(:,:,ind(k)) = cfs(:,:,ind(k));
end

Reconstruct the image using the new coefficients array. Because the only nonzero shearlet
coefficients are those that correspond to zero shearing, the horizontal and vertical portions of the
circle are emphasized in the reconstruction.

rec = isheart2(sls,cfsx);
imagesc(rec)
axis equal
axis tight
colormap gray
title('Reconstruction')
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Input Arguments
sls — Shearlet system
shearletSystem object

Shearlet system, specified as a shearletSystem object.

im — Input image
real-valued matrix

Input image, specified a real-valued matrix. The size and data type of im must match the ImageSize
and Precision values, respectively, of sls.
Data Types: single | double

Output Arguments
coefs — Shearlet coefficients
3-D array

Shearlet coefficients, returned as a 3-D array. The size of coefs is M-by-N-by-K, where M and N are
the row and column dimensions of the input image, respectively. The size of the third dimension, K,
equals the number of shearlets in sls, including the lowpass filter, K = numshears(sls) + 1.
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For example, if cfs = sheart2(sls,im) and psi = filterbank(sls), then the shearlet
corresponding to cfs(:,:,k) is psi(:,:,k). The data type of coefs matches the Precision value
of the shearlet system.
Data Types: single | double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
shearletSystem | isheart2

Topics
“Shearlet Systems”
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signalLabelDefinition
Create signal label definition

Description
Use signalLabelDefinition to create signal label definitions for data sets. The labels can
correspond to attributes, regions, or points of interest. Use a vector of signalLabelDefinition
objects to create a labeledSignalSet.

Creation

Syntax
sld = signalLabelDefinition(name)
sld = signalLabelDefinition(name,Name=Value)

Description

sld = signalLabelDefinition(name) creates a signal label definition object, sld, with the
“Name” on page 1-0  property set to name and other properties set to default values.

sld = signalLabelDefinition(name,Name=Value) sets “Properties” on page 1-1288 using
name-value arguments. You can specify multiple name-value arguments. Enclose each property name
in quotes.

Input Arguments

name — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar.
Data Types: char | string

Properties
Name — Name of label
character vector | string scalar

Name of label, specified as a character vector or string scalar.
Data Types: char | string

LabelType — Type of label
"attribute" (default) | "roi" | "point" | "attributeFeature" | "roiFeature"

Type of label, specified as one of these:
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• "attribute" — Define signal characteristics.
• "roi" — Define signal characteristics over regions of interest.
• "point" — Define signal characteristics over points of interest.
• "attributeFeature" — Define signal characteristics that correspond to features.
• "roiFeature" — Define signal characteristics over regions of interest that correspond to

features.

Data Types: char | string

LabelDataType — Data type of label
"logical" (default) | "categorical" | "numeric" | "string" | "table" | "timetable"

Data type of label, specified as "logical", "categorical", "numeric", "string", "table", or
"timetable". When you set this property to "categorical", use the “Categories” on page 1-0
property to specify the array of categories. The object does not support timetable and table data
types for attributeFeature and roiFeature labels.
Data Types: char | string

Categories — Label category names
string array | cell array of character vectors

Label category names, specified as a string array or a cell array of character vectors. The array must
have unique elements. This property applies only when the “LabelDataType” on page 1-0  property
is set to "categorical".
Example: LabelDataType="categorical",Categories=["apple","orange"]
Data Types: char | string

ROILimitsDataType — Data type of ROI limits
"double" (default) | "duration"

Data type of ROI limits, specified as either "double" or "duration". This property applies only
when “LabelType” on page 1-0  is set to "roi".
Data Types: char | string

PointLocationsDataType — Data type of point locations
"double" (default) | "duration"

Data type of point locations, specified as either "double" or "duration". This property applies only
when “LabelType” on page 1-0  is set to "point".
Data Types: char | string

ValidationFunction — Validation function
function handle

Validation function, specified as a function handle and used when setting label values in a
labeledSignalSet object. This property applies only when “LabelDataType” on page 1-0  is set
to "categorical", "logical", "numeric", "table", or "timetable". If not specified, the
function checks only that its input values are of the correct data type. If “LabelDataType” on page 1-
0  is set to "categorical", the function checks that the input is one of the values specified using
“Categories” on page 1-0 . The function takes an input value and returns true if the value is valid
and false if the value is invalid.
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Example: LabelDataType="numeric",DefaultValue=1,ValidationFunction=@(x)x<2
Data Types: function_handle

DefaultValue — Default value of label
[] (default) | LabelDataType value

Default value of label, specified as a value of the type specified using “LabelDataType” on page 1-
0 . If “LabelDataType” on page 1-0  is set to "categorical", then “DefaultValue” on page 1-
0  must be one of the values specified using “Categories” on page 1-0 .
Example:
LabelDataType="categorical",Categories=["apple","orange"],DefaultValue="apple
"

Data Types: char | double | logical | string | table

Description — Label description
character vector | string scalar

Label description, specified as a character vector or string scalar.
Example: Description="Patient is asleep"
Data Types: char | string

Tag — Label tag identifier
character vector | string scalar

Label tag identifier, specified as a character vector or string scalar. Use this property to identify the
same label in a larger labeling scheme or public labeling set.
Example: Tag="Peak1"
Data Types: char | string

Sublabels — Array of sublabels
signal label definition object

Array of sublabels, specified as a signal label definition object. To specify more than one sublabel, set
this property to a vector of signal label definition objects. Use this property to create a relationship
between a parent label and its children. If “LabelType” (Signal Processing Toolbox) is set to
"attributeFeature" or "roiFeature", then this property does not apply.

Note Sublabels cannot have sublabels.

Example:
Sublabels=[signalLabelDefinition("negative"),signalLabelDefinition("positive"
)]

FrameSize — Frame size
numeric scalar

Frame size, specified as a numeric scalar. You must specify FrameSize when “LabelType” (Signal
Processing Toolbox) is set to "roiFeature".
Example: FrameSize=50
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Data Types: double

FrameOverlapLength — Overlap length of adjacent frames
0 (default) | numeric scalar

Overlap length of adjacent frames, specified as a numeric scalar. To enable this property, set
“LabelType” (Signal Processing Toolbox) to "roiFeature". You cannot specify
FrameOverlapLength and FrameRate simultaneously. If you do not specify
FramerOverlapLength, then the object assumes the overlap length to be zero.
Example: FrameSize=50,FrameOverlapLength=5
Data Types: double

FrameRate — Frame rate
0 (default) | numeric scalar

Frame rate, specified as a numeric scalar. To enable this property, set “LabelType” (Signal Processing
Toolbox) to "roiFeature". You cannot specify FrameRate and FrameOverlapLength
simultaneously. If you do not specify FrameRate, then the object assumes no overlap between
frames.
Example: FrameSize=50,FrameRate=45
Data Types: double

Object Functions
labelDefinitionsHierarchy Get hierarchical list of label and sublabel names
labelDefinitionsSummary Get summary table of signal label definitions

Examples

Label Definitions for Whale Songs

Consider a set of whale sound recordings. The recorded whale sounds consist of trills and moans.
Trills sound like series of clicks. Moans are low-frequency cries similar to the sound made by a ship's
horn. You want to look at each signal and label it to identify the whale type, the trill regions, and the
moan regions. For each trill region, you also want to label the signal peaks higher than a certain
threshold.

Signal Label Definitions

Define an attribute label to store whale types. The possible categories are blue whale, humpback
whale, and white whale.

dWhaleType = signalLabelDefinition('WhaleType',...
   'LabelType','attribute',...
   'LabelDataType','categorical',...
   'Categories',{'blue','humpback','white'},...
   'Description','Whale type'); 

Define a region-of-interest (ROI) label to capture moan regions. Define another ROI label to capture
trill regions.

dMoans = signalLabelDefinition('MoanRegions',...
   'LabelType','roi',...
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   'LabelDataType','logical',...
   'Description','Regions where moans occur');

dTrills = signalLabelDefinition('TrillRegions',...
   'LabelType','roi',...
   'LabelDataType','logical',...
   'Description','Regions where trills occur');        

Finally, define a point label to capture the trill peaks. Set this label as a sublabel of the dTrills
definition.

dTrillPeaks = signalLabelDefinition('TrillPeaks',...
   'LabelType','point',...
   'LabelDataType','numeric',...
   'Description','Trill peaks');

dTrills.Sublabels = dTrillPeaks;

Labeled Signal Set

Create a labeledSignalSet with the whale signals and the label definitions. Add label values to
identify the whale type, the moan and trill regions, and the peaks of the trills.

load labelwhalesignals
lbldefs = [dWhaleType dMoans dTrills];

lss = labeledSignalSet({whale1 whale2},lbldefs,'MemberNames',{'Whale1','Whale2'}, ...
   'SampleRate',Fs,'Description','Characterize whale song regions');     

Visualize the label hierarchy and label properties using labelDefinitionsHierarchy and
labelDefinitionsSummary.

labelDefinitionsHierarchy(lss)

ans = 
    'WhaleType
       Sublabels: []
     MoanRegions
       Sublabels: []
     TrillRegions
       Sublabels: TrillPeaks
     '

labelDefinitionsSummary(lss)

ans=3×9 table
      LabelName        LabelType     LabelDataType     Categories     ValidationFunction    DefaultValue             Sublabels             Tag            Description         
    ______________    ___________    _____________    ____________    __________________    ____________    ___________________________    ___    ____________________________

    "WhaleType"       "attribute"    "categorical"    {3x1 string}       {["N/A"   ]}       {0x0 double}    {0x0 double               }    ""     "Whale type"                
    "MoanRegions"     "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {0x0 double               }    ""     "Regions where moans occur" 
    "TrillRegions"    "roi"          "logical"        {["N/A"   ]}       {0x0 double}       {0x0 double}    {1x1 signalLabelDefinition}    ""     "Regions where trills occur"

The signals in the loaded data correspond to songs of two blue whales. Set the 'WhaleType' values
for both signals.
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setLabelValue(lss,1,'WhaleType','blue');
setLabelValue(lss,2,'WhaleType','blue');

Visualize the 'Labels' property. The table has the newly added 'WhaleType' values for both
signals.

lss.Labels      

ans=2×3 table
              WhaleType    MoanRegions    TrillRegions
              _________    ___________    ____________

    Whale1      blue       {0x2 table}    {0x3 table} 
    Whale2      blue       {0x2 table}    {0x3 table} 

Visualize Region Labels

Visualize the whale songs to identify the trill and moan regions.

subplot(2,1,1)
plot((0:length(whale1)-1)/Fs,whale1)
ylabel('Whale 1')

subplot(2,1,2)
plot((0:length(whale2)-1)/Fs,whale2)
ylabel('Whale 2')

Moan regions are sustained low-frequency wails.
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• whale1 has moans centered at about 7 seconds, 12 seconds, and 17 seconds.
• whale2 has moans centered at about 3 seconds, 7 seconds, and 16 seconds.

Add the moan regions to the labeled set. Specify the ROI limits in seconds and the label values.

moanRegionsWhale1 = [6.1 7.7; 11.4 13.1; 16.5 18.1];
mrsz1 = [size(moanRegionsWhale1,1) 1];
setLabelValue(lss,1,'MoanRegions',moanRegionsWhale1,true(mrsz1));

moanRegionsWhale2 = [2.5 3.5; 5.8 8; 15.4 16.7];
mrsz2 = [size(moanRegionsWhale2,1) 1];
setLabelValue(lss,2,'MoanRegions',moanRegionsWhale2,true(mrsz2));

Trill regions have distinct bursts of sound punctuated by silence.

• whale1 has a trill centered at about 2 seconds.
• whale2 has a trill centered at about 12 seconds.

Add the trill regions to the labeled set.

trillRegionWhale1 = [1.4 3.1];
trsz1 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,1,'TrillRegions',trillRegionWhale1,true(trsz1));

trillRegionWhale2 = [11.1 13];
trsz2 = [size(trillRegionWhale1,1) 1];
setLabelValue(lss,2,'TrillRegions',trillRegionWhale2,true(trsz2));

Create a signalMask (Signal Processing Toolbox) object for each whale song and use it to visualize
and label the different regions. For better visualization, change the label values from logical to
categorical.

mr1 = getLabelValues(lss,1,'MoanRegions');
mr1.Value = categorical(repmat("moan",mrsz1));
tr1 = getLabelValues(lss,1,'TrillRegions');
tr1.Value = categorical(repmat("trill",trsz1));

msk1 = signalMask([mr1;tr1],'SampleRate',Fs);

subplot(2,1,1)
plotsigroi(msk1,whale1)
ylabel('Whale 1')
hold on

mr2 = getLabelValues(lss,2,'MoanRegions');
mr2.Value = categorical(repmat("moan",mrsz2));
tr2 = getLabelValues(lss,2,'TrillRegions');
tr2.Value = categorical(repmat("trill",trsz2));

msk2 = signalMask([mr2;tr2],'SampleRate',Fs);

subplot(2,1,2)
plotsigroi(msk2,whale2)
ylabel('Whale 2')
hold on
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Visualize Point Labels

Label three peaks for each trill region. For point labels, you specify the point locations and the label
values. In this example, the point locations are in seconds.

peakLocsWhale1 = [1.553 1.626 1.7];
peakValsWhale1 = [0.211 0.254 0.211];

setLabelValue(lss,1,{'TrillRegions','TrillPeaks'}, ...
   peakLocsWhale1,peakValsWhale1,'LabelRowIndex',1);

subplot(2,1,1)
plot(peakLocsWhale1,peakValsWhale1,'v')
hold off

peakLocsWhale2 = [11.214 11.288 11.437];
peakValsWhale2 = [0.119 0.14 0.15];

setLabelValue(lss,2,{'TrillRegions','TrillPeaks'}, ...
   peakLocsWhale2,peakValsWhale2,'LabelRowIndex',1);

subplot(2,1,2)
plot(peakLocsWhale2,peakValsWhale2,'v')
hold off
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Explore Label Values

Explore the label values using getLabelValues.

getLabelValues(lss)

ans=2×3 table
              WhaleType    MoanRegions    TrillRegions
              _________    ___________    ____________

    Whale1      blue       {3x2 table}    {1x3 table} 
    Whale2      blue       {3x2 table}    {1x3 table} 

Retrieve the moan regions for the first member of the labeled set.

getLabelValues(lss,1,'MoanRegions')

ans=3×2 table
     ROILimits      Value
    ____________    _____

     6.1     7.7    {[1]}
    11.4    13.1    {[1]}
    16.5    18.1    {[1]}

Use a second output argument to list the sublabels of a label.
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[value,valueWithSublabel] = getLabelValues(lss,1,'TrillRegions')

value=1×2 table
    ROILimits     Value
    __________    _____

    1.4    3.1    {[1]}

valueWithSublabel=1×3 table
    ROILimits     Value     Sublabels 
                           TrillPeaks 
    __________    _____    ___________

    1.4    3.1    {[1]}    {3x2 table}

To retrieve the values in a sublabel, express the label name as a two-element array.

getLabelValues(lss,1,{'TrillRegions','TrillPeaks'})

ans=3×2 table
    Location      Value   
    ________    __________

     1.553      {[0.2110]}
     1.626      {[0.2540]}
       1.7      {[0.2110]}

Find the value of the third trill peak corresponding to the second member of the set.

getLabelValues(lss,2,{'TrillRegions','TrillPeaks'}, ...
    'LabelRowIndex',1,'SublabelRowIndex',3)

ans=1×2 table
    Location      Value   
    ________    __________

     11.437     {[0.1500]}

Count Label Values and Create Datastores

Specify the path to a set of audio signals included as MAT-files with MATLAB®. Each file contains a
signal variable and a sample rate. List the names of the files.

folder = fullfile(matlabroot,"toolbox","matlab","audiovideo");
lst = dir(append(folder,"/*.mat"));
nms = {lst(:).name}'

nms = 7x1 cell
    {'chirp.mat'   }
    {'gong.mat'    }
    {'handel.mat'  }
    {'laughter.mat'}
    {'mtlb.mat'    }
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    {'splat.mat'   }
    {'train.mat'   }

Create a signal datastore that points to the specified folder. Set the sample rate variable name to Fs,
which is common to all files. Generate a subset of the datastore that excludes the file mtlb.mat. Use
the subset datastore as the source for a labeledSignalSet object.

sds = signalDatastore(folder,"SampleRateVariableName","Fs");
sds = subset(sds,~strcmp(nms,"mtlb.mat"));
lss = labeledSignalSet(sds);

Create three label definitions to label the signals:

• Define a logical attribute label that is true for signals that contain human voices.
• Define a numeric point label that marks the location and amplitude of the maximum of each

signal.
• Define a categorical region-of-interest (ROI) label to pick out nonoverlapping, uniform-length

random regions of each signal.

Add the signal label definitions to the labeled signal set.

vc = signalLabelDefinition("Voice",'LabelType','attribute', ...
    'LabelDataType','logical','DefaultValue',false);
mx = signalLabelDefinition("Maximum",'LabelType','point', ...
    'LabelDataType','numeric');
rs = signalLabelDefinition("RanROI",'LabelType','ROI', ...
    'LabelDataType','categorical','Categories',["ROI" "other"]);
addLabelDefinitions(lss,[vc mx rs])

Label the signals:

• Label 'handel.mat' and 'laughter.mat' as having human voices.
• Use the islocalmax function to find the maximum of each signal. Label its location and value.
• Use the randROI on page 1-1300 function to generate as many regions of length N/10 samples as

can fit in a signal of length N given a minimum separation of N/6 samples between regions. Label
their locations and assign them to the ROI category.

When labeling points and regions, convert sample values to time values. Subtract 1 to account for
MATLAB® array indexing and divide by the sample rate.

kj = 1;
while hasdata(sds)
    
    [sig,info] = read(sds);
    fs = info.SampleRate;

    [~,fn] = fileparts(info.FileName);
    if fn=="handel" || fn=="laughter"
        setLabelValue(lss,kj,"Voice",true)
    end
    
    xm = find(islocalmax(sig,'MaxNumExtrema',1));
    setLabelValue(lss,kj,"Maximum",(xm-1)/fs,sig(xm))

    N = length(sig);
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    rois = randROI(N,round(N/10),round(N/6));
    setLabelValue(lss,kj,"RanROI",(rois-1)/fs,repelem("ROI",size(rois,1)))

    kj = kj+1;
    
end

Verify that only two signals contain voices.

countLabelValues(lss,"Voice")

ans=2×3 table
    Voice    Count    Percent
    _____    _____    _______

    false      4      66.667 
    true       2      33.333 

Verify that two signals have a maximum amplitude of 1.

countLabelValues(lss,"Maximum")

ans=5×4 table
           Maximum            Count    Percent    MemberCount
    ______________________    _____    _______    ___________

    0.80000000000000004441      1      16.667          1     
    0.89113331915798421612      1      16.667          1     
    0.94730769230769229505      1      16.667          1     
    1                           2      33.333          2     
    1.0575668990330560071       1      16.667          1     

Verify that each signal has four nonoverlapping random regions of interest.

countLabelValues(lss,"RanROI")

ans=2×4 table
    RanROI    Count    Percent    MemberCount
    ______    _____    _______    ___________

    ROI        24        100           6     
    other       0          0           0     

Create two datastores with the data in the labeled signal set:

• The signalDatastore (Signal Processing Toolbox) object sd contains the signal data.
• The arrayDatastore object ld contains the labeling information. Specify that you want to

include the information corresponding to all the labels you created.

[sd,ld] = createDatastores(lss,["Voice" "RanROI" "Maximum"]);

Use the information in the datastores to plot the signals and display their labels.

• Use a signalMask (Signal Processing Toolbox) object to highlight the regions of interest in blue.
• Plot yellow lines to mark the locations of the maxima.
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• Add a red axis label to the signals that contain human voices.

tiledlayout flow

while hasdata(sd)

    [sg,nf] = read(sd);
    
    lbls = read(ld);
    
    nexttile
    
    msk = signalMask(lbls{:}.RanROI{:},'SampleRate',nf.SampleRate);    
    plotsigroi(msk,sg)
    colorbar off
    xlabel('')
    
    xline(lbls{:}.Maximum{:}.Location, ...
        'LineWidth',2,'Color','#EDB120')
    
    if lbls{:}.Voice{:}
        ylabel('VOICED','Color','#D95319')
    end

end
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function roilims = randROI(N,wid,sep)

num = floor((N+sep)/(wid+sep));
hq = histcounts(randi(num+1,1,N-num*wid-(num-1)*sep),(1:num+2)-1/2);
roilims = (1 + (0:num-1)*(wid+sep) + cumsum(hq(1:num)))' + [0 wid-1];

end

Version History
Introduced in R2018b

See Also
Apps
Signal Labeler

Objects
labeledSignalSet | signalMask
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Signal Multiresolution Analyzer
Decompose signals into time-aligned components

Description
The Signal Multiresolution Analyzer app is an interactive tool for visualizing multilevel wavelet-
and data adaptive-based decompositions of real-valued 1-D signals and comparing results. The app
supports single- and double-precision data. With the app, you can:

• Access all the real-valued 1-D signals in your MATLAB workspace.
• Generate decompositions using fixed-bandwidth and data-adaptive multiresolution analysis (MRA)

methods:

• Fixed-bandwidth: Maximal overlap discrete wavelet transform (MODWT) (default), and tunable
Q-factor wavelet transform (TQWT)

• Data-adaptive: Empirical mode decomposition (EMD), empirical wavelet transform (EWT), and
variational mode decomposition (VMD)

• Adjust default parameters, and visualize and compare multiple decompositions.
• Choose decomposition levels to include in the signal reconstruction.
• Obtain frequency ranges of the decomposition levels.
• Determine the relative energy of the signal across levels.
• Export reconstructed signals and decompositions to your workspace.
• Recreate decompositions in your workspace by generating MATLAB scripts.
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Open the Signal Multiresolution Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter signalMultiresolutionAnalyzer.

Examples

Visualize Time-Aligned MODWTMRA Decomposition

Load in the Kobe earthquake data. The data are seismograph measurements (vertical acceleration in
nm/sec2) recorded at Tasmania University, Hobart, Australia, on 16 January 1995, beginning at
20:56:51 (GMT) and continuing for 51 minutes at one second intervals.

load kobe

Open Signal Multiresolution Analyzer and click Import. A window appears listing all the
workspace variables the app can process.
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Select the Kobe data from the dialog box and click Import. By default, a four-level MODWTMRA
decomposition of the signal appears in the MODWT tab. The decomposition is obtained using the
modwt and modwtmra functions with default settings. The plots in the Decomposition pane are the
projections of the wavelet decompositions of the signal at each scale on the original signal subspace.
The decomposed signal is named kobe1 in the Decomposed Signals pane. The method MODWT
identifies the decomposition. The original signal, kobe, and the reconstruction, kobe1, are plotted in
the Reconstructions pane.
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By default, plots are with respect to sample index and frequencies are in cycles per sample. To plot
with respect to time and display frequencies in hertz, select the Sample Rate radio button on the
Signal Multiresolution Analyzer tab. The default sample rate is 1 hertz. The plots and frequencies
update to use the sample rate.

The Level Selection pane shows the relative energies of the signal across scales, as well as the
frequency bands.
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A check box in the Show column controls whether or not that level is displayed in the
Decomposition pane. A check box in the Include column controls whether or not to include that
level of the wavelet decomposition in the reconstruction. Clicking a plot in the Decomposition pane
is another way to include or exclude that level in the signal reconstruction.

To generate a new decomposition, change one of the wavelet parameters in the toolstrip on the
MODWT tab and click Decompose.

• Wavelet - Wavelet family
• Number - Wavelet filter number
• Level - Wavelet decomposition level

Changing any parameter in the toolstrip enables the Decompose button.

Compare MODWTMRA and EMD Decompositions

Load the noisy Doppler signal. The signal is a noisy version of the Doppler test signal of Donoho and
Johnstone [1].

load noisdopp

Open Signal Multiresolution Analyzer and import the signal into the app. By default, the app
creates a four-level MODWTMRA decomposition of the signal in the MODWT tab. In the
Decomposed Signals pane, the wavelet decomposition is named noisdopp1. The Reconstructions
pane shows the original and reconstructed signals plotted in two different colors.

To add the EMD decomposition, first switch to the Signal Multiresolution Analyzer tab, then click
Add ▼ and select EMD.
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After a few moments the EMD decomposition noisdopp2 appears in the EMD tab. The
decomposition is obtained using the emd function with default settings. The residual is now the
thickest plot in the Reconstructions pane. You can change the parameters in the toolstrip and click
Decompose to obtain a different EMD decomposition. To learn more about the parameters and the
EMD algorithm, see emd.
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To more easily see the differences between the two reconstructions, click noisdopp in the plot
legend. The text fades, and the plot of the original signal is hidden. You can use the legend to hide
any plot in the Reconstructions pane.
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Duplicate Decomposition and Generate Script

This example shows how to duplicate a decomposition for modification. The example also shows how
to generate a script to recreate the decomposition in your workspace.

Load the Kobe earthquake data into your workspace. The data are seismograph measurements
(vertical acceleration in nm/sec2) recorded at Tasmania University, Hobart, Australia, on 16 January
1995, beginning at 20:56:51 (GMT) and continuing for 51 minutes at one second intervals.

load kobe
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Open Signal Multiresolution Analyzer and import the earthquake data into the app. By default, the
app creates a four-level MODWTMRA decomposition of the signal called kobe1 using the modwt and
modwtmra functions with default settings. To show plots with respect to time and express frequencies
in Hz, click the Sample Rate radio button in the Signal Multiresolution Analyzer tab.

Duplicate Decomposition

Create a new six-level decomposition using the order 4 Coiflet. In the Signal Multiresolution
Analyzer tab, click Duplicate in the toolstrip. Since kobe1 is the currently selected item in
Decomposed Signals, a duplicate of the first decomposition is created. The duplicate is called
kobe1Copy. The plots in Reconstructions are updated to include the new decomposition. Except for
the color, the duplicate is identical with the first decomposition. You can change the name of the
duplicate by right-clicking on the name in Decomposed Signals.

In the MODWT tab, change the settings in the toolstrip to the following values and then click
Decompose.

• Wavelet: coif
• Number: 4
• Level: 6

In Level Selection, note which components of the decomposition are included in the reconstruction:
the approximation and the level 5 and level 6 details.

Level 4 has approximately 60% of the total energy. Remove levels 5 and 6 from the reconstruction,
and include level 4. Show only the approximation and level 4 details in the Decomposition pane. To
approximately align the decomposition with the reconstruction, drag the Decomposition pane
beneath the Reconstructions pane.
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Generate MODWT Script

You have three export options. You can export the reconstruction or the entire decomposition of the
selected decomposed signal to your workspace, or you can export a MATLAB™ script to recreate the
decomposition in your workspace. To generate a script, in the Signal Multiresolution Analyzer tab
click Export > Generate MATLAB Script.

An untitled script opens in your editor with the following executable code. The true-false values in
levelForReconstruction correspond to which Include boxes are checked in Level Selection.
You can save the script as is, or modify it to apply the same decomposition settings to other signals.
Run the code.
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% Logical array for selecting reconstruction elements
levelForReconstruction = [false,false,false,true,false,false,true];

% Perform the decomposition using modwt
wt = modwt(kobe,'coif4',6);

% Construct MRA matrix using modwtmra
mra = modwtmra(wt,'coif4');

% Sum down the rows of the selected multiresolution signals
kobe1Copy = sum(mra(levelForReconstruction,:),1);

Plot the original signal and reconstruction. Except for possibly the colors, the plot will match the
kobe1Copy reconstruction shown in the app.

t = 0:numel(kobe)-1;
plot(t,kobe)
grid on
hold on
plot(t,kobe1Copy,LineWidth=2)
xlabel("Seconds")
title("Reconstruction")
legend("Original","Reconstruction",Location="northwest")
axis tight
hold off
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Generate EMD Script

Add the EMD decomposition of the Kobe data by clicking Add ▼ and selecting EMD in the Signal
Multiresolution Analyzer tab. The name of the decomposed signal in the Decomposed Signals
pane is kobe3. By default, the reconstruction consists only of the residual. The decomposition is
obtained by using the emd function with default settings.

Generate a script that creates the EMD decomposition by clicking Export > Generate MATLAB
Script. An untitled script opens in your editor with the following executable code. Run the code.

% Logical array for selecting reconstruction elements
levelForReconstruction = [false,false,false,false,false,true];

% Perform the decomposition using EMD
[imf,residual,info] = emd(kobe, ...
    SiftRelativeTolerance=0.2, ...
    SiftMaxIterations=100, ...
    MaxNumIMF=5, ...
    MaxNumExtrema=1, ...
    MaxEnergyRatio=20, ...
    Interpolation='spline');

% Construct MRA matrix by appending IMFs and residual
mra = [imf residual].';

% Sum down the rows of the selected multiresolution signals
kobe3 = sum(mra(levelForReconstruction,:),1);

Compare the reconstruction kobe3 with the original signal. In this case, the reconstruction only
consists of the residual.

plot(t,kobe)
grid on
hold on
plot(t,kobe3,LineWidth=2)
xlabel("Seconds")
title("Reconstruction")
legend("Original","Reconstruction",Location="northwest")
axis tight
hold off
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• “Visualize and Recreate EWT Decomposition”
• “Visualize and Recreate TQWT Decomposition”
• “Visualize and Recreate VMD Decomposition”
• “Comparing MODWT and MODWTMRA” on page 1-999

Parameters
Wavelet — Orthogonal wavelet family
sym (default) | coif | db | fk

Orthogonal wavelet family to use to generate the multiresolution analysis (default), specified as:

• sym — Symlets
• coif — Coiflets
• db — Daubechies wavelets
• fk — Fejér-Korovkin wavelets

The Wavelet parameter is applicable only for generating a multiresolution analysis.

For more information about the wavelets, use the waveinfo function. For example, to learn more
about Daubechies wavelets, enter waveinfo('db').
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Interpolation — Interpolation method
spline (default) | pchip

Interpolation method to use for envelope construction in empirical mode decomposition, specified as
one of the following:

• spline — Cubic spline interpolation
• pchip — Piecewise cubic Hermite interpolating polynomial method

The Interpolation parameter is applicable only for generating an empirical mode decomposition.
You can change other options with the app when creating empirical mode decompositions. For more
information, see emd.

Programmatic Use
signalMultiresolutionAnalyzer opens the Signal Multiresolution Analyzer app. Once the
app initializes, import a signal for analysis by clicking Import.

signalMultiresolutionAnalyzer(sig) opens the Signal Multiresolution Analyzer app and
imports, decomposes, and plots the multiresolution analysis of sig using modwtmra and modwt with
the sym4 wavelet and default settings.

sig is a variable in the workspace. sig can be:

• A 1-by-N or N-by-1 real-valued vector.
• Single or double precision.

By default, the app plots the decomposition levels as functions of sample index. To plot with respect
to time, you can set a sample rate or sample period using the app.

Tips
• To decompose more than one signal simultaneously, run multiple instances of the Signal

Multiresolution Analyzer app.
• For the MODWT and TQWT decomposition methods, the script generated by the Signal

Multiresolution Analyzer app supports gpuArray (Parallel Computing Toolbox) inputs.

Algorithms
Decomposition Methods

To generate the decompositions, Signal Multiresolution Analyzer uses these functions:

• EMD — emd
• EWT — ewt
• MODWT — modwt and modwtmra
• TQWT — tqwt and tqwtmra
• VMD — vmd
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Passband Frequencies

For the fixed-bandwidth methods, MODWT and TQWT, Signal Multiresolution Analyzer reports the
theoretical frequency ranges of the decomposition levels. For the data-adaptive methods, EMD, EWT,
and VMD, the app reports the measured bandwidth.

Version History
Introduced in R2018b

References
[1] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.

See Also
Apps
Wavelet Signal Analyzer | Wavelet Signal Denoiser | Wavelet Time-Frequency Analyzer

Functions
emd | ewt | modwt | modwtmra | tqwt | tqwtmra | vmd

Topics
“Visualize and Recreate EWT Decomposition”
“Visualize and Recreate TQWT Decomposition”
“Visualize and Recreate VMD Decomposition”
“Comparing MODWT and MODWTMRA” on page 1-999
“Empirical Wavelet Transform”
“Tunable Q-factor Wavelet Transform”
“Practical Introduction to Multiresolution Analysis”
“Time-Frequency Gallery”
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subdict
Extract submatrix from a sensing dictionary

Syntax
Ar = subdict(A,rowIndices,colIndices)

Description
Ar = subdict(A,rowIndices,colIndices) returns the submatrix Ar that corresponds to the
rows and columns specified by rowIndices and colIndices, respectively.

Examples

Extract and Visualize Submatrix

Create a sensing dictionary. Set the type of the sensing dictionary to 'fourier' and 'eye'. The size
of each basis type is 100-by-100.

A = sensingDictionary(Size=100,Type={'fourier','eye'})

A = 
  sensingDictionary with properties:

                Type: {'fourier'  'eye'}
                Name: {''  ''}
               Level: [0 0]
    CustomDictionary: []
                Size: [100 200]

Extract the entire submatrix that is associated with the 'eye' basis type. Visualize the submatrix.

Bmat = subdict(A,1:100,101:200);
imagesc(Bmat)
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Extract a 25-by-50 submatrix associated with the 'fourier' basis type. Visualize the real and
imaginary parts of the submatrix.

Cmat = subdict(A,1:25,1:50);
subplot(1,2,1)
imagesc(real(Cmat))
title("Real Part")
subplot(1,2,2)
imagesc(imag(Cmat))
title("Imaginary Part")
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Input Arguments
A — Sensing dictionary
sensingDictionary object

Sensing dictionary, specified as a sensingDictionary object.

rowIndices — Row indices
vector

Row indices to extract, specified as a vector.
Example: Ar = subdict(A,1:256,1:100) returns the 256-by-100 submatrix that corresponds to
the rows indexed by 1:256 and columns indexed by [1:100].
Data Types: double

colIndices — Column indices
vector

Column indices to extract, specified as a vector.
Example: Ar = subdict(A,1:128,[2 3 5 8 13]) returns the 128-by-5 submatrix that
corresponds to the rows indexed by 1:128 and columns indexed by [2 3 5 8 13].
Data Types: double
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Output Arguments
Ar — Submatrix
matrix

Submatrix extracted from the sensingDictionary A, returned as a matrix. The matrix Ar is M-by-
N, where M equals the length of rowIndices, and N equals the length of colIndices.
Data Types: double

Version History
Introduced in R2022a

See Also
sensingDictionary
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subset
Get new labeled signal set with subset of members

Syntax
lssnew = subset(lss,midxvect)

Description
lssnew = subset(lss,midxvect) returns a new labeled signal set containing the members
specified in midxvect.

Examples

Labeled Subset

Load a labeled signal set of whale songs.

load whales
lss

lss = 
  labeledSignalSet with properties:

             Source: {2x1 cell}
         NumMembers: 2
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [2x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.

Create a new labeled signal set consisting of the second member of the original set.

lssnew = subset(lss,2)

lssnew = 
  labeledSignalSet with properties:

             Source: {[76579x1 double]}
         NumMembers: 1
    TimeInformation: "sampleRate"
         SampleRate: 4000
             Labels: [1x3 table]
        Description: "Characterize wave song regions"

 Use labelDefinitionsHierarchy to see a list of labels and sublabels.
 Use setLabelValue to add data to the set.
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Input Arguments
lss — Labeled signal set
labeledSignalSet object

Labeled signal set, specified as a labeledSignalSet object.
Example: labeledSignalSet({randn(100,1)
randn(10,1)},signalLabelDefinition('female')) specifies a two-member set of random
signals containing the attribute 'female'.

midxvect — Subset member row numbers
vector of positive integers

Subset member row numbers, specified as a vector of positive integers. Each element of midxvect
specifies a member row number as it appears in the “Labels” on page 1-0  table of the
labeledSignalSet object lss.
Example: [2 3 5 7 11 13 17] chooses a subset of signals indexed by prime numbers.

Output Arguments
lssnew — New labeled signal set
labeledSignalSet object

New labeled signal set, returned as a labeledSignalSet object.

Version History
Introduced in R2018b

See Also
labeledSignalSet | signalLabelDefinition
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swt
Discrete stationary wavelet transform 1-D

Syntax
swc = swt(x,n,wname)
swc = swt(x,n,LoD,HiD)
[swa,swd] = swt( ___ )

Description
swc = swt(x,n,wname) returns the stationary wavelet decomposition of the signal x at level n
using the wavelet wname.

Note swt is defined using periodic extension. The length of the approximation and detail coefficients
computed at each level equals the length of the signal.

swc = swt(x,n,LoD,HiD) returns the stationary wavelet decomposition using the specified
lowpass and highpass wavelet decomposition filters LoD and HiD, respectively.

[swa,swd] = swt( ___ ) returns the approximation coefficients swa and stationary wavelet
coefficients swd using either of the previous syntaxes.

Examples

Multilevel Stationary Wavelet Decomposition

Perform a multilevel stationary wavelet decomposition of a signal.

Load a one-dimensional signal and acquire its length.

load noisbloc
s = noisbloc;
sLen = length(s);

Perform a stationary wavelet decomposition at level 3 of the signal using 'db1'. Extract the detail
and approximation coefficients at level 3.

[swa,swd] = swt(s,3,'db1');
swd3 = swd(3,:);
swa3 = swa(3,:);

Plot the output of the decomposition.

plot(s)
xlim([0 sLen])
title('Original Signal')
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Plot the level 3 approximation and detail coefficients.

subplot(2,1,1)
plot(swa3)
xlim([0 sLen])
title('Level 3 Approximation coefficients')
subplot(2,1,2)
plot(swd3)
xlim([0 sLen])
title('Level 3 Detail coefficients')
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Input Arguments
x — Input signal
real-valued vector

Input signal, specified as a real-valued vector.
Data Types: double

n — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer. 2n must divide the length of x. Use wmaxlev to
determine the maximum level of decomposition.
Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. swt supports only Type 1
(orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters for a list of orthogonal and
biorthogonal wavelets.

LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors
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Wavelet decomposition filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. The lengths of LoD and
HiD must be equal. See wfilters for additional information.

Output Arguments
swc — Stationary wavelet decomposition
real-valued matrix

Stationary wavelet decomposition, returned as a real-valued matrix. The coefficients are stored row-
wise:

• For 1 ≤ i ≤ n, the ith row of swc contains the detail coefficients of level i.
• swc(n+1,:) contains the approximation coefficients of level n.

Data Types: double

swa — Approximation coefficients
real-valued matrix

Approximation coefficients, returned as a real-valued matrix. For 1 ≤ i ≤ n, the ith row of swa
contains the approximation coefficients of level i.
Data Types: double

swd — Detail coefficients
real-valued matrix

Detail coefficients, returned as a real-valued matrix. For 1 ≤ i ≤ n, the ith row of swd contains the
detail coefficients of level i.
Data Types: double

Algorithms
Given a signal s of length N, the first step of the stationary wavelet transform (SWT) produces,
starting from s, two sets of coefficients: approximation coefficients cA1 and detail coefficients cD1.
These vectors are obtained by convolving s with the lowpass filter LoD for approximation, and with
the highpass filter HiD for detail.

More precisely, the first step is
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where  denotes convolution with the filter X.

Note cA1 and cD1 are of length N instead of N/2 as in the DWT case.

The next step splits the approximation coefficients cA1 in two parts using the same scheme, but with
modified filters obtained by upsampling the filters used for the previous step and replacing s by cA1.
Then, the SWT produces cA2 and cD2. More generally,

where

• F0 = LoD
• G0 = HiD
•

 — Upsample (insert zeros between elements)

Version History
Introduced before R2006a

References
[1] Nason, G. P., and B. W. Silverman. “The Stationary Wavelet Transform and Some Statistical

Applications.” In Wavelets and Statistics, edited by Anestis Antoniadis and Georges
Oppenheim, 103:281–99. New York, NY: Springer New York, 1995. https://doi.org/
10.1007/978-1-4612-2544-7_17.
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[2] Coifman, R. R., and D. L. Donoho. “Translation-Invariant De-Noising.” In Wavelets and Statistics,
edited by Anestis Antoniadis and Georges Oppenheim, 103:125–50. New York, NY: Springer
New York, 1995. https://doi.org/10.1007/978-1-4612-2544-7_9.

[3] Pesquet, J.-C., H. Krim, and H. Carfantan. “Time-Invariant Orthonormal Wavelet Representations.”
IEEE Transactions on Signal Processing 44, no. 8 (August 1996): 1964–70. https://doi.org/
10.1109/78.533717.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.
• The level of decomposition n must be defined as a scalar during compilation.

See Also
dwt | iswt | wavedec | modwt
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swt2
Discrete stationary 2-D wavelet transform

Syntax
[A,H,V,D] = swt2(X,N,wname)
[A,H,V,D] = swt2(X,N,LoD,HiD)

swc = swt2( ___ )

Description
[A,H,V,D] = swt2(X,N,wname) returns the approximation coefficients A and the horizontal,
vertical, and diagonal detail coefficients H, V, and D, respectively, of the stationary 2-D wavelet
decomposition of the image X at level N using the wavelet wname.

Note

• swt2 is uses periodic extension.
• swt2 uses double-precision arithmetic internally and returns double-precision coefficient

matrices. swt2 warns if there is a loss of precision when converting to double.

[A,H,V,D] = swt2(X,N,LoD,HiD) uses the specified lowpass and highpass wavelet
decomposition filters LoD and HiD, respectively.

swc = swt2( ___ ) returns the approximation and detail coefficients in swc.

Examples

Extract and Display 2-D Stationary Wavelet Decomposition

Load and display an image.

load woman
imagesc(X)
colormap(map)
title('Original')
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Perform the stationary wavelet decomposition of the image at level 2 using db6.

[ca,chd,cvd,cdd] = swt2(X,2,'db6');

Extract the level 1 and level 2 approximation and detail coefficients from the decomposition.

A1 = wcodemat(ca(:,:,1),255);
H1 = wcodemat(chd(:,:,1),255);
V1 = wcodemat(cvd(:,:,1),255);
D1 = wcodemat(cdd(:,:,1),255);

A2 = wcodemat(ca(:,:,2),255);
H2 = wcodemat(chd(:,:,2),255);
V2 = wcodemat(cvd(:,:,2),255);
D2 = wcodemat(cdd(:,:,2),255);

Display the approximation and detail coefficients from the two levels.

subplot(2,2,1)
imagesc(A1)
title('Approximation Coef. of Level 1')

subplot(2,2,2)
imagesc(H1)
title('Horizontal Detail Coef. of Level 1')

subplot(2,2,3)
imagesc(V1)
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title('Vertical Detail Coef. of Level 1')

subplot(2,2,4)
imagesc(D1)
title('Diagonal Detail Coef. of Level 1')

subplot(2,2,1)
imagesc(A2)
title('Approximation Coef. of Level 2')

subplot(2,2,2)
imagesc(H2)
title('Horizontal Detail Coef. of Level 2')

subplot(2,2,3)
imagesc(V2)
title('Vertical Detail Coef. of Level 2')

subplot(2,2,4)
imagesc(D2)
title('Diagonal Detail Coef. of Level 2')
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Stationary Wavelet Transform of RGB Image

This example shows how to obtain single-level and multilevel stationary wavelet decompositions of an
RGB image.

Load and view an RGB image. The image is a 3-D array of type uint8. Since swt2 requires that the
first and second dimensions both be divisible by a power of 2, extract a portion of the image.

imdata = imread('ngc6543a.jpg');
x = imdata(1:512,1:512,:);
image(x)
title('RGB Image')
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Obtain the level 4 stationary wavelet decomposition of the image using the db4 wavelet. Return the
approximation coefficients. Note the dimensions of the coefficients array.

[a,~,~,~] = swt2(x,4,'db4');
size(a)

ans = 1×4

   512   512     3     4

The coefficients are all of type double. In an RGB array of type double, each color component is a
value between 0 and 1. Rescale the level 2 approximation coefficients to values between 0 and 1 and
view the result.

a2 = a(:,:,:,2);
a2 = (a2-min(a2(:)))/(max(a2(:))-min(a2(:)));
image(a2)
title('Level 2 Approximation')
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Obtain the single-level stationary wavelet decomposition of the image using the db4 wavelet. Return
the approximation coefficients. In a single-level decomposition of an RGB image, the third dimension
is singleton.

[a,~,~,~] = swt2(x,1,'db4');
size(a)

ans = 1×4

   512   512     1     3

View the approximation coefficients. To prevent an error when using image, squeeze the
approximation coefficients array to remove the singleton dimension.

a2 = squeeze(a);
a2 = (a2-min(a(:)))/(max(a(:))-min(a(:)));
image(a2)
title('Approximation')
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Input Arguments
X — Input image
2-D matrix | 3-D array

Input image, specified as a real-valued 2-D matrix or real-valued 3-D array. If X is 3-D, X is assumed to
be an RGB image, also referred to as a truecolor image, and the third dimension of X must equal 3.
For more information on truecolor images, see “Image Types”.
Data Types: double

N — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer. 2N must divide size(X,1) and size(X,2).
Use wmaxlev to determine the maximum level of decomposition.

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar. swt2 supports only Type 1
(orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters for a list of orthogonal and
biorthogonal wavelets.
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LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors

Wavelet decomposition filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. The lengths of LoD and
HiD must be equal. See wfilters for additional information.

Output Arguments
A — Approximation coefficients
2-D matrix | 3-D array | 4-D array

Approximation coefficients, returned as a multidimensional array. The dimensions of A depend on the
dimensions of the input X and the level of decomposition N.

• If X is m-by-n:

• If N is greater than 1, then A is m-by-n-by-N. For 1 ≤ i ≤ N, A(:,:,i) contains the
approximation coefficients at level i.

• If N is equal to 1, then A is m-by-n.
• If X is m-by-n-by-3:

• If N is greater than 1, then A is m-by-n-by-3-by-N. For 1 ≤ i ≤ N and j = 1, 2, 3,
A(:,:,j,i) contains approximation coefficients at level i.

• If N is equal to 1, then A is m-by-n-by-1-by-3. Since MATLAB removes singleton last dimensions
by default, the third dimension is singleton.

Data Types: double

H,V,D — Detail coefficients
2-D matrix | 3-D array | 4-D array

Detail coefficients, returned as multidimensional arrays of equal size. H, V, and D contain the
horizontal, vertical, and diagonal detail coefficients, respectively. The dimensions of the arrays
depend on the dimensions of the input X and the level of decomposition N.

• If X is m-by-n:

• If N is greater than 1, the arrays are m-by-n-by-N. For 1 ≤ i ≤ N, H(:,:,i), V(:,:,i), and
D(:,:,i) contain the detail coefficients at level i.

• If N is equal to 1, the arrays are m-by-n.
• If X is m-by-n-by-3:

• If N is greater than 1, the arrays are m-by-n-by-3-by-N. For 1 ≤ i ≤ N and j = 1, 2, 3,
H(:,:,j,i), V(:,:,j,i), and D(:,:,j,i) contain the detail coefficients at level i.

• If N is equal to 1, the arrays are m-by-n-by-1-by-3. For j = 1, 2, 3, H(:,:,1,j),
V(:,:,1,j) and D(:,:,1,j) contain the detail coefficients. Since MATLAB removes
singleton last dimensions by default, the third dimension is singleton.

Data Types: double

swc — Stationary wavelet decomposition
3-D array | 4-D array
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Stationary wavelet decomposition, returned as a multidimensional array. swc is the concatenation of
the approximation coefficients A and detail coefficients H, V, and D.

• If X is m-by-n and N is greater than 1, then swc = cat(3,H,V,D,A(:,:,N)).
• If X is m-by-n and N is equal to 1, then swc = cat(3,H,V,D,A).
• If X is m-by-n-by-3 and N is greater than 1, then swc = cat(4,H,V,D,A(:,:,:,N)).
• If X is m-by-n-by-3 and N is equal to1, then swc = cat(4,H,V,D,A).

Algorithms
2-D Discrete Stationary Wavelet Transform

For images, a stationary wavelet transform (SWT) algorithm similar to the one-dimensional case is
possible for two-dimensional wavelets and scaling functions obtained from one-dimensional functions
by tensor product. This kind of two-dimensional SWT leads to a decomposition of approximation
coefficients at level j into four components: the approximation at level j+1, and the details in three
orientations (horizontal, vertical, and diagonal).

This chart describes the basic decomposition step for images.

where

•

 — Convolve the rows of the entry with filter X.
•

 — Convolve the columns of the entry with filter X.

Initialization

• cA0 = s
• F0 = LoD
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• G0 = HiD
•

where  denotes upsample.

Note that size(cAj) = size(cDj(h)) = size(cDj(v)) = size(cDj(d)) = s, where s equals the
size of the analyzed image.

Truecolor Image Coefficient Arrays

To distinguish a single-level decomposition of a truecolor image from a multilevel decomposition of an
indexed image, the approximation and detail coefficient arrays of truecolor images are 4-D arrays.

• If you perform a multilevel decomposition, the dimensions of A, H, V, and D are m-by-n-by-3-by-k,
where k is the level of decomposition.

• If you perform a single-level decomposition, the dimensions of A, H, V, and D are m-by-n-by-1-by-3.
Since MATLAB removes singleton last dimensions by default, the third dimension of the arrays is
singleton.

Version History
Introduced before R2006a

R2017b: Distinguish Single-Level Truecolor Image from Multilevel Indexed Image
Decompositions
Behavior changed in R2017b

To distinguish a single-level decomposition of a truecolor image from a multilevel decomposition of an
indexed image, the approximation and detail coefficient arrays of truecolor images are 4-D arrays.

• Migrate from Previous Releases to R2017b

Depending on the original input data type and level of wavelet decomposition, you might have to
take different steps to make swt2 coefficient arrays from previous releases compatible with
R2017b coefficient arrays. The steps depend on whether you have a single coefficient array or
separate approximation and detail coefficient arrays.

Single Coefficient Array Multiple Coefficient Arrays
Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues
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Single Coefficient Array Multiple Coefficient Arrays
Input: Truecolor image

• Single-level: If swc is the output of swt2 from a
previous release, execute:

swc1 = double(swc);
• Multi-level: If swc is the output of swt2 from a

previous release, execute:

swc1 = double(swc);

Input: Truecolor image

• Single-level: If ca, chd, cvd, and cdd are outputs
of swt2 from a previous release, execute:

ca1 = double(ca);
chd1 = double(chd);
cvd1 = double(cvd);
cdd1 = double(cdd);
ca2 = reshape(ca1,[m,n,1,3]);
chd2 = reshape(chd1,[m,n,1,3]);
cvd2 = reshape(cvd1,[m,n,1,3]);
cdd2 = reshape(cdd1,[m,n,1,3]);

• Multi-level: If ca, chd, cvd, and cdd are outputs
of swt2 from a previous release, execute:

ca1 = double(ca);
chd1 = double(chd);
cvd1 = double(cvd);
cdd1 = double(cdd);

• Migrate from R2017b to Previous Releases

Depending on the original input data type and level of wavelet decomposition, you might have to
take different steps to make R2017b swt2 coefficient arrays compatible with the coefficient arrays
from previous releases. The steps depend on whether you have a single coefficient array or
separate approximation and detail coefficient arrays.

Single Coefficient Array Multiple Coefficient Arrays
Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Index image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Truecolor image

• Single-level: No compatibility issues
• Multi-level: No compatibility issues

Input: Truecolor image

• Single-level: If ca, chd, cvd, and cdd are outputs
of swt2 from R2017b, execute:

ca1 = single(squeeze(ca));
chd1 = single(squeeze(chd));
cvd1 = single(squeeze(cvd));
cdd1 = single(squeeze(cdd));

• Multi-level: No compatibility issues

References
[1] Nason, G. P., and B. W. Silverman. “The Stationary Wavelet Transform and Some Statistical

Applications.” In Wavelets and Statistics, edited by Anestis Antoniadis and Georges
Oppenheim, 103:281–99. New York, NY: Springer New York, 1995. https://doi.org/
10.1007/978-1-4612-2544-7_17.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wavelet name must be constant.
• The input level of decomposition must be defined as a scalar during compilation.

See Also
dwt2 | iswt2 | wavedec2
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symaux
Symlet wavelet filter computation

Syntax
w = symaux(n)
w = symaux( ___ ,sumw)

Description
The symaux function generates the scaling filter coefficients for the "least asymmetric" Daubechies
wavelets.

w = symaux(n) is the order n Symlet scaling filter such that sum(w) = 1.

Note

• Instability may occur when n is too large. Starting with values of n in the 30s range, function
output will no longer accurately represent scaling filter coefficients.

• As n increases, the time required to compute the filter coefficients rapidly grows.
• For n = 1, 2, and 3, the order n Symlet filters and order n Daubechies filters are identical. See

“Extremal Phase” on page 1-1353.

w = symaux( ___ ,sumw) is the order n Symlet scaling filter such that sum(w) = sumw.

w = symaux(n,0) is equivalent to w = symaux(n,1).

Examples

Unit Norm Scaling Filter Coefficients

In this example you will generate symlet scaling filter coefficients whose norm is equal to 1. You will
also confirm the coefficients satisfy a necessary relation.

Compute the scaling filter coefficients of the order 10 symlet whose sum equals 2.

n = 10;
w = symaux(n,sqrt(2));

Confirm the sum of the coefficients is equal to 2 and the norm is equal to 1.

sqrt(2)-sum(w)

ans = 0

1-sum(w.^2)
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ans = 1.1324e-14

Since integer translations of the scaling function form an orthogonal basis, the coefficients satisfy the
relation ∑nw n w n− 2k = δ k . Confirm this by taking the autocorrelation of the coefficients and
plotting the result.

corrw = xcorr(w,w);
stem(corrw)
grid on
title('Autocorrelation of scaling coefficients')

stem(corrw(2:2:end))
grid on
title('Even-indexed autocorrelation values')
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Symlet and Daubechies Scaling Filters

This example shows that symlet and Daubechies scaling filters of the same order are both solutions of
the same polynomial equation.

Generate the order 4 Daubechies scaling filter and plot it.

wdb4 = dbaux(4)

wdb4 = 1×8

    0.1629    0.5055    0.4461   -0.0198   -0.1323    0.0218    0.0233   -0.0075

stem(wdb4)
title('Order 4 Daubechies Scaling Filter')
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wdb4 is a solution of the equation: P = conv(wrev(w),w)*2, where P is the "Lagrange trous" filter for
N = 4. Evaluate P and plot it. P is a symmetric filter and wdb4 is a minimum phase solution of the
previous equation based on the roots of P.

P = conv(wrev(wdb4),wdb4)*2;
stem(P)
title('''Lagrange trous'' filter')
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Generate wsym4, the order 4 symlet scaling filter and plot it. The Symlets are the "least asymmetric"
Daubechies' wavelets obtained from another choice between the roots of P.

wsym4 = symaux(4)

wsym4 = 1×8

    0.0228   -0.0089   -0.0702    0.2106    0.5683    0.3519   -0.0210   -0.0536

stem(wsym4)
title('Order 4 Symlet Scaling Filter')
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Compute conv(wrev(wsym4),wsym4)*2 and confirm that wsym4 is another solution of the equation P
= conv(wrev(w),w)*2.

P_sym = conv(wrev(wsym4),wsym4)*2;
err = norm(P_sym-P)

err = 1.8677e-15

Least Asymmetric Wavelet and Phase

For a given support, the orthogonal wavelet with a phase response that most closely resembles a
linear phase filter is called least asymmetric. Symlets are examples of least asymmetric wavelets.
They are modified versions of the classic Daubechies db wavelets. In this example you will show that
the order 4 symlet has a nearly linear phase response, while the order 4 Daubechies wavelet does
not.

First plot the order 4 symlet and order 4 Daubechies scaling functions. While neither is perfectly
symmetric, note how much more symmetric the symlet is.

[phi_sym,~,xval_sym]=wavefun('sym4',10);
[phi_db,~,xval_db]=wavefun('db4',10);
subplot(2,1,1)
plot(xval_sym,phi_sym)
title('sym4 - Scaling Function')
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grid on
subplot(2,1,2)
plot(xval_db,phi_db)
title('db4 - Scaling Function')
grid on

Generate the filters associated with the order 4 symlet and Daubechies wavelets.

scal_sym = symaux(4,sqrt(2));
scal_db = dbaux(4,sqrt(2));

Compute the frequency response of the scaling synthesis filters.

[h_sym,w_sym] = freqz(scal_sym);
[h_db,w_db] = freqz(scal_db);

To avoid visual discontinuities, unwrap the phase angles of the frequency responses and plot them.
Note how well the phase angle of the symlet filter approximates a straight line.

h_sym_u = unwrap(angle(h_sym));
h_db_u = unwrap(angle(h_db));
figure
plot(w_sym/pi,h_sym_u,'.')
hold on
plot(w_sym([1 end])/pi,h_sym_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
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legend('Phase Angle of Frequency Response','Straight Line')
title('Symlet Order 4 - Phase Angle')

figure
plot(w_db/pi,h_db_u,'.')
hold on
plot(w_db([1 end])/pi,h_db_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Daubechies Order 4 - Phase Angle')
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The sym4 and db4 wavelets are not symmetric, but the biorthogonal wavelet is. Plot the scaling
function associated with the bior3.5 wavelet. Compute the frequency response of the synthesis
scaling filter for the wavelet and verify that it has linear phase.

[~,~,phi_bior_r,~,xval_bior]=wavefun('bior3.5',10);
figure
plot(xval_bior,phi_bior_r)
title('bior3.5 - Scaling Function')
grid on
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[LoD_bior,HiD_bior,LoR_bior,HiR_bior] = wfilters('bior3.5');
[h_bior,w_bior] = freqz(LoR_bior);
h_bior_u = unwrap(angle(h_bior));
figure
plot(w_bior/pi,h_bior_u,'.')
hold on
plot(w_bior([1 end])/pi,h_bior_u([1 end]),'r')
grid on
xlabel('Normalized Frequency ( x \pi rad/sample)')
ylabel('Phase (radians)')
legend('Phase Angle of Frequency Response','Straight Line')
title('Biorthogonal 3.5 - Phase Angle')
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Extremal Phase

This example demonstrates that for a given support, the cumulative sum of the squared coefficients of
a scaling filter increase more rapidly for an extremal phase wavelet than other wavelets.

Generate the scaling filter coefficients for the db15 and sym15 wavelets. Both wavelets have support
of width 2 × 15− 1 = 29.

[~,~,LoR_db,~] = wfilters('db15');
[~,~,LoR_sym,~] = wfilters('sym15');

Next, generate the scaling filter coefficients for the coif5 wavelet. This wavelet also has support of
width 6 × 5− 1 = 29.

[~,~,LoR_coif,~] = wfilters('coif5');

Confirm the sum of the coefficients for all three wavelets equals 2.

sqrt(2)-sum(LoR_db)

ans = 2.2204e-16

sqrt(2)-sum(LoR_sym)

ans = 0
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sqrt(2)-sum(LoR_coif)

ans = 2.2204e-16

Plot the cumulative sums of the squared coefficients. Note how rapidly the Daubechies sum
increases. This is because its energy is concentrated at small abscissas. Since the Daubechies wavelet
has extremal phase, the cumulative sum of its squared coefficients increases more rapidly than the
other two wavelets.

plot(cumsum(LoR_db.^2),'rx-')
hold on
plot(cumsum(LoR_sym.^2),'mo-')
plot(cumsum(LoR_coif.^2),'b*-')
legend('Daubechies','Symlet','Coiflet')
title('Cumulative Sum')

Input Arguments
n — Order of symlet
positive integer

Order of the symlet, specified as a positive integer.

sumw — Sum of coefficients
1 (default) | positive real number

Sum of the scaling filter coefficients, specified as a positive real number. Set to sqrt(2) to generate
vector of coefficients whose norm is 1.
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Output Arguments
w — Filter coefficients
row vector

Vector of scaling filter coefficients of the order n symlet.

The scaling filter coefficients satisfy a number of properties. You can use these properties to check
your results. See “Unit Norm Scaling Filter Coefficients” on page 1-1341 for additional information.

More About
Least Asymmetric Wavelet

The Haar wavelet, also known as the Daubechies wavelet of order 1, db1, is the only compactly
supported orthogonal wavelet that is symmetric, or equivalently has linear phase. No other compactly
supported orthogonal wavelet can be symmetric. However, it is possible to derive wavelets which are
minimally asymmetric, meaning that their phase will be very nearly linear. For a given support, the
orthogonal wavelet with a phase response that most closely resembles a linear phase filter is called
least asymmetric.

Extremal Phase

Constructing a compactly supported orthogonal wavelet basis involves choosing roots of a particular
polynomial equation. Different choices of roots will result in wavelets whose phases are different.
Choosing roots that lie within the unit circle in the complex plane results in a filter with highly
nonlinear phase. Such a wavelet is said to have extremal phase, and has energy concentrated at small
abscissas. Let {hk} denote the set of scaling coefficients associated with an extremal phase wavelet,
where k = 1,…,M. Then for any other set of scaling coefficients {gk} resulting from a different choice
of roots, the following inequality will hold for all J = 1,…,M:

∑
k = 1

J
gk

2 ≤ ∑
k = 1

J
hk

2

The {hk} are sometimes called a minimal delay filter [2].

The polynomial equation mentioned above depends on the desired number of vanishing moments N
for the wavelet. To construct a wavelet basis involves choosing roots of the equation. In the case of
least asymmetric wavelets and extremal phase wavelets for orders 1, 2, and 3, there are effectively no
choices to make. For N = 1, 2, and 3, the dbN and symN filters are equal. The example “Symlet and
Daubechies Scaling Filters” on page 1-1343 shows that two different scaling filters can satisfy the
same polynomial equation. For additional information, see Daubechies [1].

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: SIAM Ed, 1992.
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[2] Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs,
NJ: Prentice Hall, 1989.

See Also
symwavf | wfilters | dbaux
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symwavf
Symlet wavelet filter

Syntax
f = symwavf(wname)

Description
f = symwavf(wname) returns the scaling filter associated with the Symlet wavelet specified by
wname. f is a real-valued vector.

Examples

Scaling Filter Associated With the Symlet Wavelet

Specify the order 4 Symlet wavelet.

wname = 'sym4';

Compute the corresponding scaling filter.

f = symwavf(wname);
f'

ans = 8×1

    0.0228
   -0.0089
   -0.0702
    0.2106
    0.5683
    0.3519
   -0.0210
   -0.0536

Input Arguments
wname — Symlet wavelet
'symN'

Symlet wavelet with N vanishing moments, where N is a positive integer in the closed interval [1, 45].

Version History
Introduced before R2006a
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See Also
symaux | waveinfo
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thselect
Threshold selection for denoising

Syntax
THR = thselect(X,TPTR)

Description
THR = thselect(X,TPTR) returns the threshold value adapted to the 1-D signal X using the
selection rule specified by TPTR. Available selection rules are:

• 'rigrsure' — Adaptive threshold selection using the principle of Stein's Unbiased Risk Estimate
(SURE).

• 'sqtwolog' — Fixed-form threshold is sqrt(2*log(length(X))).
• 'heursure' — Heuristic variant of 'rigrsure' and 'sqtwolog'.
• 'minimaxi' — Minimax thresholding.

Examples

Threshold Selection Rules

Generate a Gaussian white noise signal. For reproducibility, set the random seed to the default value.

rng default
x = randn(1,1000);

Find the threshold for each selection rule.

thrRig = thselect(x,'rigrsure');
disp(['SURE (''rigrsure'') threshold: ',num2str(thrRig)]);

SURE ('rigrsure') threshold: 2.0518

thrSqt = thselect(x,'sqtwolog');
disp(['Universal (''sqtwolog'') threshold: ',num2str(thrSqt)]);

Universal ('sqtwolog') threshold: 3.7169

thrHeu = thselect(x,'heursure');
disp(['Heuristic variant (''heursure'') threshold: ',num2str(thrHeu)]);

Heuristic variant ('heursure') threshold: 3.7169

thrMin = thselect(x,'minimaxi');
disp(['Minimax (''minimaxi'') threshold: ',num2str(thrMin)]);

Minimax ('minimaxi') threshold: 2.2163

Minimax and SURE threshold selection rules are more conservative and would be more convenient
when small details of the signal lie near the noise range.
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Input Arguments
X — Input data
real-valued vector

Input data, specified as a real-valued vector.
Data Types: double

TPTR — Threshold selection rule
'rigrsure' | 'heursure' | 'sqtwolog' | 'minimaxi'

Threshold selection rule, specified:

• 'rigrsure' — A threshold selection rule based on SURE (a quadratic loss function) for the soft
threshold estimator. Starting with an estimate of risk for a particular threshold value, t, the
algorithm minimizes the risks in t to yield a threshold value.

• 'heursure' — A mixture of 'rigrsure' and 'sqtwolog'. If the signal-to-noise ratio is small,
the SURE estimate is noisy. In that case, the fixed-form threshold is used.

• 'sqtwolog' — A fixed-form (universal) threshold yielding minimax performance multiplied by a
small factor proportional to log(length(X)).

• 'minimaxi' — A fixed threshold chosen to yield minimax performance for mean square error
against an ideal procedure. The minimax principle is used in statistics to design estimators. The
denoised signal can be assimilated to the estimator of the unknown regression function.
Therefore, the minimax estimator realizes the minimum of the maximum mean square error
obtained for the worst function in a given set.

Threshold selection rules are based on the underlying model y = f(t) + e, where e is an N(0,1) white
noise. Use level-dependent noise estimates for unscaled or nonwhite noise. (See NoiseEstimate
parameter in wdenoise for more information.)

Output Arguments
THR — Threshold
positive real number

Threshold value adapted to X, returned as a positive real number.

Version History
Introduced before R2006a

References
[1] Donoho, D. L. “Progress in Wavelet Analysis and WVD: A Ten Minute Tour.” Progress in Wavelet

Analysis and Applications (Y. Meyer, and S. Roques, eds.). Gif-sur-Yvette: Editions Frontières,
1993.

[2] Donoho, D. L., and Johnstone, I. M. “Ideal Spatial Adaptation by Wavelet Shrinkage.” Biometrika,
Vol. 81, pp. 425–455, 1994.
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[3] Donoho, D. L. “De-noising by Soft-Thresholding.” IEEE Transactions on Information Theory, Vol.
42, Number 3, pp. 613–627, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
wdenoise | wdenoise2

Apps
Wavelet Signal Denoiser

Topics
“Denoise a Signal with the Wavelet Signal Denoiser”
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timeSpectrum
Time-averaged wavelet spectrum

Syntax
tavgp = timeSpectrum(fb,x)
tavgp = timeSpectrum(fb,cfs)
[tavgp,f] = timeSpectrum( ___ )

[ ___ ] = timeSpectrum( ___ ,Name,Value)

timeSpectrum( ___ )

Description
tavgp = timeSpectrum(fb,x) returns the time-averaged wavelet power spectrum of the signal x
using the continuous wavelet transform (CWT) filter bank fb. By default, tavgp is obtained by time-
averaging the magnitude-squared scalogram over all times. The power of the time-averaged wavelet
spectrum is normalized to equal the variance of x.

tavgp = timeSpectrum(fb,cfs) returns the time-averaged wavelet spectrum for the CWT
coefficients cfs.

Note When using this syntax, the power of the time-averaged wavelet spectrum is normalized to
equal the variance of the last signal processed by the filter bank object function wt.

[tavgp,f] = timeSpectrum( ___ ) returns the wavelet center frequencies or center periods for
the time-averaged wavelet spectrum. f is a column vector or duration array depending on whether
the sampling frequency or sampling period is specified in the CWT filter bank, fb.

[ ___ ] = timeSpectrum( ___ ,Name,Value) specifies additional options using name-value pair
arguments. These arguments can be added to any of the previous input syntaxes. For example,
'Normalization','none' specifies no normalization of the time-averaged wavelet spectrum.

timeSpectrum( ___ ) with no output arguments plots the time-averaged wavelet power spectrum in
the current figure.

Examples

Time-Averaged Wavelet Spectrum of Oceanic Eddy Data

Load the NPG2006 dataset [1]. The data is the trajectory of a subsurface float trapped in an eddy. Plot
the eastward and northward displacement. The triangle marks the initial position.

load npg2006
plot(npg2006.cx)
hold on
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grid on
xlabel('Eastward Displacement (km)')
ylabel('Northward Displacement (km)')
plot(npg2006.cx(1),'^','markersize',11,'color','r',...
    'markerfacecolor',[1 0 0 ])

Create a CWT filter bank that can be applied to the data. Use the default Morse wavelet. The
sampling period for the data is 4 hours.

fb = cwtfilterbank('SignalLength',length(npg2006.cx),'SamplingPeriod',hours(4));

Obtain the time-averaged wavelet power spectra and the center periods.

[tavgp,centerP] = timeSpectrum(fb,npg2006.cx);
size(tavgp)

ans = 1×3

    73     1     2

The first page is the time-averaged wavelet spectrum for the positive scales (analytic part or
counterclockwise component), and the second page is the time-averaged wavelet spectrum for the
negative scales (anti-analytic part or clockwise component). Plot both spectra.

subplot(2,1,1)
plot(centerP,tavgp(:,1,1))
title('Counterclockwise Component')
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ylabel('Power')
xlabel('Period (hrs)')
subplot(2,1,2)
plot(centerP,tavgp(:,1,2))
title('Clockwise Component')
ylabel('Power')
xlabel('Period (hrs)')

If you omit the output arguments and execute timeSpectrum(fb,npg2006.cx) on the command
line, the scalograms and time-averaged power spectra are plotted in the current figure. Note that the
clockwise rotation of the float is captured in the clockwise rotary scalogram and the time-averaged
spectrum.
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Normalize Time-Averaged Wavelet Spectrum

Load a time series of solar magnetic field magnitudes recorded hourly over the south pole of the sun
by the Ulysses spacecraft from 21:00 UT on December 4, 1993 to 12:00 UT on May 24, 1994. See [3]
pp. 218–220 for a complete description of this data. Create a CWT filter bank that can be applied to
the data. Plot the scalogram and the time-averaged wavelet spectrum.

load solarMFmagnitudes
fb = cwtfilterbank('SignalLength',length(sm),'SamplingPeriod',hours(1));
timeSpectrum(fb,sm)
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Obtain the time-averaged wavelet spectrum of the signal using default values. By default,
timeSpectrum normalizes the power of the time-averaged wavelet spectrum to equal the variance of
the signal. Verify that the sum of the spectrum equals the variance of the signal.

tavg = timeSpectrum(fb,sm);
[var(sm) sum(tavg)]

ans = 1×2

    0.0448    0.0447

Obtain the time-averaged wavelet spectrum of the signal, but instead normalize the power as a
probability density function. Verify that the sum is equal to 1.

tavg = timeSpectrum(fb,sm,'Normalization','pdf');
sum(tavg)

ans = 1.0000

If you set SpectrumType to 'density', timeSpectrum normalizes the weighted integral of the
wavelet spectrum according to the value of Normalization. The spectrum mimics a probability
density function whose integral, numerically evaluated, equals the value specified by
Normalization.

Plot the scalogram and the time-averaged wavelet spectrum with spectrum type 'density' and
'pdf' normalization.

1 Functions

1-1364



figure
timeSpectrum(fb,sm,'SpectrumType','density','Normalization','pdf')

To confirm the integral of the spectrum equals 1, first obtain the time-averaged wavelet spectrum
with 'density' spectrum type and 'pdf' normalization.

tavg = timeSpectrum(fb,sm,'SpectrumType','density','Normalization','pdf');

By default, the filter bank uses the analytic Morse (3,60) wavelet. Obtain the admissibility constant
for the wavelet and numerically integrate the wavelet spectrum using the trapezoidal rule. Keep in
mind that the CWT uses L1 normalization. Confirm that the integral equals 1.

ga = 3;
tbw = 60;

be = tbw/ga;
anorm = 2*exp(be/ga*(1+(log(ga)-log(be))));
cPsi = anorm^2/(2*ga).*(1/2)^(2*(be/ga)-1)*gamma(2*be/ga);

rawScales = scales(fb);
numInt = 2/cPsi*1/length(sm)*trapz(rawScales(:),tavg./rawScales(:))

numInt = 1.0000
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Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

x — Input data
vector

Input data, specified as a real- or complex-valued vector. The input data x must have at least four
samples.
Data Types: single | double
Complex Number Support: Yes

cfs — CWT coefficients
matrix | 3-D array

CWT coefficients, specified as a 2-D matrix or as an M-by-N-by-2 array. cfs should be the output of
the wt object function of the CWT filter bank fb.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: timeSpectrum(fb,x,'TimeLimits',[100 500],'Normalization','none') returns
the time-averaged wavelet spectrum averaged over the time limits specified in samples without
normalizing the spectrum.

Normalization — Normalization
'var' (default) | 'pdf' | 'none'

Normalization of the time-averaged wavelet spectrum, specified as a comma-separated pair
consisting of 'Normalization' and one of the following:

• 'var' — Normalize to equal the variance of the time series x. If you provide the cfs input, the
timeSpectrum function uses the variance of the last time series processed by the filter bank
object function wt.

• 'pdf' — Normalize to equal 1.
• 'none' — No normalization is applied.

SpectrumType — Type of wavelet spectrum
'power' (default) | 'density'

Type of wavelet spectrum to return, specified as a comma-separated pair consisting of
'SpectrumType' and either 'power' or 'density'. If specified as 'power', the averaged sum of
the time-averaged wavelet spectrum over all times is normalized according to the value specified in
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'Normalization'. If specified as 'density', the weighted integral of the wavelet spectrum over all
times is normalized according to the value specified in 'Normalization'.

Note With regards to the numerical implementation of the continuous wavelet transform, the
integral over scale is performed using L1 normalization. With L1 normalization, if you have equal
amplitude oscillatory components in your data at different scales, they will have equal magnitude in
the CWT. Using L1 normalization provides a more accurate representation of the signal. For more
information, see “L1 Norm for CWT” on page 1-170.

TimeLimits — Time limits
[1 length(x)] or [1 size(cfs,2)] (default) | two-element vector

Time limits over which to average the wavelet spectrum, specified in samples. TimeLimits is
specified as a comma-separated pair consisting of 'TimeLimits' and a two-element vector with
nondecreasing elements. When you specify the input data as a signal, the elements are between 1
and the length of x. When you specify the input data as CWT coefficients, the elements are between 1
and size(cfs,2).

Output Arguments
tavgp — Time-averaged wavelet power spectrum
real-valued vector | real-valued 3-D array

Time-averaged wavelet power spectrum, returned as a real-valued vector or real-valued 3-D array. If
x is real-valued, tavgp is an F-by-1 vector, where F is the number of wavelet center frequencies or
center periods in the CWT filter bank fb. If x is complex-valued, tavgp is an F-by-1-by-2 array, where
the first page is the time-averaged wavelet spectrum for the positive scales (analytic part or
counterclockwise component), and the second page is the time-averaged wavelet spectrum for the
negative scales (anti-analytic part or clockwise component).

f — Center frequencies or center periods
column vector | duration array

Center frequencies or center periods for the time-averaged wavelet spectrum, returned as a column
vector or duration array, respectively. If the sampling frequency is specified in fb, then the elements
of f are the center frequencies ordered from high to low. If the sampling period is specified in fb,
then the elements of f are the center periods.

Version History
Introduced in R2020b

References
[1] Lilly, J. M., and J.-C. Gascard. “Wavelet Ridge Diagnosis of Time-Varying Elliptical Signals with

Application to an Oceanic Eddy.” Nonlinear Processes in Geophysics 13, no. 5 (September 14,
2006): 467–83. https://doi.org/10.5194/npg-13-467-2006.

[2] Torrence, Christopher, and Gilbert P. Compo. “A Practical Guide to Wavelet Analysis.” Bulletin of
the American Meteorological Society 79, no. 1 (January 1, 1998): 61–78. https://doi.org/
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
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[3] Percival, Donald B., and Andrew T. Walden. Wavelet Methods for Time Series Analysis. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge ; New York: Cambridge
University Press, 2000.

[4] Lilly, J.M., and S.C. Olhede. “Higher-Order Properties of Analytic Wavelets.” IEEE Transactions on
Signal Processing 57, no. 1 (January 2009): 146–60. https://doi.org/10.1109/
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
cwtfilterbank | scaleSpectrum
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tnodes
Determine terminal nodes

Syntax
N = tnodes(T)
N = tnodes(T,'deppos')
[N,K] = tnodes(T)
[N,K] = tnodes(T,'deppos'), M = N(K)

Description
tnodes is a tree-management utility.

N = tnodes(T) returns the indices of terminal nodes of the tree T. N is a column vector.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

N = tnodes(T,'deppos') returns a matrix N, which contains the depths and positions of terminal
nodes.

N(i,1) is the depth of the i-th terminal node. N(i,2) is the position of the i-th terminal node.

For [N,K] = tnodes(T) or [N,K] = tnodes(T,'deppos'), M = N(K) are the indices
reordered as in tree T, from left to right.

Examples
% Create initial tree. 
ord = 2; 
t = ntree(ord,3);      % Binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).
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% List terminal nodes (index). 
tnodes(t)

ans =
    4
    5
    7
    8
    13
    14
% List terminal nodes (Depth_Position). 
tnodes(t,'deppos')
ans =
    2   1 
    2   2 
    3   0 
    3   1 
    3   6 
    3   7

Version History
Introduced before R2006a

See Also
leaves | noleaves | wtreemgr
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tqwt
Tunable Q-factor wavelet transform

Syntax
wt = tqwt(x)
wt = tqwt(x,Name=Value)
[wt,info] = tqwt( ___ )

Description
wt = tqwt(x) returns the tunable Q-factor wavelet transform (TQWT) of x.

• The TQWT is computed to the maximum decomposition level with a quality factor of 1. For more
information, see “TQWT Decomposition Levels” on page 1-1375.

• As implemented, the tqwt function uses a redundancy of 3. For more information, see
“Redundancy” on page 1-1375.

wt = tqwt(x,Name=Value) specifies one or more additional name-value arguments. For example,
wt = tqwt(x,QualityFactor=2) specifies a quality factor of 2.

[wt,info] = tqwt( ___ ) returns the structure array, info, with information about the tunable Q-
factor wavelet transform.

Examples

Tunable Q-factor Wavelet Transform of Multisignal

Load a multichannel EEG signal. The signal has 23 channels.

load Espiga3
size(Espiga3,2)

ans = 23

Obtain the tunable Q-factor wavelet transform of the multisignal to the maximum level using the
default quality factor of 1.

wt = tqwt(Espiga3);
numel(wt)

ans = 12

For 1 ≤ i ≤ numel(wt)-1, the ith element of wt contains the wavelet transform coefficients for the ith
subband. The last element of wt contains the lowpass subband coefficients. Confirm the number of
columns of any element of wt is equal to the number of channels.

k = 7;
size(wt{k},2)

ans = 23
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Reconstruct the multisignal and demonstrate perfect reconstruction.

xrec = itqwt(wt,size(Espiga3,1));
max(abs(xrec(:)-Espiga3(:)))

ans = 4.9738e-13

Inspect TQWT Information Structure

Load an ECG signal. Obtain the TQWT of the signal down to level 5 with a quality factor of 2. Also
obtain information of the TQWT.

load wecg
lvl = 5;
qf = 2;
[wt,info] = tqwt(wecg,Level=lvl,QualityFactor=qf);

Plot the original signal and compare with the lowpass subband coefficients.

subplot(2,1,1)
plot(wecg)
title("Original Signal")
axis tight
subplot(2,1,2)
plot(wt{end})
title("Lowpass Subband Coefficients")
axis tight
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Inspect the TQWT information structure. For each subband, confirm that the ratio of the center
frequency to the approximate bandwidth equals the quality factor.

info

info = struct with fields:
    CenterFrequencies: [0.3333 0.2593 0.2016 0.1568 0.1220]
           Bandwidths: [0.1667 0.1296 0.1008 0.0784 0.0610]
                Level: 5
                Alpha: 0.7778
                 Beta: 0.6667

info.CenterFrequencies./info.Bandwidths

ans = 1×5

    2.0000    2.0000    2.0000    2.0000    2.0000

As implemented, the tqwt function uses the redundancy r = 3. Confirm the highpass and lowpass
scaling factors, info.Beta and info.Alpha respectively, satisfy the relation r = β

1− α .

info.Beta/(1-info.Alpha)

ans = 3
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Input Arguments
x — Input signal
vector | matrix | 3-D array

Input signal, specified as a single- or double-precision vector, matrix, or 3-D array. If x is a matrix or
3-D array, the TQWT is computed along the columns of x. For 3-D arrays, tqwt interprets the first
dimension as time, the second dimension as channels, and the third dimension as a batch.

The TQWT is defined for even-length signals. If the number of samples in x is odd, the last sample of
x is repeated to obtain an even-length signal.
Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: wt = tqwt(x,Level=3,QualityFactor=2)

Level — Decomposition level
positive integer

Decomposition level of the TQWT, specified as a positive integer between 1 and the maximum level.
The maximum level depends on the signal length and quality factor. For more information, see “TQWT
Decomposition Levels” on page 1-1375.
Example: wt = tqwt(x,Level=3) specifies a decomposition level of 3.
Data Types: single | double

QualityFactor — Quality factor
1 (default) | positive scalar

Quality factor, specified as a real-valued scalar greater than or equal to 1. The quality factor is the
ratio of the center frequency to the bandwidth of the filters. If unspecified, the quality factor defaults
to 1.
Example: wt = tqwt(x,QualityFactor=1.5) specifies a quality factor of 1.5.
Data Types: single | double

Output Arguments
wt — Tunable Q-factor wavelet transform
cell array

Tunable Q-factor wavelet transform, returned as a cell array. wt is a cell array with length equal to
the maximum level of the TQWT plus one. The ith element of wt contains the TQWT coefficients for
the ith subband. The subbands are ordered by decreasing center frequency. The final element of wt
contains the lowpass subband coefficients. The wavelet coefficients in wt match x in data type and
complexity.
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• If x is a row vector, each element of wt is a column vector containing the TQWT coefficients.
• If x is a matrix or 3-D array, the column and page sizes of each element of wt match the column

and page sizes of x.

Data Types: single | double

info — Transform information
structure array

Transform information, returned as a structure array. info has five fields:

• CenterFrequencies — The normalized center frequencies (cycles/sample) of the wavelet
subbands in the TQWT of x. To convert the frequencies to hertz, multiply CenterFrequencies by
the sample rate.

• Bandwidths — The approximate bandwidths of the wavelet subbands in normalized frequency
(cycles/sample). To convert the bandwidths to hertz, multiply Bandwidths by the sample rate.

• Level — Level of the TQWT. Note that info.Level may be different from your specified level if
you specify a level greater than the maximum supported level for your signal length and quality
factor.

• Beta — Highpass scaling factor. The highpass scaling factor is computed from the quality factor
as 2/(QualityFactor+1). Accordingly, 0 < Beta ≤ 1.

• Alpha — Lowpass scaling factor. The lowpass scaling factor is computed from the highpass
scaling factor as 1-Beta/3. Accordingly, 2/3 ≤ Alpha < 1.

Data Types: struct

More About
TQWT Decomposition Levels

The TQWT minimum and maximum decomposition levels depend on the signal length, N, and quality
factor, Q. In the description that follows, the signal length, N, is one sample larger than the input
length for odd-length signals.

The maximum decomposition level is

log N
4Q + 4 /log 3Q + 3

3Q + 1 ,

where the ⌊ ⌋ symbols denote the floor function.

The minimum level also depends on the signal length and quality factor. The logarithm of N, log(N),
must satisfy the following inequality:

log(N) ≥ log(4Q + 4)− log(3Q + 1) + log(3Q + 3) .

If log(N) < log(4Q + 4)− log(3Q + 1) + log(3Q + 3), the maximum level is less than 1 and tqwt throws
an error.

Redundancy

The TQWT algorithm depends on scaling in the frequency domain:
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• lowpass scaling — frequency-domain scaling by α that preserves low-frequency content
• highpass scaling — frequency-domain scaling by β that preserves high-frequency content

The redundancy is defined to be

r = β
1− α .

For more information, see “Tunable Q-factor Wavelet Transform”.

Version History
Introduced in R2021b

References
[1] Selesnick, Ivan W. “Wavelet Transform With Tunable Q-Factor.” IEEE Transactions on Signal

Processing 59, no. 8 (August 2011): 3560–75. https://doi.org/10.1109/TSP.2011.2143711.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The signal x is the only supported input argument.
• The TQWT array wt is the only supported output argument.

See Also
Apps
Signal Multiresolution Analyzer

Functions
itqwt | tqwtmra

Topics
“Time-Frequency Gallery”
“Tunable Q-factor Wavelet Transform”

1 Functions
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tqwtmra
Tunable Q-factor multiresolution analysis

Syntax
mra = tqwtmra(wt,n)
mra = tqwtmra(wt,n,QualityFactor=qf)
tqwtmra( ___ )

Description
mra = tqwtmra(wt,n) returns the tunable Q-factor wavelet multiresolution analysis (MRA) for the
TQWT analysis, wt, obtained with the default quality factor of 1.

mra = tqwtmra(wt,n,QualityFactor=qf) uses the quality factor qf in obtaining the tunable Q-
factor MRA. qf must match the value used in obtaining wt from tqwt.

tqwtmra( ___ ) with no output arguments plots the tunable Q-factor wavelet MRA in a new figure.
For complex-valued data, the real part is plotted in the first color in the MATLAB color order matrix
and the imaginary part is plotted in the second color. This syntax does not support multidimensional
MRAs.

Examples

Perform Tunable Q-factor Multiresolution Analysis

Load an ECG signal. Obtain the TQWT of the signal down to level 6 with a quality factor of 2.

load wecg
wt = tqwt(wecg,QualityFactor=2,Level=6);

Obtain the tunable Q-factor MRA of the signal.

mra = tqwtmra(wt,length(wecg),QualityFactor=2);

Plot the original signal and the lowpass subband.

plot(wecg)
hold on
plot(mra(end,:),linewidth=2)
hold off
axis tight
legend(["Original","Lowpass"])
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Confirm the sum along the rows of the MRA equals the original signal.

mraSum = sum(mra,1);
max(abs(mraSum(:)-wecg(:)))

ans = 7.2164e-16

Identify Tunable Q-factor MRA Subbands by Energy

Load the Kobe earthquake data. Obtain the tunable Q-factor wavelet transform of the data using a
quality factor of 3.

load kobe
qf = 3;
wt = tqwt(kobe,QualityFactor=qf);

Identify the subbands that contain at least 15% of the total energy. Note that the last element of wt
contains the lowpass subband coefficients.

EnergyBySubband = cellfun(@(x)norm(x,2)^2,wt)./norm(kobe,2)^2*100;
idx15 = EnergyBySubband >= 15;
bar(EnergyBySubband)
title("Percent Energy By Subband")
xlabel("Subband")
ylabel("Percent Energy")
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Obtain a multiresolution analysis and sum those MRA components corresponding to previously
identified subbands.

mra = tqwtmra(wt,numel(kobe),QualityFactor=qf);
ts = sum(mra(idx15,:));
plot([kobe ts'])
axis tight
legend("Original Data","Large Energy Components",...
        Location="NorthWest")
xlabel("Time (s)")
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Input Arguments
wt — Tunable Q-factor wavelet transform
cell array

Tunable Q-factor wavelet transform, specified as a cell array. The elements of wt contain the wavelet
subband and lowpass coefficients. wt is expected to be the output of tqwt.
Data Types: single | double
Complex Number Support: Yes

n — Original signal length
positive integer

Original signal length in samples, specified as a positive integer. If the original signal length n is odd,
n is extended to n+1 to obtain the MRA and the final sample is removed before returning the MRA.
Data Types: single | double

qf — Quality factor
1 (default) | positive scalar

Quality factor, specified as a real-valued scalar greater than or equal to 1. If unspecified, the quality
factor defaults to 1.
Example: wt = tqwtmra(qt,2024,QualityFactor=1.5) specifies a quality factor of 1.5.

1 Functions
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Data Types: single | double

Output Arguments
mra — Multiresolution analysis
array

Multiresolution analysis, returned as an array. mra is an Ns-by-N-by-C-by-B array where Ns denotes
number of subbands in the tunable Q-factor wavelet transform ordered by decreasing center
frequency, N is the number of signal samples in time, C is the number of channels, and B is the batch
size.
Data Types: single | double

Version History
Introduced in R2021b

References
[1] Selesnick, Ivan W. “Wavelet Transform With Tunable Q-Factor.” IEEE Transactions on Signal

Processing 59, no. 8 (August 2011): 3560–75. https://doi.org/10.1109/TSP.2011.2143711.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Plotting is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

• The TQWT array wt is the only supported input argument.

See Also
Apps
Signal Multiresolution Analyzer

Functions
tqwt | itqwt

Topics
“Time-Frequency Gallery”
“Tunable Q-factor Wavelet Transform”
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treedpth
Tree depth

Syntax
D = treedpth(T)

Description
treedpth is a tree-management utility.

D = treedpth(T) returns the depth D of the tree T.

Examples
% Create binary tree (tree of order 2) of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Tree depth. 
treedpth(t)

ans =
    3

Version History
Introduced before R2006a

See Also
wtreemgr

1 Functions
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treeord
Tree order

Syntax
ORD = treeord(T)

Description
treeord is a tree-management utility.

ORD = treeord(T) returns the order ORD of the tree T.

Examples
% Create binary tree (tree of order 2) of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Tree order. 
treeord(t)

ans =
    2

Version History
Introduced before R2006a

See Also
wtreemgr
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uminus
Unary minus for Laurent polynomial or Laurent matrix

Syntax
Q = uminus(P)
Q = -P

Description
Q = uminus(P) negates the Laurent polynomial or the Laurent matrix specified by P. If P is a
Laurent matrix, uminus negates the matrix elements.

Note The laurentPolynomial and laurentMatrix objects have their own versions of uminus.
The input data type determines which version is executed.

Q = -P is equivalent to Q = uminus(P).

Examples

Unary Minus of Laurent Polynomial

Create a Laurent polynomial

a = laurentPolynomial(Coefficients=[-2 6 -7 -2 1],MaxOrder=3);

Confirm the sum of a(z) and its unary minus is 0.

au = uminus(a);
a+au

ans = 
  laurentPolynomial with properties:

    Coefficients: 0
        MaxOrder: 0

Unary Negative of Laurent Matrix

Create the Laurent polynomials

• a(z) = z + 1
• b(z) = z2 + z + z−1

• c(z) = z

1 Functions
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• d(z) = z2 + z−1

lpA = laurentPolynomial(Coefficients=[1 1],MaxOrder=1);
lpB = laurentPolynomial(Coefficients=[1 1 0 1],MaxOrder=2);
lpC = laurentPolynomial(Coefficients=[1],MaxOrder=1);
lpD = laurentPolynomial(Coefficients=[1 0 0 1],MaxOrder=2);

Create the matrix lmat = 
a z b z
c z d z

.

lmat = laurentMatrix(Elements={lpA,lpB;lpC,lpD});

Confirm the sum of lmat and its unary negative is 0.

lmatu = uminus(lmat);
xmat = lmat+lmatu;
dispMat(xmat)

| 0.00e+00   0.00e+00 |
|                     | 
| 0.00e+00   0.00e+00 |

Input Arguments
P — Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Laurent polynomial or Laurent matrix, specified as a laurentPolynomial object or a
laurentMatrix object, respectively.

Output Arguments
Q — Negated Laurent polynomial or Laurent matrix
laurentPolynomial object | laurentMatrix object

Negated Laurent polynomial or Laurent matrix, returned as a laurentPolynomial object or a
laurentMatrix object. If P is a Laurent polynomial, the coefficients are negated.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
reflect
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Objects
laurentMatrix | laurentPolynomial

1 Functions
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upcoef
Direct reconstruction from 1-D wavelet coefficients

Syntax
y = upcoef(o,x,wname)
y = upcoef(o,x,LoR,HiR)
y = upcoef(o,x,wname,n)
y = upcoef(o,x,LoR,HiR,n)
y = upcoef(o,x,wname,n,l)
y = upcoef(o,x,LoR,HiR,n,l)

Description
upcoef is a one-dimensional wavelet analysis function.

y = upcoef(o,x,wname) returns the 1-step reconstructed coefficients of type o of the vector x
using the wavelet specified by wname.

y = upcoef(o,x,LoR,HiR) uses the specified lowpass and highpass reconstruction filters LoR and
HiR, respectively.

y = upcoef(o,x,wname,n) returns the n-step reconstructed coefficients.

y = upcoef(o,x,LoR,HiR,n) uses the specified lowpass and highpass reconstruction filters LoR
and HiR, respectively.

y = upcoef(o,x,wname,n,l) returns the length-l central portion of the n-step reconstruction.

y = upcoef(o,x,LoR,HiR,n,l) uses the specified lowpass and highpass reconstruction filters
LoR and HiR, respectively.

Examples

Reconstruct Wavelet Coefficients

Save the current extension mode, then set the extension mode to zero-padding.

origMode = dwtmode('status','nodisp');
dwtmode('zpd','nodisp')

Reconstruct approximation signals, obtained from a single coefficient at levels 1 to 6. Use the db6
wavelet.

cfs = 1;
essup = 10; % Essential support of the scaling filter db6. 

for i=1:6 
    % Reconstruct at the top level an approximation 
    % which is equal to zero except at level i where only 
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    % one coefficient is equal to 1. 
    rec = upcoef("a",cfs,"db6",i);

    % essup is the essential support of the 
    % reconstructed signal.
    % rec(j) is very small when j is ≥ essup. 
    subplot(6,1,i)
    plot(rec(1:essup))
    xlim([1 325])
    if i<3
        ylim([-1 1])
    elseif i<5
        ylim([-0.5 0.5])
    else
        ylim([-0.2 0.2])
    end
    essup = essup*2; 
end 
subplot(6,1,1) 
title(["Approximation Signals Obtained From a Single " ...
    "Coefficient at Levels 1 to 6"])

The same can be done for details. Reconstruct details signals, obtained from a single coefficient at
levels 1 to 6. Use the db6 wavelet.

cfs = [1]; 
mi = 12; ma = 30;   % Essential support of 
                    % the wavelet filter db6. 
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rec = upcoef("d",cfs,"db6",1); 
figure
subplot(6,1,1)
plot(rec(3:12))
axis tight
ylim([-1 1])
for i=2:6 
    % Reconstruct at top level a single detail 
    % coefficient at level i. 
    rec = upcoef("d",cfs,"db6",i);
    subplot(6,1,i)
    plot(rec(mi*2^(i-2):ma*2^(i-2)))
    axis tight
    if i<3
        ylim([-1 1])
    elseif i<5
        ylim([-0.5 0.5])
    else
        ylim([-0.2 0.2])
    end
end 
subplot(6,1,1) 
title(["Detail Signals Obtained From a Single " ... 
    "Coefficient at Levels 1 to 6"])

Restore the extension mode to the original setting.
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dwtmode(origMode,'nodisp')

Input Arguments
o — Type of reconstructed coefficients
"a" | "d"

Type of reconstructed coefficients, specified as "a" or "d", for approximation or details coefficients,
respectively.
Data Types: string

x — Signal
vector

Signal, specified as a vector.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. The wavelet must be recognized by
wavemngr. See wfilters for the wavelets available in each family.
Data Types: char | string

n — Number of reconstruction steps
1 (default) | positive integer

Number of reconstruction steps, specified as a positive integer.
Data Types: double

l — Length of central portion
0 (default) | nonnegative integer

Length of central portion of reconstruction to return, specified as a nonnegative integer. If l = 0,
upcoef returns the entire reconstruction.
Data Types: double

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.
Data Types: double

Output Arguments
y — Reconstructed coefficients
vector
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Reconstruction coefficients of x, returned as a vector.
Data Types: double

Algorithms
upcoef is equivalent to an n-time repeated use of the inverse wavelet transform.

Version History
Introduced before R2006a

See Also
idwt
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upcoef2
Direct reconstruction from 2-D wavelet coefficients

Syntax
Y = upcoef2(O,X,wname,N,S)
Y = upcoef2(O,X,Lo_R,Hi_R,N,S)
Y = upcoef2(O,X,wname,N)
Y = upcoef2(O,X,Lo_R,Hi_R,N)
Y = upcoef2(O,X,wname)
Y = upcoef2(O,X,wname,1)
Y = upcoef2(O,X,Lo_R,Hi_R)
Y = upcoef2(O,X,Lo_R,Hi_R,1)

Description
upcoef2 is a two-dimensional wavelet analysis function.

Y = upcoef2(O,X,wname,N,S) computes the N-step reconstructed coefficients of matrix X and
takes the central part of size S. wname is a character vector or string scalar specifying the wavelet.
See wfilters for more information.

If O = 'a', approximation coefficients are reconstructed; otherwise if O = 'h' ('v' or 'd',
respectively), horizontal (vertical or diagonal, respectively) detail coefficients are reconstructed. N
must be a strictly positive integer.

Instead of giving the wavelet name, you can give the filters.

For Y = upcoef2(O,X,Lo_R,Hi_R,N,S) is the reconstruction low-pass filter and Hi_R is the
reconstruction high-pass filter.

Y = upcoef2(O,X,wname,N) or Y = upcoef2(O,X,Lo_R,Hi_R,N) returns the computed result
without any truncation.

Y = upcoef2(O,X,wname) is equivalent to Y = upcoef2(O,X,wname,1).

Y = upcoef2(O,X,Lo_R,Hi_R) is equivalent to
Y = upcoef2(O,X,Lo_R,Hi_R,1).

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman; 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db4. 
[c,s] = wavedec2(X,2,'db4');
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% Reconstruct approximation and details 
% at level 1, from coefficients. 
% This can be done using wrcoef2, or 
% equivalently using: 
% 
% Step 1: Extract coefficients from the 
% decomposition structure [c,s]. 
% 
% Step 2: Reconstruct using upcoef2. 

siz = s(size(s,1),:); 

ca1 = appcoef2(c,s,'db4',1); 
a1 = upcoef2('a',ca1,'db4',1,siz);

chd1 = detcoef2('h',c,s,1); 
hd1 = upcoef2('h',chd1,'db4',1,siz); 

cvd1 = detcoef2('v',c,s,1); 
vd1 = upcoef2('v',cvd1,'db4',1,siz);

cdd1 = detcoef2('d',c,s,1); 
dd1 = upcoef2('d',cdd1,'db4',1,siz);

Algorithms
See upcoef.

Version History
Introduced before R2006a

See Also
idwt2
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upwlev
Single-level reconstruction of 1-D wavelet decomposition

Syntax
[nc,nl,ca] = upwlev(c,l,wname)
[nc,nl,ca] = upwlev(c,l,LoR,HiR)

Description
[nc,nl,ca] = upwlev(c,l,wname) performs the single-level reconstruction of the wavelet
decomposition structure [c,l] using the wavelet specified by wname, giving the new decomposition
structure [nc,nl], and extracts the last approximation coefficients vector ca.

[nc,nl,ca] = upwlev(c,l,LoR,HiR) performs the single-level reconstruction using the specified
lowpass and highpass wavelet reconstruction filters LoR and HiR, respectively.

Examples

Single-Level Reconstruction of 1-D Wavelet Decomposition

Load a 1-D signal.

load sumsin
s = sumsin;
plot(s)
title("Signal")
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Save the current DWT extension mode. Set the DWT extension mode to zero-padding.

origmode = dwtmode("status","nodisplay");
dwtmode("zpd","nodisp")

Perform a wavelet decomposition of the signal at level 3 using the db1 wavelet. The wavelet
decomposition c contains the approximation coefficients at level 3, and the detail coefficients at levels
3, 2, and 1.

[c,l] = wavedec(s,3,"db1");

Perform a single-level reconstruction of the wavelet decomposition structure [c,l], so the new
structure [nc,nl] is the wavelet decomposition structure at level 2. The wavelet decomposition nc
contains the approximation coefficients at level 2, and the detail coefficients at levels 2 and 1. Plot
both wavelet decompositions.

[nc,nl] = upwlev(c,l,"db1");
figure
subplot(2,1,1)
plot(c)
title("Wavelet Decomposition, Level 3")
subplot(2,1,2)
plot(nc)
title("Wavelet Decomposition, Level 2")
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Restore the original extension mode.

dwtmode(origmode,"nodisplay")

Input Arguments
c — Wavelet decomposition
vector

Wavelet decomposition, specified as a vector. The vector contains the wavelet coefficients. The
bookkeeping vector l contains the number of coefficients by level and the signal length. For more
information, see wavedec.
Data Types: single | double

l — Bookkeeping vector
vector

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition c by level. For more information, see wavedec.
Data Types: single | double

wname — Analyzing wavelet
character vector | string scalar
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Analyzing wavelet, specified as a character vector or string scalar. wname must specify the same
wavelet used to obtain the original wavelet decomposition structure [c,l]. See wfilters for a list
of orthogonal and biorthogonal wavelets.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. LoR and HiR must
correspond to the wavelet used to obtain the original wavelet decomposition structure [c,l]. The
lengths of LoR and HiR must be equal. See wfilters for additional information.
Data Types: single | double

Output Arguments
nc — Wavelet decomposition
vector

Wavelet decomposition, specified as a vector. The vector contains the wavelet coefficients. [c,l] is a
decomposition at level n = length(l)-2, so [nc,nl] is the same decomposition at level n-1. The
bookkeeping vector nl contains the number of coefficients by level and the signal length.
Data Types: single | double

nl — Bookkeeping vector
vector

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition nc by level.
Data Types: single | double

ca — Approximation coefficients
vector

Approximation coefficients at level n, where n = length(l)-2, returned as a vector.
Data Types: single | double
Complex Number Support: Yes

Version History
Introduced before R2006a

See Also
idwt | upcoef | wavedec
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upwlev2
Single-level reconstruction of 2-D wavelet decomposition

Syntax
[NC,NS,cA] = upwlev2(C,S,wname)
[NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R)

Description
upwlev2 is a two-dimensional wavelet analysis function.

[NC,NS,cA] = upwlev2(C,S,wname) performs the single-level reconstruction of wavelet
decomposition structure [C,S] giving the new one [NC,NS], and extracts the last approximation
coefficients matrix cA.

[C,S] is a decomposition at level n = size(S,1)-2, so [NC,NS] is the same decomposition at
level n-1 and cA is the approximation matrix at level n.

wname is a character vector or string scalar specifying the wavelet, C is the original wavelet
decomposition vector, and S the corresponding bookkeeping matrix (for detailed storage information,
see wavedec2).

Instead of giving the wavelet name, you can give the filters.

For [NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter and
Hi_R is the reconstruction high-pass filter.

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman; 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db1. 
[c,s] = wavedec2(X,2,'db1');
sc = size(c)

sc =
    1   65536

val_s = s 

val_s =
    64   64 
    64   64 
    128  128 
    256  256
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% One step reconstruction of wavelet 
% decomposition structure [c,s]. 
[nc,ns] = upwlev2(c,s,'db1');
snc = size(nc)

snc =
    1   65536

val_ns = ns

val_ns =
    128   128 
    128   128 
    256   256

Version History
Introduced before R2006a

See Also
idwt2 | upcoef2 | wavedec2
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vertcat
Vertical concatenation of Laurent polynomials

Syntax
V = vertcat(P1,…,PN)

Description
V = vertcat(P1,…,PN) returns the vertical concatenation of the Laurent polynomials P1,…,PN.

Examples

Laurent Polynomial Concatenation

Create two Laurent polynomials:

• a(z) = z − 1
• b(z) = − 2z3 + 6z2− 7z + 2

a = laurentPolynomial(Coefficients=[1 -1],MaxOrder=1);
b = laurentPolynomial(Coefficients=[-2 6 -7 2],MaxOrder=3);

Obtain the vertical and horizontal concatenations of a(z) and b(z).

v = vertcat(a,b)

v=2×1 cell array
    {1x1 laurentPolynomial}
    {1x1 laurentPolynomial}

h = horzcat(a,b)

h=1×2 cell array
    {1x1 laurentPolynomial}    {1x1 laurentPolynomial}

Input Arguments
P1,…,PN — Input polynomials
laurentPolynomial objects

Input polynomials, specified as laurentPolynomial objects.
Example: H = vertcat(P1,P2,P3) returns the vertical concatenation of the three Laurent
polynomials P1, P2, and P3.
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Output Arguments
V — Vertical cell array
cell array

Vertical cell array of Laurent polynomials. V is an N-by-1 cell array, where N is the number of Laurent
polynomials.

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
horzcat

Objects
laurentMatrix | laurentPolynomial
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vmd
Variational mode decomposition

Syntax
imf = vmd(x)
[imf,residual] = vmd(x)
[imf,residual,info] = vmd(x)

[ ___ ] = vmd(x,Name=Value)

vmd( ___ )

Description
imf = vmd(x) returns the variational mode decomposition of x. Use vmd to decompose and simplify
complicated signals into a finite number of intrinsic mode functions (IMFs) required to perform
Hilbert spectral analysis.

[imf,residual] = vmd(x) also returns the residual signal residual corresponding to the
variational mode decomposition of x.

[imf,residual,info] = vmd(x) returns additional information info on IMFs and the residual
signal for diagnostic purposes.

[ ___ ] = vmd(x,Name=Value) performs the variational mode decomposition with additional
options specified by one or more name-value arguments.

vmd( ___ ) plots the original signal, IMFs, and the residual signal as subplots in the same figure.

Examples

Variational Mode Decomposition of Dial Tone Signal

Create a signal, sampled at 4 kHz, that resembles dialing all the keys of a digital telephone. Save the
signal as a MATLAB® timetable.

fs = 4e3;
t = 0:1/fs:0.5-1/fs;

ver = [697 770 852 941];
hor = [1209 1336 1477];

tones = [];

for k = 1:length(ver)
    for l = 1:length(hor)
        tone = sum(sin(2*pi*[ver(k);hor(l)].*t))';
        tones = [tones;tone;zeros(size(tone))];
    end
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end

% To hear, type soundsc(tones,fs)

S = timetable(tones,'SampleRate',fs);

Plot the variational mode decomposition of the timetable.

vmd(S)

VMD of Multicomponent Signal

Generate a multicomponent signal consisting of three sinusoids of frequencies 2 Hz, 10 Hz, and 30
Hz. The sinusoids are sampled at 1 kHz for 2 seconds. Embed the signal in white Gaussian noise of
variance 0.01².

fs = 1e3;
t = 1:1/fs:2-1/fs;
x = cos(2*pi*2*t) + 2*cos(2*pi*10*t) + 4*cos(2*pi*30*t) + 0.01*randn(1,length(t));

Compute the IMFs of the noisy signal and visualize them in a 3-D plot.

imf = vmd(x);
[p,q] = ndgrid(t,1:size(imf,2));
plot3(p,q,imf)
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grid on
xlabel('Time Values')
ylabel('Mode Number')
zlabel('Mode Amplitude')

Use the computed IMFs to plot the Hilbert spectrum of the multicomponent signal. Restrict the
frequency range to [0, 40] Hz.

hht(imf,fs,'FrequencyLimits',[0,40])
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VMD of Piecewise Signal

Generate a piecewise composite signal consisting of a quadratic trend, a chirp, and a cosine with a
sharp transition between two constant frequencies at t = 0.5.

x t = 6t2 + cos 4πt + 10πt2 +
cos 60πt , t ≤ 0 . 5,
cos 100πt − 10π , t > 0 . 5 .

The signal is sampled at 1 kHz for 1 second. Plot each individual component and the composite
signal.

fs = 1e3;
t = 0:1/fs:1-1/fs;

x = 6*t.^2 + cos(4*pi*t+10*pi*t.^2) + ...
    [cos(60*pi*(t(t<=0.5))) cos(100*pi*(t(t>0.5)-10*pi))];

tiledlayout('flow')
nexttile
plot(t,[zeros(1,length(t)/2) cos(100*pi*(t(length(t)/2+1:end))-10*pi)])
xlabel('Time (s)')
ylabel('Cosine')

nexttile
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plot(t,[cos(60*pi*(t(1:length(t)/2))) zeros(1,length(t)/2)])
xlabel('Time (s)')
ylabel('Cosine')

nexttile
plot(t,cos(4*pi*t+10*pi*t.^2))
xlabel('Time (s)')
ylabel('Chirp')

nexttile
plot(t,6*t.^2)
xlabel('Time (s)')
ylabel('Quadratic trend')

nexttile(5,[1 2])
plot(t,x)
xlabel('Time (s)')
ylabel('Signal')

Perform variational mode decomposition to compute four intrinsic mode functions. The four distinct
components of the signal are recovered.

[imf,res] = vmd(x,'NumIMFs',4);

tiledlayout('flow')

for i = 1:4

1 Functions

1-1406



    nexttile
    plot(t,imf(:,i))
    txt = ['IMF',num2str(i)];
    ylabel(txt)
    xlabel('Time (s)')
    grid on
end

Reconstruct the signal by adding the mode functions and the residual. Plot and compare the original
and reconstructed signals.

sig = sum(imf,2) + res;

nexttile(5,[1 2])
plot(t,sig,'LineWidth',1.5)

hold on

plot(t,x,':','LineWidth',2)
xlabel('Time (s)')
ylabel('Signal')
hold off
legend('Reconstructed signal','Original signal', ...
       'Location','northwest')

Calculate the norm of the difference between the original and the reconstructed signals.

norm(x-sig',Inf)
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ans = 0

Noise Removal from ECG Signal Using VMD

The signals labeled in this example are from the MIT-BIH Arrhythmia Database [3] (Signal Processing
Toolbox). The signal in the database was sampled at 360 Hz.

Load the MIT database signals corresponding to record 200 and plot the signal.

load mit200
Fs = 360;
plot(tm,ecgsig)
xlabel("Time (s)")
ylabel("Signal")

The ECG signal contains spikes driven by the rhythm of the heartbeat and an oscillating low
frequency pattern. The distinct spokes of the ECG create important higher order harmonics.

Calculate nine intrinsic mode functions of the windowed signal. Visualize the IMFs.

[imf,residual] = vmd(ecgsig,NumIMF=9);
t = tiledlayout(3,3,TileSpacing="compact",Padding="compact");
for n = 1:9
    ax(n) = nexttile(t);
    plot(tm,imf(:,n)')
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    xlim([tm(1) tm(end)])
    txt = ["IMF",num2str(n)];
    title(txt)
    xlabel("Time (s)")
end
title(t,"Variational Mode Decomposition")

The first mode contains the most noise, and the second mode oscillates at the frequency of the
heartbeat. Construct a clean ECG signal by summing all but the first and last VMD modes, thus
discarding the low frequency baseline oscillation and most of the high frequency noise.

cleanECG = sum(imf(:,2:8),2);
figure
plot(tm,ecgsig,tm,cleanECG)
legend("Original ECG","Clean ECG")
xlabel("Time (s)")
ylabel("Signal")
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Input Arguments
x — Uniformly sampled time-domain signal
vector | timetable

Uniformly sampled time-domain signal, specified as either a vector or a timetable. If x is a timetable,
then it must contain increasing finite row times.. The timetable must contain only one numeric data
vector with finite load values.

Note If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean
Timetable with Missing, Duplicate, or Nonuniform Times”.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumIMF',10

AbsoluteTolerance — Mode convergence absolute tolerance
5e-6 (default) | positive real scalar
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Mode convergence absolute tolerance, specified as a positive real scalar. AbsoluteTolerance is one
of the stopping criteria for optimization, that is, optimization stops when the average squared
absolute improvement toward convergence of IMFs, in two consecutive iterations, is less than
AbsoluteTolerance.

RelativeTolerance — Mode convergence relative tolerance
AbsoluteTolerance*1e3 (default) | positive real scalar

Mode convergence relative tolerance, specified as a positive real scalar. RelativeTolerance is one
of the stopping criteria for optimization, that is, optimization stops when the average relative
improvement toward convergence of IMFs, in two consecutive iterations, is less than
RelativeTolerance.

Note The optimization process stops when AbsoluteTolerance and RelativeTolerance are
jointly satisfied.

MaxIterations — Maximum number of optimization iterations
500 (default) | positive scalar integer

Maximum number of optimization iterations, specified as a positive scalar integer. MaxIterations is
one of the stopping criteria for optimization, that is, optimization stops when the number of iterations
is greater than MaxIterations.

MaxIterations can be specified using only positive whole numbers.

NumIMF — Number of IMFs extracted
5 (default) | positive scalar integer

Number of IMFs extracted, specified as a positive scalar integer.

CentralFrequencies — Initial central IMF frequencies
vector

Initial central IMF frequencies, specified as a vector of length NumIMF. Vector values must be within
[0, 0.5] cycles/sample, which indicates that the true frequencies are within [0, fs/2], where fs is the
sample rate.

InitialIMFs — Initial IMFs
zero matrix (default) | real matrix

Initial IMFs, specified as a real matrix. The rows correspond to time samples and columns correspond
to modes.

PenaltyFactor — Penalty factor
1000 (default) | positive real scalar

Penalty factor, specified as a positive real scalar. This argument determines the reconstruction
fidelity. Use smaller values of penalty factor to obtain stricter data fidelity.

InitialLM — Initial Lagrange multiplier
complex vector of zeros (default) | complex vector

 vmd

1-1411



Initial Lagrange multiplier, specified as a complex vector. The range of the initial Lagrange multiplier
in the frequency domain is [0, 0.5] cycles/sample. The multiplier enforces the reconstruction
constraint. The length of the multiplier depends on the input size.

LMUpdateRate — Update rate for Lagrange multiplier
0.01 (default) | real scalar

Update rate for the Lagrange multiplier in each iteration, specified as a positive real scalar. A higher
rate results in faster convergence, but increases the chance of the optimization process getting stuck
in a local optimum.

InitializeMethod — Method to initialize central frequencies
"peaks" (default) | "random" | "grid"

Method to initialize the central frequencies, specified as "peaks", "random", or "grid".

• "peaks" — Initialize the central frequencies as the peak locations of the signal in the frequency
domain (default).

• "random" — Initialize the central frequencies as random numbers distributed uniformly in the
interval [0,0.5] cycles/sample.

• "grid" — Initialize the central frequencies as a uniformly sampled grid in the interval [0,0.5]
cycles/sample.

Display — Toggle progress display in command window
false or 0 (default) | true or 1

Toggle progress display in the command window, specified as either "true" (or 1) or "false" (or 0).
If you specify "true", the function displays the average absolute and relative improvement of modes
and central frequencies every 20 iterations, and shows the final stopping information.

Specify Display as 1 to show the table or 0 to hide the table.

Output Arguments
imf — Intrinsic mode function
matrix | timetable

Intrinsic mode functions, returned as a matrix or timetable. Each imf is an amplitude and frequency
modulated signal with positive and slowly varying envelopes. Each mode has an instantaneous
frequency that is nondecreasing, varies slowly, and is concentrated around a central value. Use imf
to apply Hilbert-Huang transform to perform spectral analysis on the signal.

imf is returned as:

• A matrix where each column is an imf, when x is a vector.
• A timetable, when x is a single data column timetable.

residual — Residual signal
column vector | single data column timetable

Residual signal, returned as a column vector or a single data column timetable. residual represents
the portion of the original signal x not decomposed by vmd.

residual is returned as:
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• A column vector, when x is a vector.
• A single data column timetable, when x is a single data column timetable.

info — Additional information for diagnostics
structure

Additional information for diagnostics, returned as a structure with these fields:

• ExitFlag – Termination flag. A value of 0 indicates the algorithm stopped when it reached the
maximum number of iterations. A value of 1 indicates the algorithm stopped when it met the
absolute and relative tolerances.

• CentralFrequencies – Central frequencies of the IMFs.
• NumIterations – Total number of iterations.
• AbsoluteImprovement – Average squared absolute improvement toward convergence of the

IMFs between the final two iterations.
• RelativeImprovement – Average relative improvement toward convergence of the IMFs

between the final two iterations.
• LagrangeMultiplier – Frequency-domain Lagrange multiplier at the last iteration.

More About
Intrinsic Mode Functions

The vmd function decomposes a signal x(t) into a small number K of narrowband intrinsic mode
functions (IMFs):

x(t) = ∑
k = 1

K
uk(t) .

The IMFs have these characteristics:

1 Each mode uk is an amplitude and frequency modulated signal of the form

uk(t) = Ak(t)cos(ϕk(t)),

where ϕk(t) is the phase of the mode and Ak(t) is its envelope.
2 The modes have positive and slowly varying envelopes.
3 Each mode has an instantaneous frequency ϕ'k(t) that is nondecreasing, varies slowly, and is

concentrated around a central value fk.

The variational mode decomposition method simultaneously calculates all the mode waveforms and
their central frequencies. The process consists of finding a set of uk(t) and fk(t) that minimize the
constrained variational problem.

Optimization

To calculate uk and fk, the procedure finds an optimum of the augmented Lagrangian

L(uk(t), fk, λ(t)) = α ∑
k = 1

K d
dt δ(t) + j

πt ∗ uk(t) e− j2πfkt
2

2
+ x(t)− ∑

k = 1

K
uk(t)

2

2
+ λ(t), x(t)− ∑

k = 1

K
uk(t)

(i) (ii) (iii)
,
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where the inner product p(t), q(t) =∫−∞
∞

p∗(t) q(t) dt and the 2-norm p(t) 2
2 = p(t), p(t) . The

regularization term (i) includes these steps:

1 Use the Hilbert transform to calculate the analytic signal associated with each mode, where *
denotes convolution. This results in each mode having a purely positive spectrum.

2 Demodulate the analytic signal to baseband by multiplying it with a complex exponential.
3 Estimate the bandwidth by calculating the squared 2-norm of the gradient of the demodulated

analytic signal.

Terms (ii) and (iii) enforce the constraint x(t) = ∑k = 1
K uk(t) by imposing a quadratic penalty and

incorporating a Lagrange multiplier. The PenaltyFactor α measures the relative importance of (i)
compared to (ii) and (iii).

The algorithm solves the optimization problem using the alternating direction method of multipliers
described in [1] (Signal Processing Toolbox).

Algorithms
The vmd function calculates the IMFs in the frequency domain, reconstructing X(f) = DFT{x(t)} in
terms of Uk(f) = DFT{uk(t)}. To remove edge effects, the algorithm extends the signal by mirroring
half its length on either side.

The Lagrange multiplier introduced in “Optimization” (Signal Processing Toolbox) has the Fourier
transform Ʌ(f). The length of the Lagrange multiplier vector is the length of the extended signal.

Unless otherwise specified in InitialIMFs, the IMFs are initialized at zero. Initialize
CentralFrequencies using one of the methods specified in InitializeMethod. vmd iteratively
updates the modes until one of these conditions is met:

• ∑
k

uk
n + 1(t)− uk

n(t) 2
2/ uk

n(t) 2
2 < εr and ∑

k
uk

n + 1(t)− uk
n(t) 2

2 < εa are jointly satisfied, where εr and

εa are specified using RelativeTolerance and AbsoluteTolerance, respectively.
• The algorithm exceeds the maximum number of iterations specified in MaxIterations.

For the (n + 1) -th iteration, the algorithm performs these steps:

1 Iterate over the K modes of the signal (specified using NumIMF) to compute:

a The frequency-domain waveforms for each mode using

Uk
n + 1(f ) =

X(f )− ∑
i < k

Uk
n + 1(f )− ∑

i > k
Uk

n(f ) + Λn
2 (f )

1 + 2α 2π(f − fk
n) 2 ,

where Uk
n + 1(f ) is the Fourier transform of the kth mode calculated in the (n + 1)-th

iteration.
b The kth central frequency fk

n + 1 using
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fk
n + 1 =

∫0 ∞ Uk
n + 1(f ) 2 f df

∫0 ∞ Uk
n + 1(f ) 2 df

≈
∑ f Uk

n + 1(f ) 2

∑ Uk
n + 1(f ) 2 .

2 Update the Lagrange multiplier using Λn + 1(f ) = Λn(f ) + τ(X(f )− ∑
k

Uk
n + 1(f )), where τ is the

update rate of the Lagrange multiplier, specified using LMUpdateRate.

Version History
Introduced in R2020a

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If x is a timetable, then optional input NumIMF must be a constant.

See Also
Apps
Signal Multiresolution Analyzer

Functions
hht | emd

Topics
“Time-Frequency Gallery”
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wave2lp
Laurent polynomials associated with wavelet

Syntax
[LoDz,HiDz,LoRz,HiRz] = wave2lp(wname)
[ ___ ,PRCond,AACond] = wave2lp(wname)
[ ___ ] = wave2lp(wname,PmaxHS)
[ ___ ] = wave2lp(wname,PmaxHS,AddPOW)

Description
[LoDz,HiDz,LoRz,HiRz] = wave2lp(wname) returns the four Laurent polynomials associated
with the wavelet wname. The pairs (LoRz,HiRz) and (LoDz,HiDz) are associated with the synthesis
and analysis filters, respectively.

[ ___ ,PRCond,AACond] = wave2lp(wname) also returns the perfect reconstruction condition
PRCond and the anti-aliasing condition AACond.

[ ___ ] = wave2lp(wname,PmaxHS) sets the maximum order of LoRz.

[ ___ ] = wave2lp(wname,PmaxHS,AddPOW) sets the maximum order of the Laurent polynomial
HiRz.

Examples

Laurent Polynomials Associated with Wavelet

Obtain the four Laurent polynomials associated with the orthogonal wavelet db3. Also obtain the
perfect reconstruction and anti-aliasing conditions.

[LoDz,HiDz,LoRz,HiRz,PRC,AAC] = wave2lp("db3")

LoDz = 
  laurentPolynomial with properties:

    Coefficients: [0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327]
        MaxOrder: 5

HiDz = 
  laurentPolynomial with properties:

    Coefficients: [0.3327 -0.8069 0.4599 0.1350 -0.0854 -0.0352]
        MaxOrder: 1

LoRz = 
  laurentPolynomial with properties:

    Coefficients: [0.3327 0.8069 0.4599 -0.1350 -0.0854 0.0352]
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        MaxOrder: 0

HiRz = 
  laurentPolynomial with properties:

    Coefficients: [-0.0352 -0.0854 0.1350 0.4599 -0.8069 0.3327]
        MaxOrder: 4

PRC = 
  laurentPolynomial with properties:

    Coefficients: 2.0000
        MaxOrder: 0

AAC = 
  laurentPolynomial with properties:

    Coefficients: 0
        MaxOrder: 0

Verify the perfect reconstruction condition.

eq(LoRz*LoDz + HiRz*HiDz,PRC)

ans = logical
   1

Verify the anti-aliasing condition. Use the helper function helperMakeLaurentPoly on page 1-1417
to obtain LoD(− z), where LoD(z) is the Laurent polynomial LoDz. Use the helper function
helperMakeLaurentPoly to obtain HiD(− z), where HiD(z) is the Laurent polynomial HiDz.

LoDzm = helperMakeLaurentPoly(LoDz);
HiDzm = helperMakeLaurentPoly(HiDz);
eq(LoRz*LoDzm + HiRz*HiDzm,AAC)

ans = logical
   1

Helper Functions

function polyout = helperMakeLaurentPoly(poly)
% This function is only intended to support this example.
% It may change or be removed in a future release.

polyout = poly;
cflen = length(polyout.Coefficients);
cmo = polyout.MaxOrder;
polyneg = (-1).^(mod(cmo,2)+(0:cflen-1));
polyout.Coefficients = polyout.Coefficients.*polyneg;
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end

Input Arguments
wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. wname must be one of the wavelets
supported by liftingScheme. See the Wavelet property of liftingScheme for the list of wavelets.
Example: [LoDz,HiDz,LoRz,HiRz] = wave2lp("db2")
Data Types: char | string

PmaxHS — Maximum power
0 (default) | integer

Maximum power of the Laurent polynomial LoRz, specified as an integer.
Example: If [~,~,LoRz,HiRz] = wave2lp("db2",3), then the maximum power, or order, of the
Laurent polynomial LoRz is 3.
Data Types: double

AddPOW — Integer
0 (default) | integer

Integer to set the maximum order of the Laurent polynomial HiRz. PmaxHiRz, the maximum order of
HiRz, is

PmaxHiRz = PmaxHS+length(HiRz.Coefficients)-2+AddPow.
AddPOW must be an even integer to preserve the perfect reconstruction condition.
Data Types: double

Output Arguments
LoDz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the lowpass analysis filter, returned as a laurentPolynomial
object.

HiDz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the highpass analysis filter, returned as a laurentPolynomial
object.

LoRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the lowpass synthesis filter, returned as a laurentPolynomial
object.
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HiRz — Laurent polynomial
laurentPolynomial object

Laurent polynomial associated with the highpass synthesis filter, returned as a laurentPolynomial
object.

PRCond,AACond — Perfect reconstruction and anti-aliasing conditions
laurentPolynomial objects

Perfect reconstruction and anti-aliasing conditions, returned as laurentPolynomial objects. The
perfect reconstruction condition PRCond and anti-aliasing condition AACond are:

• PRCond(z) = LoRz(z) LoDz(z) + HiRz(z) HiDz(z)
• AACond(z) = LoRz(z) LoDz(-z) + HiRz(z) HiDz(-z)

The pairs (LoRz, HiRz) and (LoDz, HiDz) are associated with perfect reconstructions filters if and
only if:

• PRCond(z) = 2, and
• AACond(z) = 0

If PRCond(z) = 2 zd, a delay is introduced in the reconstruction process.

Version History
Introduced in R2021b

R2021b: wave2lp input syntax has changed
Behavior changed in R2021b

The wave2lp input syntax has changed.

• You can now set the maximum order of LoRz using PmaxHS.
• You can now set the maximum order of HiRz using AddPOW.

See Also
Functions
filters2lp | lp2filters

Objects
laurentMatrix | laurentPolynomial | liftingScheme
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wavedec
Multilevel 1-D discrete wavelet transform

Syntax
[c,l] = wavedec(x,n,wname)
[c,l] = wavedec(x,n,LoD,HiD)

Description
[c,l] = wavedec(x,n,wname) returns the wavelet decomposition of the 1-D signal x at level n
using the wavelet wname. The output decomposition structure consists of the wavelet decomposition
vector c and the bookkeeping vector l, which is used to parse c.

Note For gpuArray inputs, the supported modes are 'symh' ('sym') and 'per'. If the input is a
gpuArray, the discrete wavelet transform extension mode used by wavedec defaults to 'symh'
unless the current extension mode is 'per'. See the example “Multilevel Discrete Wavelet Transform
on a GPU” on page 1-1422.

[c,l] = wavedec(x,n,LoD,HiD) returns the wavelet decomposition using the specified lowpass
and highpass wavelet decomposition filters LoD and HiD, respectively.

Examples

Multilevel One-Dimensional Wavelet Analysis

Load and plot a one-dimensional signal.

load sumsin 
plot(sumsin)
title('Signal')
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Perform a 3-level wavelet decomposition of the signal using the order 2 Daubechies wavelet. Extract
the coarse scale approximation coefficients and the detail coefficients from the decomposition.

[c,l] = wavedec(sumsin,3,'db2');
approx = appcoef(c,l,'db2');
[cd1,cd2,cd3] = detcoef(c,l,[1 2 3]);

Plot the coefficients.

subplot(4,1,1)
plot(approx)
title('Approximation Coefficients')
subplot(4,1,2)
plot(cd3)
title('Level 3 Detail Coefficients')
subplot(4,1,3)
plot(cd2)
title('Level 2 Detail Coefficients')
subplot(4,1,4)
plot(cd1)
title('Level 1 Detail Coefficients')
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Multilevel Discrete Wavelet Transform on a GPU

Refer to “GPU Computing Requirements” (Parallel Computing Toolbox) to see what GPUs are
supported.

Load the noisy Doppler signal. Put the signal on the GPU using gpuArray. Save the current
extension mode.

load noisdopp
noisdoppg = gpuArray(noisdopp);
origMode = dwtmode('status','nodisp');

Use dwtmode to change the extension mode to zero-padding. Obtain the three-level DWT of the signal
on the GPU using the db4 wavelet.

dwtmode('zpd','nodisp')
[c,l] = wavedec(noisdoppg,3,'db4');

The current extension mode zpd is not supported for gpuArray input. Therefore, the DWT is instead
performed using the sym extension mode. To confirm this, set the extension mode to sym and take
DWT of noisdoppg, then compare with the previous result.

dwtmode('sym','nodisp')
[csym,lsym] = wavedec(noisdoppg,3,'db4');
[max(abs(c-csym)) max(abs(l-lsym))]
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ans =

     0     0

Set the current extension mode to per and obtain the three-level DWT of noisdopp. The extension
mode per is supported for gpuArray input. Confirm the result is different from the sym results.

dwtmode('per','nodisp')
[cper,lper] = wavedec(noisdoppg,3,'db4');
[length(csym) ; length(cper)]

ans = 2×1

        1044
        1024

[lsym ; lper]

ans = 2×5

         134         134         261         515        1024
         128         128         256         512        1024

Restore the extension mode to the original setting.

dwtmode(origMode,'nodisp')

Input Arguments
x — Input signal
vector

Input signal, specified as a vector.
Data Types: single | double

n — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer. wavedec does not enforce a maximum level
restriction. Use wmaxlev to ensure that the wavelet coefficients are free from boundary effects. If
boundary effects are not a concern in your application, a good rule is to set n less than or equal to
fix(log2(length(x))).
Data Types: single | double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar.

Note wavedec supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters
for a list of orthogonal and biorthogonal wavelets.

 wavedec

1-1423



LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors

Wavelet decomposition filters, specified as a pair of even-length real-valued vectors. LoD is the
lowpass decomposition filter, and HiD is the highpass decomposition filter. The lengths of LoD and
HiD must be equal. See wfilters for additional information.
Data Types: single | double

Output Arguments
c — Wavelet decomposition vector
vector

Wavelet decomposition vector, returned as a vector. The bookkeeping vector l is used to parse the
coefficients in the wavelet decomposition vector by level.
Data Types: single | double

l — Bookkeeping vector
vector of positive integers

Bookkeeping vector, returned as a vector of positive integers. The vector contains the number of
coefficients by level and the length of the original signal.

The bookkeeping vector is used to parse the coefficients in the wavelet decomposition vector c by
level. The decomposition vector and bookkeeping vector are organized as in this level-3
decomposition diagram.

Data Types: single | double

Algorithms
Given a signal s of length N, the DWT consists of at most log2 N steps. Starting from s, the first step
produces two sets of coefficients: approximation coefficients cA1 and detail coefficients cD1.
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Convolving s with the lowpass filter LoD and the highpass filter HiD, followed by dyadic decimation
(downsampling), results in the approximation and detail coefficients respectively.

where

•
 — Convolve with filter X

• 2  — Downsample (keep the even-indexed elements)

The length of each filter is equal to 2n. If N = length(s), the signals F and G are of length N + 2n −1
and the coefficients cA1 and cD1 are of length

floor N − 1
2 + n.

The next step splits the approximation coefficients cA1 in two parts using the same scheme, replacing
s by cA1, and producing cA2 and cD2, and so on.

The wavelet decomposition of the signal s analyzed at level j has the following structure: [cAj, cDj, ...,
cD1].

This structure contains, for j = 3, the terminal nodes of the following tree:
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Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.
• The level of decomposition, n must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:
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• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
dwt | waveinfo | waverec | wfilters | wmaxlev | appcoef | detcoef | dwtfilterbank
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wavedec2
Multilevel 2-D discrete wavelet transform

Syntax
[C,S] = wavedec2(X,N,wname)
[C,S] = wavedec2(X,N,LoD,HiD)

Description
[C,S] = wavedec2(X,N,wname) returns the wavelet decomposition of the matrix X at level N using
the wavelet wname. The output decomposition structure consists of the wavelet decomposition vector
C and the bookkeeping matrix S, which contains the number of coefficients by level and orientation.

Note For gpuArray inputs, the supported modes are 'symh' ('sym') and 'per'. If the input is a
gpuArray, the discrete wavelet transform extension mode used by wavedec2 defaults to 'symh'
unless the current extension mode is 'per'. See the example “Multilevel 2-D Discrete Wavelet
Transform on a GPU” on page 1-1432.

[C,S] = wavedec2(X,N,LoD,HiD) returns the wavelet decomposition using the specified lowpass
and highpass decomposition filters LoD and HiD, respectively. See wfilters for details.

Examples

Extract and Display Image Decomposition Level

This example shows how to extract and display images of wavelet decomposition level details.

Load an image. Perform a level 2 wavelet decomposition of the image using the haar wavelet.

load woman
[c,s]=wavedec2(X,2,'haar');

Extract the level 1 approximation and detail coefficients.

[H1,V1,D1] = detcoef2('all',c,s,1);
A1 = appcoef2(c,s,'haar',1);

Use wcodemat to rescale the coefficients based on their absolute values. Display the rescaled
coefficients.

V1img = wcodemat(V1,255,'mat',1);
H1img = wcodemat(H1,255,'mat',1);
D1img = wcodemat(D1,255,'mat',1);
A1img = wcodemat(A1,255,'mat',1);

subplot(2,2,1)
imagesc(A1img)
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colormap pink(255)
title('Approximation Coef. of Level 1')

subplot(2,2,2)
imagesc(H1img)
title('Horizontal Detail Coef. of Level 1')

subplot(2,2,3)
imagesc(V1img)
title('Vertical Detail Coef. of Level 1')

subplot(2,2,4)
imagesc(D1img)
title('Diagonal Detail Coef. of Level 1')

Extract the level 2 approximation and detail coefficients.

[H2,V2,D2] = detcoef2('all',c,s,2);
A2 = appcoef2(c,s,'haar',2);

Use wcodemat to rescale the coefficients based on their absolute values. Display the rescaled
coefficients.

V2img = wcodemat(V2,255,'mat',1);
H2img = wcodemat(H2,255,'mat',1);
D2img = wcodemat(D2,255,'mat',1);
A2img = wcodemat(A2,255,'mat',1);
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figure
subplot(2,2,1)
imagesc(A2img)
colormap pink(255)
title('Approximation Coef. of Level 2')

subplot(2,2,2)
imagesc(H2img)
title('Horizontal Detail Coef. of Level 2')

subplot(2,2,3)
imagesc(V2img)
title('Vertical Detail Coef. of Level 2')

subplot(2,2,4)
imagesc(D2img)
title('Diagonal Detail Coef. of Level 2')

2-D Wavelet Decomposition Structure

This example shows the structure of wavedec2 output matrices.

Load and display an image.
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load woman
imagesc(X)
colormap(map)

Save the current discrete wavelet transform extension mode.

origMode = dwtmode('status','nodisplay');

Change to periodic boundary handling. The dwtmode function displays a message indicating that the
DWT extension mode is changing.

dwtmode('per')

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!  WARNING: Change DWT Extension Mode  !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                                         
*****************************************
**  DWT Extension Mode: Periodization  **
*****************************************
                                         

Perform a level 3 decomposition of the image using the db1 (Haar) wavelet.

[c,s] = wavedec2(X,3,'db1');

Return the number of elements in the image X and coefficient vector c. Confirm the number of
elements in each are equal.
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numel(X)

ans = 65536

numel(c)

ans = 65536

Display the bookkeeping matrix s. The first row displays the dimensions of the coarse scale
approximation of the image. The last row displays the dimensions of the original image. The
intermediate rows display the dimensions of the detail coefficients at the three levels of the
decomposition, proceeding from coarse to fine scale.

s

s = 5×2

    32    32
    32    32
    64    64
   128   128
   256   256

Reset discrete wavelet transform extension mode to its original mode.

dwtmode(origMode,'nodisplay')

Multilevel 2-D Discrete Wavelet Transform on a GPU

Refer to “GPU Computing Requirements” (Parallel Computing Toolbox) to see what GPUs are
supported.

Load an image. Put the image on the GPU using gpuArray. Save the current extension mode.

load mask
imgg = gpuArray(X);
origMode = dwtmode('status','nodisp');

Use dwtmode to change the extension mode to zero-padding. Obtain the three-level DWT of the
image on the GPU using the db4 wavelet.

dwtmode('zpd','nodisp')
[c,s] = wavedec2(imgg,3,'db4');

The current extension mode zpd is not supported for gpuArray input. Therefore, the DWT is instead
performed using the sym extension mode. To confirm this, set the extension mode to sym and take
DWT of noisdoppg, then compare with the previous result.

dwtmode('sym','nodisp')
[csym,ssym] = wavedec2(imgg,3,'db4');
[max(abs(c-csym)) max(abs(s-ssym))]

ans =

     0     0     0
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Set the current extension mode to per and obtain the three-level DWT of imgg. The extension mode
per is supported for gpuArray input. Confirm the result is different from the sym results.

dwtmode('per','nodisp')
[cper,sper] = wavedec2(imgg,3,'db4');
[length(csym) ; length(cper)]

ans = 2×1

       71542
       65536

ssym

ssym = 5×2

    38    38
    38    38
    69    69
   131   131
   256   256

sper

sper = 5×2

    32    32
    32    32
    64    64
   128   128
   256   256

Restore the extension mode to the original setting.

dwtmode(origMode,'nodisp')

Input Arguments
X — Input data
numeric array | logical array

Input data, specified as a numeric or logical array. X can be an M-by-N array representing an indexed
image or an M-by-N-by-3 array representing a truecolor image. For more information on truecolor
images, see “RGB (Truecolor) Images”.
Data Types: double | single | uint8

N — Decomposition level
positive integer

Decomposition level, specified as a positive integer. wavedec2 does not enforce a maximum level
restriction. Use wmaxlev to determine the maximum decomposition level possible of the matrix X
using the wavelet wname. The maximum level is the last level for which at least one coefficient is
correct.
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Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar.

Note wavedec2 supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters
for a list of orthogonal and biorthogonal wavelets.

Data Types: char | string

LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors

Wavelet decomposition filters associated with an orthogonal or biorthogonal wavelet, specified as
even-length real-valued vectors. LoD is the lowpass decomposition filter, and HiD is the highpass
decomposition filter. See wfilters for details.
Data Types: double | single

Output Arguments
C — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector. The vector C contains the approximation and detail coefficients
organized by level. The bookkeeping matrix S is used to parse C.

The vector C is organized as A(N), H(N), V(N), D(N), H(N-1), V(N-1), D(N-1), …, H(1), V(1), D(1), where
A, H, V, and D are each a row vector. Each vector is the column-wise storage of a matrix.

• A contains the approximation coefficients.
• H contains the horizontal detail coefficients.
• V contains the vertical detail coefficients.
• D contains the diagonal detail coefficients.

Data Types: double

S — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix. The matrix S contains the dimensions of the wavelet coefficients by level and is
used to parse the wavelet decomposition vector C.

• S(1,:) = size of approximation coefficients(N).
• S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and S(N+2,:) = size(X).

The following diagram shows the relationship between C and S in the wavelet decomposition of a 512-
by-512 matrix.
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When X represents an indexed image, the output arrays cA, cH, cV, and cD are m-by-n matrices.
When X represents a truecolor image, it is an m-by-n-by-3 array, where each m-by-n matrix represents
a red, green, or blue color plane concatenated along the third dimension. The size of vector C and the
size of matrix S depend on the type of analyzed image.

For a truecolor image, the decomposition vector C and the corresponding bookkeeping matrix S can
be represented as shown.

Algorithms
For images, an algorithm similar to the one-dimensional case is possible for two-dimensional wavelets
and scaling functions obtained from one-dimensional vectors by tensor product. This kind of two-
dimensional DWT leads to a decomposition of approximation coefficients at level j in four
components: the approximation at level j+1 and the details in three orientations (horizontal, vertical,
and diagonal).

The chart describes the basic decomposition step for images:
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where

•

 — Downsample columns: keep the even-indexed columns.
•

 — Downsample rows: keep the even-indexed rows.
•

 — Convolve with filter X the rows of the entry.
•

 — Convolve with filter X the columns of the entry.

and

Initialization: cA0 = s.

So, for J = 2, the two-dimensional wavelet tree has the form
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.
• The decomposition level, N must be a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
Apps
Wavelet Image Analyzer

Functions
dwt2 | waveinfo | waverec2 | wfilters | wmaxlev
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wavedec3
Multilevel 3-D discrete wavelet transform

Syntax
wdec = wavedec3(x,n,wname)
wdec = wavedec3(x,n,wname,'mode',extmode)
wdec = wavedec3(x,n,{LoD,HiD,LoR,HiR})

Description
wdec = wavedec3(x,n,wname) returns the wavelet decomposition of the 3-D array x at level n,
using the wavelet specified by wname. wavedec3 uses the default extension mode 'sym'.

wdec = wavedec3(x,n,wname,'mode',extmode) uses the specified extension mode extmode.

wdec = wavedec3(x,n,{LoD,HiD,LoR,HiR}) uses the specified decomposition and
reconstruction filters LoD,HiD and LoR,HiR, respectively.

Examples

3-D Wavelet Transform

Find the 3-D DWT of a volume. Construct 8-by-8-by-8 matrix of integers 1 to 64 and make the data 3-
D.

M = magic(8);
X = repmat(M,[1 1 8]);

Obtain the 3-D discrete wavelet transform at level 1 using the Haar wavelet and the default whole-
point symmetric extension mode.

wd1 = wavedec3(X,1,'db1');

Coefficient Order in 3-D Wavelet Transform

Compare the output of wavedec3 and dwt3 to illustrate the ordering of the 3-D wavelet coefficients
described in the dec field description.

X = reshape(1:512,8,8,8);
dwtOut = dwt3(X,'db1','mode','per');
wdec = wavedec3(X,1,'db1','mode','per');
max(abs((wdec.dec{4}(:)-dwtOut.dec{2,2,1}(:))))

ans = 0

max(abs((wdec.dec{5}(:)-dwtOut.dec{1,1,2}(:))))

ans = 0
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3-D Wavelet Transform Using Specified Decomposition and Reconstruction Filters

Specify the decomposition and reconstruction filters as a cell array. Construct 8-by-8-by-8 matrix of
integers 1 to 64 and make the data 3-D.

M = magic(8);
X = repmat(M,[1 1 8]);

Obtain the 3-D discrete wavelet transform down to level 2 using the Daubechies extremal phase
wavelet with two vanishing moments. Input the decomposition and reconstruction filters as a cell
array. Use the periodic extension mode.

[LoD,HiD,LoR,HiR] = wfilters('db2');
wd2 = wavedec3(X,2,{LoD,HiD,LoR,HiR},'mode','per');

Input Arguments
x — Input data
3-D array

Input data, specified as a 3-D array.
Data Types: double

n — Decomposition level
positive integer

Decomposition level, specified as a positive integer. wavedec3 does not enforce a maximum level
restriction. See wmaxlev.
Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar.

Note wavedec3 supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters
for a list of orthogonal and biorthogonal wavelets.

extmode — Extension mode
'zpd' | 'sp0' | 'spd' | ...

Extension mode used when performing the wavelet decomposition, specified as one of the following:

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
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mode DWT Extension Mode
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
'symw' Symmetric extension (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd', 'per' Periodized extension

If the signal length is odd and mode is 'per', an extra sample
equal to the last value is added to the right and the extension is
performed in 'ppd' mode. If the signal length is even, 'per' is
equivalent to 'ppd'. This rule also applies to images.

The global variable managed by dwtmode specifies the default extension mode. See dwtmode for
extension mode descriptions.

LoD,HiD — Wavelet decomposition filters
even-length real-valued vectors

Wavelet decomposition filters associated with an orthogonal or biorthogonal wavelet, specified as
even-length real-valued vectors. LoD is the lowpass decomposition filter, and HiD is the highpass
decomposition filter. See wfilters for details.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters associated with an orthogonal or biorthogonal wavelet, specified as
even-length real-valued vectors. LoR is the lowpass reconstruction filter, and HiR is the highpass
reconstruction filter. See wfilters for details.

Output Arguments
wdec — Wavelet output decomposition
structure

Wavelet output decomposition, returned as a structure with the following fields:

sizeINI — Input data size
vector

Input data size, returned as a 1-by-3 vector.

level — Level of the decomposition
integer

Level of the decomposition, returned as an integer.

mode — Name of the wavelet transform extension mode
character vector
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Name of the wavelet transform extension mode, returned as a character vector.

filters — Wavelet filters
structure

Wavelet filters used for the decomposition, returned as a structure with the following fields:

• LoD — lowpass decomposition filter
• HiD — highpass decomposition filter
• LoR — lowpass decomposition filter
• HiR — highpass decomposition filter

dec — Decomposition coefficients
cell array

Decomposition coefficients, returned as an N-by-1 cell array, where N equals 7 wdec.level+1.

dec{1} contains the lowpass component (approximation) at the level of the decomposition. The
approximation is equivalent to the filtering operations 'LLL'.

dec{k+2},...,dec{k+8} with k = 0,7,14,...,7*(wdec.level-1) contain the 3-D wavelet
coefficients for the multiresolution starting with the coarsest level when k=0.

For example, if wdec.level=3, dec{2},...,dec{8} contain the wavelet coefficients for level 3
(k=0), dec{9},...,dec{15} contain the wavelet coefficients for level 2 (k=7), and
dec{16},...,dec{22} contain the wavelet coefficients for level 1 (k=7*(wdec.level-1)).

At each level, the wavelet coefficients in dec{k+2},...,dec{k+8} are in the following order:
'HLL','LHL','HHL','LLH','HLH','LHH','HHH'.

The sequence of letters gives the order in which the separable filtering operations are applied from
left to right. For example, 'LHH' means that the lowpass (scaling) filter with downsampling is applied
to the rows of x, followed by the highpass (wavelet) filter with downsampling applied to the columns
of x. Finally, the highpass filter with downsampling is applied to the 3rd dimension of x.

sizes — Successive sizes
matrix

Successive sizes of the decomposition components, returned as an n+1-by-2 matrix.

Version History
Introduced in R2010a

See Also
dwt3 | dwtmode | waveinfo | waverec3 | wfilters | wmaxlev
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wavefun
Wavelet and scaling functions

Syntax
[phi,psi,xval] = wavefun(wname,iter)
[phi1,psi1,phi2,psi2,xval] = wavefun(wname,iter)
[psi,xval] = wavefun(wname,iter)

[ ___ ] = wavefun(wname,A,B)
[ ___ ] = wavefun(wname,0)
[ ___ ] = wavefun(wname,8,0)
[ ___ ] = wavefun(wname)
[ ___ ] = wavefun(wname,8)

Description
[phi,psi,xval] = wavefun(wname,iter) returns psi and phi, approximations of the wavelet
and scaling functions, respectively, associated with the orthogonal wavelet wname, or the Meyer
wavelet. The approximations are evaluated on the grid points xval. The positive integer iter
specifies the number of iterations computed.

[phi1,psi1,phi2,psi2,xval] = wavefun(wname,iter) returns approximations of the wavelet
and scaling functions associated with the biorthogonal wavelet wname. The wavelet and scaling
function approximations psi1 and phi1, respectively, are for decomposition. The wavelet and scaling
function approximations psi2 and phi2, respectively, are for reconstruction.

[psi,xval] = wavefun(wname,iter) returns the wavelet approximation psi for those wavelets
that do not have an associated scaling function, such as Morlet, Mexican Hat, Gaussian derivatives
wavelets, or complex wavelets.

[ ___ ] = wavefun(wname,A,B) plots the wavelet and scaling function approximations generated
using max(A,B) iterations. The output arguments are optional.

[ ___ ] = wavefun(wname,0) is equivalent to [ ___ ] = wavefun(wname,8,0).

[ ___ ] = wavefun(wname) is equivalent to [ ___ ] = wavefun(wname,8).

Examples

Wavelet Approximations

This example shows how the number of iterations affects the piecewise approximation of the specified
wavelet.

Specify the number of iterations and the wavelet name.

wname = 'sym4';
itr = 10;
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Plot the piecewise approximation of the wavelet generated after one iteration.

[~,psi,xval] = wavefun(wname,1);
plot(xval,psi,'x-')
grid on
title(['Approximation of ',wname,' Wavelet'])

Vary the number of iterations from one through four and plot the approximations. Observe that as the
number of iterations grows, so do the number of sample points.

figure
for k=1:4
    [~,psi,xval] = wavefun(wname,k);
    subplot(2,2,k)
    plot(xval,psi,'x-')
    axis tight
    grid on
    title(['Number of Iterations: ',num2str(k)])
end
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Now vary the number of iterations from one to the number specified by itr.

figure
for k=1:itr
    [~,psi,xval] = wavefun(wname,k);
    plot(xval,psi)
    hold on
end
grid on
title(['Approximations of ',wname,' for 1 to ',num2str(itr),' iterations'])
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Approximations of Biorthogonal Wavelets

This example shows how to plot approximations of the scaling and wavelet functions associated with
a biorthogonal wavelet.

Specify the name of a biorthogonal wavelet.

wname = 'bior3.7';

Plot approximations of the scaling and wavelet functions associated with the specified biorthogonal
wavelet using the default number of iterations. Plot the approximations for both decomposition and
reconstruction.

wavefun(wname,0);
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Input Arguments
wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. See waveinfo for wavelets available.

iter — Number of iterations
8 (default) | positive integer

Number of iterations used to generate the wavelet and scaling function approximations, specified as a
positive integer. Larger values of iter increase the refinement of the approximations.

A,B — Iteration
positive integers

Iteration, specified as a pair of positive integers. The number of iterations is equal to max(A,B).

Output Arguments
phi — Scaling function approximation
real-valued vector

Scaling function approximation, returned as a vector.
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psi — Wavelet approximation
real-valued vector | complex-valued vector

Wavelet approximation, returned as a vector. Depending on wname, psi can be a real- or complex-
valued vector.

phi1,psi1 — Approximations of decomposition scaling and wavelet functions
real-valued vectors

Approximations of decomposition scaling and wavelet functions, respectively, associated with the
biorthogonal wavelet wname, returned as real-valued vectors.

phi2,psi2 — Approximations of reconstruction scaling and wavelet functions
real-valued vectors

Approximations of reconstruction scaling and wavelet functions, respectively, associated with the
biorthogonal wavelet wname, returned as real-valued vectors.

xval — Grid points
real-valued vector

Grid points where the wavelet and scaling function approximations are evaluated, returned as a real-
valued vector.

Algorithms
For compactly supported wavelets defined by filters, in general no closed form analytic formula
exists.

The algorithm used is the cascade algorithm. It uses the single-level inverse wavelet transform
repeatedly.

Let us begin with the scaling function ϕ.

Since ϕ is also equal to ϕ0,0, this function is characterized by the following coefficients in the
orthogonal framework:

• <ϕ, ϕ0,n> = 1 only if n = 0 and equal to 0 otherwise
• <ϕ, ψ−j,k> = 0 for positive j, and all k.

This expansion can be viewed as a wavelet decomposition structure. Detail coefficients are all zeros
and approximation coefficients are all zeros except one equal to 1.

Then we use the reconstruction algorithm to approximate the function ϕ over a dyadic grid, according
to the following result:

For any dyadic rational of the form x = n2−j in which the function is continuous and where j is
sufficiently large, we have pointwise convergence and

where C is a constant, and α is a positive constant depending on the wavelet regularity.
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Then using a good approximation of ϕ on dyadic rationals, we can use piecewise constant or
piecewise linear interpolations η on dyadic intervals, for which uniform convergence occurs with
similar exponential rate:

So using a J-step reconstruction scheme, we obtain an approximation that converges exponentially
towards ϕ when J goes to infinity.

Approximations are computed over a grid of dyadic rationals covering the support of the function to
be approximated.

Since a scaled version of the wavelet function ψ can also be expanded on the (ϕ−1,n))n, the same
scheme can be used, after a single-level reconstruction starting with the appropriate wavelet
decomposition structure. Approximation coefficients are all zeros and detail coefficients are all zeros
except one equal to 1.

For biorthogonal wavelets, the same ideas can be applied on each of the two multiresolution schemes
in duality.

Note This algorithm may diverge if the function to be approximated is not continuous on dyadic
rationals.

Version History
Introduced before R2006a

References
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See Also
intwave | waveinfo | wfilters
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wavefun2
Wavelet and scaling functions 2-D

Syntax
[PHI,PSI,XVAL] = wavefun('wname',ITER)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot')
[S,W1,W2,W3,XYVAL] = wavefun2(wname,A,B)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B))
[S,W1,W2,W3,XYVAL] = wavefun2('wname',0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0)
[S,W1,W2,W3,XYVAL] = wavefun2('wname')
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4)

Description
For an orthogonal wavelet 'wname', wavefun2 returns the scaling function and the three wavelet
functions resulting from the tensor products of the one-dimensional scaling and wavelet functions.

If [PHI,PSI,XVAL] = wavefun('wname',ITER), the scaling function S is the tensor product of
PHI and PSI.

The wavelet functions W1, W2, and W3 are the tensor products (PHI,PSI), (PSI,PHI), and (PSI,PSI),
respectively.

The two-dimensional variable XYVAL is a 2ITER x 2ITER points grid obtained from the tensor product
(XVAL,XVAL).

The positive integer ITER determines the number of iterations computed and thus, the refinement of
the approximations.

[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot') computes and also plots the
functions.

[S,W1,W2,W3,XYVAL] = wavefun2(wname,A,B), where A and B are positive integers, is
equivalent to
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B)). The resulting functions are plotted.

When A is set equal to the special value 0,

• [S,W1,W2,W3,XYVAL] = wavefun2('wname',0) is equivalent to [S,W1,W2,W3,XYVAL] =
wavefun2('wname',4,0).

• [S,W1,W2,W3,XYVAL] = wavefun2('wname') is equivalent to [S,W1,W2,W3,XYVAL] =
wavefun2('wname',4).

The output arguments are optional.

Note The wavefun2 function can only be used with an orthogonal wavelet.
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Examples
On the following graph, a linear approximation of the sym4 wavelet obtained using the cascade
algorithm is shown.

% Set number of iterations and wavelet name. 
iter = 4;
wav = 'sym4';

% Compute approximations of the wavelet and scale functions using
% the cascade algorithm and plot.
[s,w1,w2,w3,xyval] = wavefun2(wav,iter,0);

Algorithms
See wavefun for more information.

Version History
Introduced before R2006a

References
Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202–213.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.

See Also
intwave | wavefun | waveinfo | wfilters
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waveinfo
Wavelets information

Syntax
waveinfo
waveinfo(wname)
waveinfo("wsys")

Description
waveinfo provides information on all wavelets within the toolbox.

waveinfo(wname) provides information on the wavelet family associated with the wavelet short
name wname.

waveinfo("wsys") provides information on wavelet packets.

Examples

Wavelet Family Information

Obtain information regarding the Daubechies wavelets.

waveinfo("db")

 Information on Daubechies wavelets.
 
    Daubechies Wavelets
 
    General characteristics: Compactly supported 
    wavelets with extremal phase and highest 
    number of vanishing moments for a given 
    support width. Associated scaling filters are
    minimum-phase filters.
 
    Family                  Daubechies
    Short name              db
    Order N                 N a positive integer from 1 to 45.
    Examples                db1 or haar, db4, db15
 
    Orthogonal              yes
    Biorthogonal            yes
    Compact support         yes
    DWT                     possible
    CWT                     possible
 
    Support width           2N-1
    Filters length          2N
    Regularity              about 0.2 N for large N
    Symmetry                far from
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    Number of vanishing 
    moments for psi         N
 
    Reference: I. Daubechies, 
    Ten lectures on wavelets, 
    CBMS, SIAM, 61, 1994, 194-202.

Input Arguments
wname — Wavelet family short name
character vector | string scalar | "haar" | "db" | "sym" | "coif" | ...

Wavelet family short name, specified as a character vector or string scalar. The wavelet family short
name can be for a user-defined wavelet (see wavemngr for more information) or one of the values
listed here.

Wavelet Family Short Name Wavelet Family Name
"haar" Haar
"db" Daubechies
"sym" Symlets
"coif" Coiflets
"bior" Biorthogonal wavelets
"fk" Fejér-Korovkin
"bl" Best-localized Daubechies
"mb" Morris minimum-bandwidth
"beyl" Beylkin
"vaid" Vaidyanathan
"han" Han linear-phase moments
"rbio" Reverse biorthogonal wavelets
"meyr" Meyer wavelet
"dmey" Discrete approximation of Meyer wavelet
"gaus" Gaussian wavelets
"mexh" Mexican hat wavelet (also known as Ricker wavelet)
"morl" Morlet wavelet
"cgau" Complex Gaussian wavelets
"shan" Shannon wavelets
"fbsp" Frequency B-Spline wavelets
"cmor" Complex Morlet wavelets

Version History
Introduced before R2006a
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See Also
wavemngr
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Wavelet Analyzer
(To be removed) Analyze signals and images using wavelets

Note Wavelet Analyzer will be removed in R2023b. For recommended alternatives, see Version
History.

Description
The Wavelet Analyzer app is an interactive tool for using wavelets to visualize and analyze signals
and images. With the app, you can:

• Perform wavelet and wavelet packet analysis
• Denoise and compress signals and images
• Estimate density and regression
• Perform matching pursuit analysis
• Perform image fusion
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Open the Wavelet Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter waveletAnalyzer.

Examples
• “1-D Analysis Using the Wavelet Analyzer App”

More About
Boundary Conditions

To change the way Wavelet Analyzer handles boundary conditions, use the dwtmode function.

Version History
Introduced before R2006a

R2023a: Removed from Apps tab and will be removed in R2023b
Warns starting in R2023a

You can no longer launch Wavelet Analyzer app from the MATLAB Apps tab. In R2023b, Wavelet
Analyzer will be removed. Use one of these apps instead:

• Signal Multiresolution Analyzer — Perform signal multiresolution analysis using wavelet and
data-adaptive techniques.

• Wavelet Image Analyzer — Analyze images using the discrete wavelet transform.
• Wavelet Signal Analyzer — Analyze and compress signals using the nondecimated discrete

wavelet transform.
• Wavelet Signal Denoiser — Analyze and denoise signals using the discrete wavelet transform.
• Wavelet Time-Frequency Analyzer — Perform time-frequency analysis of signals using the

continuous wavelet transform.

R2022b: To be removed
Warns starting in R2022b

The Wavelet Analyzer app is no longer recommended and will be removed in a future release.

• For time-frequency analysis, use the Wavelet Time-Frequency Analyzer app.
• For wavelet signal denoising, use the Wavelet Signal Denoiser app.
• For signal multiresolution analysis, use the Signal Multiresolution Analyzer app.

R2020a: Some tools in the Wavelet Analyzer app have been removed

The following tools in the Wavelet Analyzer app have been removed.
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Tools Replacement
Continuous Wavelet 1-D (Using FFT) • To take the CWT of a single time series, use

cwt.
• To take the CWT of multiple time series, the

recommended procedure is to precompute a
CWT filter bank with cwtfilterbank and
apply the filter bank to multiple time series.
See “Using CWT Filter Bank on Multiple Time
Series” on page 1-152.

• To visualize the scalogram, use cwt.
• To visualize wavelets in time and frequency,

use cwtfilterbank.
New Wavelet for CWT • To tune the generalized Morse wavelet to your

needs, vary the time-bandwidth and symmetry
parameters of cwtfilterbank or cwt.

• To create a custom DWT filter bank, use
dwtfilterbank. See “Add Quadrature Mirror
and Biorthogonal Wavelet Filters”.

Fractional Brownian Generation 1-D To synthesize fractional Brownian motion, use
wfbm.

Wavelet Display, Wavelet Packet Display • To visualize the analytic Morse, Morlet, and
bump wavelets in time and frequency, use
cwtfilterbank.

• To visualize orthogonal and biorthogonal
wavelets in time and frequency, use
dwtfilterbank.

• To visualize in time other wavelets such as the
Meyer, Morlet, Gaussian, Mexican hat, and
Shannon wavelets, use wavefun.

• To display wavelet packets, use wpfun.
Signal Extension, Image Extension To extend real-valued vectors or matrices, use

wextend.

R2022a: Additional tools in the Wavelet Analyzer app have been removed

The following tools in the Wavelet Analyzer app have been removed.

Tools Replacement
Continuous Wavelet 1-D To visualize the scalogram, use the new Wavelet

Time-Frequency Analyzer app or the cwt
function. With the app, you can select the wavelet
to use as well as adjust Morse wavelet
parameters. The app also supports single-variable
regularly sampled timetables and real- or
complex-valued single- or double-precision data.
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Tools Replacement
Complex Continuous Wavelet 1-D Use the new Wavelet Time-Frequency

Analyzer app or the cwt function. With the app,
you can also export the scalogram and generate a
script to reproduce the wavelet analysis to your
workspace.

See Also
Signal Multiresolution Analyzer | Wavelet Image Analyzer | Wavelet Signal Analyzer |
Wavelet Signal Denoiser | Wavelet Time-Frequency Analyzer

Topics
“1-D Analysis Using the Wavelet Analyzer App”
“Continuous Wavelet Analysis”
“Discrete Wavelet Analysis”
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waveletfamilies
Wavelet families and family members

Syntax
waveletfamilies('f')
waveletfamilies('n')
waveletfamilies('a')

Description
waveletfamilies or waveletfamilies('f') displays the names of all available wavelet families.

waveletfamilies('n') displays the names of all available wavelets in each family.

waveletfamilies('a') displays all available wavelet families with their corresponding properties.

Examples

Wavelet Families

Display the names of all available wavelet families.

waveletfamilies

===================================
Haar                             haar    
Daubechies                       db      
Symlets                          sym     
Coiflets                         coif    
BiorSplines                      bior    
ReverseBior                      rbio    
Meyer                            meyr    
DMeyer                           dmey    
Gaussian                         gaus    
Mexican_hat                      mexh    
Morlet                           morl    
Complex Gaussian                 cgau    
Shannon                          shan    
Frequency B-Spline               fbsp    
Complex Morlet                   cmor    
Fejer-Korovkin                   fk      
Best-localized Daubechies        bl      
Morris minimum-bandwidth         mb      
Beylkin                          beyl    
Vaidyanathan                     vaid    
Han linear-phase moments         han     
===================================
 

Display the names of all available wavelets in each family.
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waveletfamilies('n')

===================================         
Haar                             haar             
===================================         
Daubechies                       db               
------------------------------              
db1    db2    db3    db4                                
db5    db6    db7    db8                                
db9    db10    db**                                  
===================================         
Symlets                          sym              
------------------------------              
sym2    sym3    sym4    sym5                            
sym6    sym7    sym8    sym**                           
===================================         
Coiflets                         coif             
------------------------------              
coif1    coif2    coif3    coif4                        
coif5                                          
===================================         
BiorSplines                      bior             
------------------------------              
bior1.1    bior1.3    bior1.5    bior2.2                
bior2.4    bior2.6    bior2.8    bior3.1                
bior3.3    bior3.5    bior3.7    bior3.9                
bior4.4    bior5.5    bior6.8                        
===================================         
ReverseBior                      rbio             
------------------------------              
rbio1.1    rbio1.3    rbio1.5    rbio2.2                
rbio2.4    rbio2.6    rbio2.8    rbio3.1                
rbio3.3    rbio3.5    rbio3.7    rbio3.9                
rbio4.4    rbio5.5    rbio6.8                        
===================================         
Meyer                            meyr             
===================================         
DMeyer                           dmey             
===================================         
Gaussian                         gaus             
------------------------------              
gaus1    gaus2    gaus3    gaus4                        
gaus5    gaus6    gaus7    gaus8                        
===================================         
Mexican_hat                      mexh             
===================================         
Morlet                           morl             
===================================         
Complex Gaussian                 cgau             
------------------------------              
cgau1    cgau2    cgau3    cgau4                        
cgau5    cgau6    cgau7    cgau8                        
===================================         
Shannon                          shan             
------------------------------              
shan1-1.5    shan1-1    shan1-0.5    shan1-0.1          
shan2-3    shan**                                 
===================================         
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Frequency B-Spline               fbsp             
------------------------------              
fbsp1-1-1.5    fbsp1-1-1    fbsp1-1-0.5    fbsp2-1-1    
fbsp2-1-0.5    fbsp2-1-0.1    fbsp**                 
===================================         
Complex Morlet                   cmor             
------------------------------              
cmor1-1.5    cmor1-1    cmor1-0.5    cmor1-1            
cmor1-0.5    cmor1-0.1    cmor**                     
===================================         
Fejer-Korovkin                   fk               
------------------------------              
fk4    fk6    fk8    fk14                               
fk18    fk22                                      
===================================         
Best-localized Daubechies        bl               
------------------------------              
bl7    bl9    bl10                                   
===================================         
Morris minimum-bandwidth         mb               
------------------------------              
mb4.2    mb8.2    mb8.3    mb8.4                        
mb10.3    mb12.3    mb14.3    mb16.3                    
mb18.3    mb24.3    mb32.3                           
===================================         
Beylkin                          beyl             
===================================         
Vaidyanathan                     vaid             
===================================         
Han linear-phase moments         han              
------------------------------              
han2.3    han3.3    han4.5    han5.5                    
===================================         
 

Display all available wavelet families with their corresponding properties.

waveletfamilies('a')

%--------------------------

Type of Wavelets
-----------------
type = 1   - orthogonals wavelets          (F.I.R.)
type = 2   - biorthogonals wavelets        (F.I.R.)
type = 3   - with scale function
type = 4   - without scale function
type = 5   - complex wavelet.
-----------------------------------------------------------------

------------------------
Family Name : Haar
haar
1
no
no
dbwavf
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------------------------
Family Name : Daubechies
db
1
1 2 3 4 5 6 7 8 9 10 **
integer
dbwavf

------------------------
Family Name : Symlets
sym
1
2 3 4 5 6 7 8 **
integer
symwavf

------------------------
Family Name : Coiflets
coif
1
1 2 3 4 5
integer
coifwavf

------------------------
Family Name : BiorSplines
bior
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
biorwavf

------------------------
Family Name : ReverseBior
rbio
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real 
rbiowavf

------------------------
Family Name : Meyer
meyr
3
no
no
meyer
-8 8
------------------------
Family Name : DMeyer
dmey
1
no
no
dmey.mat

------------------------
Family Name : Gaussian
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gaus
4
1 2 3 4 5 6 7 8
integer
gauswavf
-5 5
------------------------
Family Name : Mexican_hat
mexh
4
no
no
mexihat
-8 8
-------------------------
Family Name : Morlet
morl
4
no
no
morlet
-8 8
------------------------
Family Name : Complex Gaussian
cgau
5
1 2 3 4 5 6 7 8
integer
cgauwavf
-5 5
------------------------
Family Name : Shannon
shan
5
1-1.5 1-1 1-0.5 1-0.1 2-3 **
string
shanwavf
-20 20
------------------------
Family Name : Frequency B-Spline
fbsp
5
1-1-1.5 1-1-1 1-1-0.5 2-1-1 2-1-0.5 2-1-0.1 **
string
fbspwavf
-20 20
------------------------
Family Name : Complex Morlet
cmor
5
1-1.5 1-1 1-0.5 1-1 1-0.5 1-0.1 **
string
cmorwavf
-8 8
------------------------
Family Name : Fejer-Korovkin
fk
1
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4 6 8 14 18 22
integer
fejerkorovkin

------------------------
Family Name : Best-localized Daubechies
bl
1
7 9 10
integer
blscalf

------------------------
Family Name : Morris minimum-bandwidth
mb
1
4.2 8.2 8.3 8.4 10.3 12.3 14.3 16.3 18.3 24.3 32.3
real
mbscalf

------------------------
Family Name : Beylkin
beyl
1
no
no
beyl.mat

------------------------
Family Name : Vaidyanathan
vaid
1
no
no
vaid.mat

------------------------
Family Name : Han linear-phase moments
han
1
2.3 3.3 4.5 5.5
real
hanscalf

------------------------

 

Version History
Introduced in R2008a

See Also
wavemngr
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Wavelet Image Analyzer
Decompose and visualize images

Description
The Wavelet Image Analyzer app enables you to visualize the discrete wavelet decomposition of
images. With the Wavelet Image Analyzer app, you can:

• Import images from your MATLAB workspace or from a file
• Specify the orthogonal or biorthogonal wavelet to use in the decomposition
• Change the decomposition level
• Reconstruct an image with the wavelet coefficient subbands you specify
• Easily compare different reconstructions
• Export the image decompositions to your MATLAB workspace
• Generate MATLAB scripts to reproduce results in your workspace

The Wavelet Image Analyzer app supports grayscale and RGB images.
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Open the Wavelet Image Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter waveletImageAnalyzer.

Examples

Using Wavelet Image Analyzer App

This example shows how to use the Wavelet Image Analyzer app to visualize the wavelet
decomposition of an image. The example also shows how to compare two different image
reconstructions, as well as how to generate a script to recreate the results in your workspace.

Import Data

The Wavelet Image Analyzer app can import an image from your workspace or a file. Load the xbox
image into your workspace.

load xbox

Visualize Wavelet Decomposition

Open Wavelet Image Analyzer. On the Analyzer tab, click Import in the toolstrip. A window
appears with a list of all the workspace variables that the app can process. Select xbox and click
Import. A four-level wavelet decomposition of the image appears and the app switches to the DWT
tab. In the Scenarios pane, the decomposition is named xbox1, and the method DWT identifies the
kind of decomposition. By default, the decomposition is obtained using the biorthogonal bior4.4
wavelet, which has four vanishing moments each for the decomposition and reconstruction filters.

The column titles in the Decompositions pane refer to the approximation (LL) and details in three
orientations: horizontal (LH), vertical (HL), and diagonal (HH). The order of the pair of letters L and H
indicates the order the lowpass (L) scaling and highpass (H) wavelet filters are applied to obtain the
decomposition at successive levels. For more information about the 2-D DWT algorithm, see
wavedec2.

A checkbox in the Level Selection for Reconstruction pane controls whether to include those
coefficients in the reconstruction. The Original-Reconstructed Image pane shows the original and
reconstructed images.

To generate a new decomposition, change one of the wavelet parameters in the toolstrip:

• Wavelet — Wavelet family
• Number — Wavelet filter number
• Level — Wavelet decomposition level

Changing any parameter in the toolstrip enables the Decompose button. Click Decompose.
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Compare Image Decompositions

You can create new decompositions of the same signal by clicking either the Add or Duplicate
buttons in the Analyzer tab toolstrip. Changes you make to the wavelet parameters apply only to the
selected scenario. Similarly, the coefficients you choose to include in the reconstruction apply only to
the selected scenario. To compare decompositions or reconstructions, click the desired scenario in
the Scenarios pane.

In the Analyzer tab, click Duplicate in the toolstrip. The scenario xbox1Copy appears in the
Scenarios panel. Both scenarios decompose the image using the bior4.4 wavelet. In the new
scenario, change the wavelet to the Haar (db1) wavelet and decompose. Form the reconstruction
using all the coefficients except those corresponding to the diagonal (HH) details.
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Export Results

You can either export the image decomposition to your MATLAB™ workspace or generate a script to
reproduce the results.

To generate a script to recreate the xbox1Copy decomposition in your workspace, in the Analyzer
tab, select Export ▼ > Generate MATLAB™ Script.

In the status bar, text appears stating that the script has been generated, and an untitled script opens
in your editor with the executable code. You can save the script as is or modify it to apply the same
decomposition settings to other images. To create the decomposition in your workspace, run the
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code. The script creates the workspace variable xbox1Copy_DWT. The variable is a structure with the
fields:

• transformedImage — This is the reconstructed image shown in the Original-Reconstructed
Image pane.

• decompositionCoefficients — This field corresponds to the wavelet decomposition vector the
wavedec2 function outputs.

• bookkeepingMatrix — This field corresponds to the bookkeeping matrix the wavedec2 function
outputs.

If you instead chose to export the image decomposition, the same workspace variable
xbox1Copy_DWT is created in your workspace.

Note: If you import an image from a file and export its decomposition, the workspace variable has a
fourth structure field, originalImage, which contains the imported image.

% Variables for decomposition and reconstruction
waveletName = "db1";
decompositionLevel = 4;
% Detail gain columns are ordered by LH, HL, HH, rows are ordered by decomposition level
detailGain = [1 1 0;1 1 0;1 1 0;1 1 0];
lowpassGain = 1;

% Perform the decomposition using wavedec2
[C,S] = wavedec2(xbox,decompositionLevel,waveletName);

% Create decompositions by subbands and level
% using the detcoef2 and appcoef2 functions
decompositionTable = table(Size=[decompositionLevel,4], ...
    VariableTypes=["cell","cell","cell","cell"], ...
    VariableNames=["LL","LH","HL","HH"]);

for levelIdx = 1:decompositionLevel
    % Create LH, HL, and HH subbands
    [decompositionTable.LH{levelIdx}, ...
        decompositionTable.HL{levelIdx}, ...
        decompositionTable.HH{levelIdx}] = detcoef2("all",C,S,levelIdx);

    % Create LL subband
    decompositionTable.LL{levelIdx} = appcoef2(C,S,waveletName,levelIdx);
end

% Create reconstructed image using waverec2
reconstructedImage = waverec2(C,S,waveletName, ...
    DetailGain=detailGain,LowPassGain=lowpassGain);

% Create structure for reconstruction data
xbox1Copy_DWT = struct();
xbox1Copy_DWT.transformedImage = reconstructedImage;
xbox1Copy_DWT.decompositionCoefficients = C;
xbox1Copy_DWT.bookkeepingMatrix = S;

% To view coefficients with the "imshow" function, try scaling them with
% the "wcodemat" function. For example:
% >> imshow(uint8(wcodemat(decompositionTable.LH{decompositionLevel},255)));

Compare the original and reconstructed images.
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tiledlayout(2,1)
nexttile
imagesc(xbox)
title("Original")
nexttile
imagesc(reconstructedImage)
title("Reconstruction")
cb = colorbar;
cb.Layout.Tile = "east";

Programmatic Use
waveletImageAnalyzer opens the Wavelet Image Analyzer app. Once the app initializes, import
an image for analysis by clicking Import. The image can be in your workspace or file system.

waveletImageAnalyzer(img) opens the Wavelet Image Analyzer app and imports, decomposes,
and displays the 2-D discrete wavelet transform (DWT) decomposition of img using the wavedec2
function with the bior4.4 wavelet and default settings.

img is a variable in the workspace. img can be:

• An M-by-N real-valued matrix representing an indexed image or an M-by-N-by-3 real-valued array
representing a truecolor image. For more information on truecolor images, see “RGB (Truecolor)
Images”.
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• Of data type single, double, uint8, or uint16.

Tips
• To decompose more than one image simultaneously, run multiple instances of the Wavelet Image

Analyzer app.

Version History
Introduced in R2023a

See Also
Apps
Wavelet Signal Analyzer | Wavelet Signal Denoiser | Wavelet Time-Frequency Analyzer |
Signal Multiresolution Analyzer

Functions
wavedec2 | waverec2 | swt2 | iswt2 | dualtree2 | idualtree2 | cwtft2
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wavelets
CWT filter bank time-domain wavelets

Syntax
psi = wavelets(fb)
[psi,t] = wavelets(fb)

Description
psi = wavelets(fb) returns the time-domain wavelets psi for the continuous wavelet transform
(CWT) filter bank fb. The time-domain wavelets are centered at the origin.

[psi,t] = wavelets(fb) returns the sampling instants t for the wavelets.

Examples

Filter Bank Time Domain Wavelets

Create a continuous wavelet transform filter bank. Set the sampling frequency to 1000 Hz and the
frequency limits to range from 50 Hz to 200 Hz. Plot the frequency response.

fb = cwtfilterbank('SamplingFrequency',1000,'FrequencyLimits',[50 200]);
freqz(fb)
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Obtain the filter bank time-domain wavelets. Plot the magnitudes of the first and last wavelets
contained in the output. The first wavelet corresponds to the wavelet filter with center frequency
equal to 200 Hz, and the last wavelet corresponds to the wavelet filter with center frequency equal to
50 Hz.

[psi,t] = wavelets(fb);
figure
plot(t,abs(psi(1,:)))
hold on
plot(t,abs(psi(end,:)))
legend('Higher CF Wavelet','Lower CF Wavelet')
grid on
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Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

Output Arguments
psi — Time-domain wavelets
complex-valued matrix

Time-domain wavelets, returned as a Ns-by-N complex-valued matrix, where Ns is the number of
wavelet bandpass frequencies (equal to the number of scales) and N is the filter bank
SignalLength. The wavelets are ordered in psi from the highest-frequency passband filter to the
lowest-frequency passband filter.

t — Sampling instants
vector

Sampling instants of the time-domain wavelets, returned as a real-valued vector of length N, where N
is the filter bank SignalLength. The data type of t is the same as the SamplingPeriod.
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Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cwtfilterbank | waveletsupport
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wavelets
DWT filter bank time-domain wavelets

Syntax
psi = wavelets(fb)
[psi,t] = wavelets(fb)

Description
psi = wavelets(fb) returns the time-domain and centered wavelets corresponding to the wavelet
passband filters in the discrete wavelet transform (DWT) filter bank fb.

[psi,t] = wavelets(fb) returns the sampling instants t.

Examples

DWT Filter Bank Wavelets

Create a seven-level DWT filter bank with a signal length of 1000 samples, using the Daubechies db2
wavelet and a sampling frequency of 1 kHz.

wv = "db4";
len = 1000;
lev = 7;
Fs = 1e3;
fb = dwtfilterbank('Wavelet',wv,'SignalLength',len,'Level',lev,'SamplingFrequency',Fs);

Plot the time-domain and centered wavelets corresponding to the wavelet bandpass filters.

[psi,t] = wavelets(fb);
plot(t,psi')
grid on
title('Time-domain Wavelets')
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Plot the finest scale time-domain wavelet and the one-sided magnitude frequency response of the
corresponding wavelet bandpass filter.

sc = 1;
[psidft,f] = freqz(fb);
subplot(2,1,1)
plot(t,psi(sc,:))
grid on
xlabel('Time (sec)')
ylabel('Magnitude')
title(['Level ',num2str(sc),' Time-Domain Wavelet'])
subplot(2,1,2)
plot(f(len/2:end),abs(psidft(sc,len/2:end)))
grid on
xlabel('Hz')
ylabel('Magnitude')
title('Magnitude Frequency Response')
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

Output Arguments
psi — Time-centered wavelets
real-valued matrix

Time-centered wavelets corresponding to the wavelet passband filters, returned as an L-by-N matrix,
where L is the filter bank Level and N is the SignalLength. The wavelets are ordered in psi from
the finest scale resolution to the coarsest scale resolution.

t — Sampling instants
real-valued vector

Sampling instants, returned as a real-valued vector t of length N, where N is the filter bank
SignalLength. Sampling instants lie in the interval −½ N DT, ½ N DT , where DT is the filter bank
sampling period (reciprocal of the filter bank sampling frequency).
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Version History
Introduced in R2018a

See Also
dwtfilterbank | scalingfunctions | freqz
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waveletScattering
Wavelet time scattering

Description
Use the waveletScattering object to create a network for a wavelet time scattering decomposition
using the Gabor (analytic Morlet) wavelet. The network uses wavelets and a lowpass scaling function
to generate low-variance representations of real-valued time series data. Wavelet time scattering
yields representations insensitive to translations in the input signal without sacrificing class
discriminability. You can use the representations as inputs to a classifier. You can specify the duration
of translation invariance and the number of wavelet filters per octave. The scattering network also
supports time × channel × batch (T×C×B) inputs.

Creation
Syntax
sf = waveletScattering
sf = waveletScattering(Name,Value)

Description

sf = waveletScattering creates a wavelet time scattering network with two filter banks. The
first filter bank has a quality (Q) factor of eight wavelets per octave. The second filter bank has a Q
factor of one wavelet per octave. By default, waveletScattering assumes a signal input length of
1024 samples. The scale invariance length is 512 samples. By default, waveletScattering uses
periodic boundary conditions.

sf = waveletScattering(Name,Value) creates a network for wavelet scattering, sf, with
“Properties” on page 1-1479 specified by one or more Name,Value arguments. Properties can be
specified in any order as Name1,Value1,...,NameN,ValueN. Enclose each property name in
quotes.

Note After you create a scattering network, you can change the value of the OversamplingFactor
property. Depending on the precision of the network and the input signal, the value of the Precision
property can also change. All other network property values remain fixed.

Properties
SignalLength — Signal length
1024 (default) | positive integer ≥ 16

Signal length in samples, specified as a positive integer ≥ 16. If the input to the scattering network is
a row vector, SignalLength must match the number of columns in the input data. If the input to the
scattering network is a column vector, matrix, or 3-D array, SignalLength must match the number
of rows in the data.
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Data Types: double

SamplingFrequency — Sampling frequency
1 (default) | positive scalar

Sampling frequency in hertz, specified as a positive scalar. If unspecified, frequencies are in cycles/
sample and the Nyquist frequency is ½.
Data Types: double

InvarianceScale — Scattering transform invariance scale
one-half of SignalLength (default) | positive scalar

Scattering transform invariance scale, specified as a positive scalar. InvarianceScale specifies the
translation invariance of the scattering transform. If you do not specify SamplingFrequency,
InvarianceScale is measured in samples. If you specify SamplingFrequency, InvarianceScale
is measured in seconds.

InvarianceScale cannot exceed SignalLength in samples.
Example: sf =
waveletScattering('SignalLength',1000,'SamplingFrequency',200,'InvarianceScal
e',5) has the largest possible invariance scale.
Data Types: double

QualityFactors — Scattering filter bank Q factors
[8 1] (default) | positive integer | vector of positive integers

Scattering filter bank Q factors, specified as a positive integer or a vector of positive integers. A filter
bank Q factor is the number of wavelet filters per octave. Q factors must be less than or equal to 32
and greater than or equal to 1.

If QualityFactors is specified as a vector, the elements of QualityFactors must be strictly
decreasing.
Example: sf = waveletScattering('QualityFactors',[8 2 1]) creates a wavelet scattering
network with three filter banks.
Data Types: double

Boundary — Signal extension method
'periodic' (default) | 'reflection'

Signal extension method to apply at the boundary:

• 'periodic' — Extend signal periodically to length 2^ceil(log2(N)), where N is the signal
length.

• 'reflection' — Extend signal by reflection to length 2^ceil(log2(2 N)), where N is the
signal length.

The signal is extended to match the length of the wavelet filters. The length of the filters are powers
of two.

The signal extension method is for internal operations. Results are downsampled back onto the scale
of the original signal before being returned.
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Precision — Numeric precision of wavelet scattering network
'double' (default) | 'single'

Numeric precision of wavelet scattering network:

• 'double' — Double precision
• 'single' — Single precision

If you construct a scattering network with double-precision filters and apply the network to single-
precision data, the filters are cast internally to single-precision. Subsequent filtering is done with
single precision until a new network is created regardless of input data type. For more information,
see the example “Wavelet Time Scattering Network Precision” on page 1-1488.

Specifying Precision as 'single' at construction is useful if you want to use the object with
single-precision data and reduce the memory footprint of the scattering network.

OversamplingFactor — Oversampling factor
0 (default) | nonnegative integer | Inf

Oversampling factor, specified as a nonnegative integer or Inf. The factor specifies how much the
scattering coefficients are oversampled with respect to the critically downsampled values. The factor
is on a log2 scale. By default, OversamplingFactor is set to 0, which corresponds to critically
downsampling the coefficients. You can use numCoefficients to determine the number of
coefficients obtained for a scattering network. To obtain a fully undecimated scattering transform, set
OversamplingFactor to Inf.

Setting OversamplingFactor to a value that would result in more coefficients than samples is
equivalent to setting OversamplingFactor to Inf. Increasing the OversamplingFactor
significantly increases the computational complexity and memory requirements of the scattering
transform.
Example: If sf = waveletScattering('OversamplingFactor',2), the scattering transform
returns 22 times as many coefficients for each scattering path with respect to the critically sampled
number.

OptimizePath — Optimize scattering transform logical
false or 0 (default) | true or 1

Optimize scattering transform logical which determines whether the scattering transform reduces the
number of scattering paths to compute based on a bandwidth consideration, specified as a numeric or
logical 1 (true) or 0 (false).

If you specify OptimizePath as true, the scattering transform excludes scattering paths of order 2
and greater which do not satisfy the following criterion: The center frequency minus ½ the 3-dB
bandwidth of the wavelet filter in the (i+1)th filter bank must overlap 0 (DC) plus ½ the 3-dB
bandwidth of the wavelet filter in the ith filter bank. If this criterion is not satisfied, the higher-order
path is excluded. Setting OptimizePath to true can significantly reduce the number of scattering
paths and computational complexity of the scattering transform for most networks.

You can use the paths object function to determine which and how many scattering paths are
computed.
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Object Functions
scatteringTransform Wavelet 1-D scattering transform
featureMatrix Scattering feature matrix
log Natural logarithm of scattering transform
filterbank Wavelet time scattering filter banks
littlewoodPaleySum Littlewood-Paley sum
scattergram Visualize scattering or scalogram coefficients
centerFrequencies Wavelet scattering bandpass center frequencies
numorders Number of scattering orders
numfilterbanks Number of scattering filter banks
numCoefficients Number of wavelet scattering coefficients
paths Scattering network paths
gather Collect scattering network properties into local workspace

Examples

Wavelet Time Scattering with Default Values

Create a wavelet time scattering network with default values.

sf = waveletScattering

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 512
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 1
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0

Plot the wavelet filters used in the first and second filter banks.

[filters,f] = filterbank(sf);
plot(f,filters{2}.psift)
title('First Filter Bank')
xlabel('Cycles/Sample')
ylabel('Magnitude')
grid on
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figure
plot(f,filters{3}.psift)
title('Second Filter Bank')
xlabel('Cycles/Sample')
ylabel('Magnitude')
grid on
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Plot the Littlewood-Paley sums of the filter banks.

[lpsum,f] = littlewoodPaleySum(sf);
figure
plot(f,lpsum)
legend('1st Filter Bank','2nd Filter Bank')
xlabel('Cycles/Sample')
grid on
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Apply Wavelet Time Scattering Network

This example shows how to create and apply a wavelet time scattering network with three filter
banks to data.

Load in a data set. Create a scattering network with three filter banks that can be applied to the data.

load handel
disp(['Data Sampling Frequency: ',num2str(Fs),' Hz'])

Data Sampling Frequency: 8192 Hz

sf = waveletScattering('SignalLength',numel(y),...
    'SamplingFrequency',Fs,...
    'QualityFactors',[4 2 1])

sf = 
  waveletScattering with properties:

          SignalLength: 73113
       InvarianceScale: 4.4625
        QualityFactors: [4 2 1]
              Boundary: 'periodic'
     SamplingFrequency: 8192
             Precision: 'double'
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    OversamplingFactor: 0
          OptimizePath: 0

Inspect the network. Plot the wavelet filters used in the third filter bank.

[filters,f] = filterbank(sf);
plot(f,filters{4}.psift)
title('Third Filter Bank')
xlabel('Hertz')
ylabel('Magnitude')
grid on

Plot the Littlewood-Paley sums of the three filter banks.

[lpsum,f] = littlewoodPaleySum(sf);
figure
plot(f,lpsum)
xlabel('Hertz')
grid on
legend('1st Filter Bank','2nd Filter Bank','3rd Filter Bank')
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Calculate the wavelet 1-D scattering transform of the data for sf. Visualize the scattergram of the
scalogram coefficients for the first filter bank.

[S,U] = scatteringTransform(sf,y);
figure
scattergram(sf,U,'FilterBank',1)
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Wavelet Time Scattering Network Precision

This example shows how single-precision input changes the default numeric precision of a wavelet
scattering network.

Create a wavelet time scattering network with default values. The precision of the network is
double.

sf = waveletScattering

sf = 
  waveletScattering with properties:

          SignalLength: 1024
       InvarianceScale: 512
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 1
             Precision: 'double'
    OversamplingFactor: 0
          OptimizePath: 0

Use the filterbank object function to obtain the scattering filter banks. The filterbank function
returns the filter banks in a cell array. Confirm the filters are double precision.
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sfFilters = filterbank(sf);
precType = "double";
fprintf("Checking precision: %s\n",precType)

Checking precision: double

fprintf("sfFilters{1}.phift: %d\n",isa(sfFilters{1}.phift,precType))

sfFilters{1}.phift: 1

for k=2:numel(sfFilters)
    fprintf("sfFilters{%d}.phift: %d\n",k,isa(sfFilters{k}.phift,precType))
    fprintf("sfFilters{%d}.psift: %d\n",k,isa(sfFilters{k}.psift,precType))
end

sfFilters{2}.phift: 1

sfFilters{2}.psift: 1

sfFilters{3}.phift: 1

sfFilters{3}.psift: 1

Load the noisy Doppler signal. The signal is double precision.

load noisdopp
isa(noisdopp,"double")

ans = logical
   1

Use the featureMatrix object function to obtain the scattering coefficient matrix for the scattering
network and the signal. Confirm the precision of the matrix is double.

smat = featureMatrix(sf,noisdopp);
isa(smat,"double")

ans = logical
   1

Convert the signal to single precision. Obtain the scattering coefficient matrix of the single-precision
signal using the scattering network. Confirm the matrix precision is single.

noisdoppSingle = single(noisdopp);
smatSingle = featureMatrix(sf,noisdoppSingle);
isa(smatSingle,"single")

ans = logical
   1

Confirm that by using single-precision input, the numeric precision of the scattering network has
changed to single.

sf

sf = 
  waveletScattering with properties:
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          SignalLength: 1024
       InvarianceScale: 512
        QualityFactors: [8 1]
              Boundary: 'periodic'
     SamplingFrequency: 1
             Precision: 'single'
    OversamplingFactor: 0
          OptimizePath: 0

Use the featureMatrix function to obtain the scattering coefficient matrix for the scattering
network and the double-precision signal. Because the numeric precision of the network is now
single, the matrix precision is single.

smatSingle2 = featureMatrix(sf,noisdopp);
isa(smatSingle2,"single")

ans = logical
   1

Use the filterbank function to obtain the filter banks. Confirm the filters have changed to single
precision.

sfFiltersSingle = filterbank(sf);
precType = "single";
fprintf("Checking precision: %s\n",precType)

Checking precision: single

fprintf("sfFiltersSingle{1}.phift: %d\n",isa(sfFiltersSingle{1}.phift,precType))

sfFiltersSingle{1}.phift: 1

for k=2:numel(sfFilters)
    fprintf("sfFiltersSingle{%d}.phift: %d\n",k,isa(sfFiltersSingle{k}.phift,precType))
    fprintf("sfFiltersSingle{%d}.psift: %d\n",k,isa(sfFiltersSingle{k}.psift,precType))
end

sfFiltersSingle{2}.phift: 1

sfFiltersSingle{2}.psift: 1

sfFiltersSingle{3}.phift: 1

sfFiltersSingle{3}.psift: 1

More About
Time Windows

You set the invariance scale based on how much insensitivity to time-shifts in the data you want.
Equivalently, the invariance scale is the length of the Gaussian smoothing function the scattering
transform convolves with the scalogram coefficients. The longer the Gaussian is in time (samples),
the narrower the support (bandwidth) of its Fourier transform. You can downsample the output of the
smoothing operation. In the context of wavelet scattering, the term "time windows" refers to the
number of samples obtained after downsampling the output of the smoothing operation.
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When you use the default waveletScattering network, the scattering transform downsamples the
output of the smoothing operation as much as possible without causing aliasing. If you want to
downsample less than the maximum amount, set the oversampling factor of the network to a nonzero
value. That, in turn, affects the number of time windows, because you will keep more samples from
the output of the application of the Gaussian smoothing filter to the scalograms. By changing the
oversampling factor, you can obtain more time windows for the same given invariance scale.

Version History
Introduced in R2018b

R2023a: Use object function gather to collect properties into local workspace

You can use the object function gather to collect all the properties of a waveletScattering object
from the GPU device into your workspace. This support requires Parallel Computing Toolbox.

R2023a: Generate optimized C++ code for ARM Cortex-A 32-bit/64-bit processors

You can generate optimized C++ code that uses SIMD intrinsics and runs on ARM® Cortex®-A 32-
bit/64-bit processors. For more information, see “Code Generation” on page 1-1492.

R2021a: waveletScattering property Decimate has been removed
Errors starting in R2021a

The waveletScattering property Decimate has been removed. Use the property
OversamplingFactor instead.

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

Decimate property Errors OversamplingFactor • Replace all instances
of
'Decimate',true
with
'OversamplingFac
tor',0.

• Replace all instances
of
'Decimate',false
with
'OversamplingFac
tor',Inf.

R2021a: Highest wavelet center frequency is computed using geometric mean
Behavior changed in R2021a

Starting in R2021a, the highest wavelet center frequency is computed using the geometric mean. The
method for determining how to space linearly those frequencies lower than the invariance scale has
also changed. These changes improve the Littlewood-Paley sums of the resulting filter banks.
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Center frequencies are logarithmically spaced from the highest frequency to the frequency that
corresponds to the invariance scale. Starting in R2021a, depending on scattering network
parameters such as the invariance scale, the number of filters you obtain may be different than in
previous releases. The method for applying the filters to compute the scattering and scalogram
coefficients has not changed.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• If specified, 'Precision' and 'Boundary' values must be coder.Constant.
• QualityFactors cannot be variable sized.
• waveletScattering is a handle class, so you must use an entry-point function.
• To generate optimized code that uses SIMD intrinsics and runs on ARM Cortex-A 32-bit/64-bit

processors, you must install the Embedded Coder® Support Package for Xilinx® Zynq® Platform.
The support package for Xilinx Zynq Platform ships the ARM cross-compiler toolchains and
enables deployment on ARM Cortex-A processors. The MATLAB Support Package for Raspberry
Pi® Hardware enables a direct deployment of optimized code on ARM devices. For an example,
see “Generate and Deploy Optimized Code for Wavelet Time Scattering on ARM Targets”.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
cwt

Objects
waveletScattering2 | cwtfilterbank

Blocks
Wavelet Scattering

Topics
“Wavelet Scattering”
“Wavelet Scattering Invariance Scale and Oversampling”
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“Wavelet Time Scattering for ECG Signal Classification”
“Wavelet Time Scattering Classification of Phonocardiogram Data”
“Wavelet Time Scattering with GPU Acceleration — Spoken Digit Recognition”
“Deep Learning Code Generation on ARM for Fault Detection Using Wavelet Scattering and
Recurrent Neural Networks”
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waveletScattering2
Wavelet image scattering

Description
Use the waveletScattering2 object to create a network for a wavelet image scattering
decomposition using complex-valued 2-D Morlet wavelets.

Creation

Syntax
sf = waveletScattering2
sf = waveletScattering2(Name,Value)

Description

sf = waveletScattering2 creates a network for a wavelet image scattering decomposition with
two complex-valued 2-D Morlet filter banks and isotropic scale invariance. Both filter banks have
quality factors of one wavelet per octave. There are six rotations linearly spaced between 0 and π
radians for each wavelet filter. By default, waveletScattering2 assumes an image input size of
128-by-128. The scale invariance is 64.

sf = waveletScattering2(Name,Value) creates a network for wavelet image scattering with
properties specified by one or more Name,Value pair arguments. Properties can be specified in any
order as Name1,Value1,...,NameN,ValueN. Enclose each property name in single quotes (' ') or
double quotes (" ").

Note With the exceptions of OptimizePath and OversamplingFactor, you cannot change a
property value of an existing scattering network. For example, if you create a network sf with
ImageSize set to [256 256], you cannot assign a different ImageSize to sf.

Properties
ImageSize — Image size
[128 128] (default) | two-element integer-valued vector

Image size for wavelet image scattering network, specified as a two-element integer-valued vector
[numrows numcolumns]. Images must be at least 10-by-10.

If your input is an RGB image, you do not have to specify the third dimension. waveletScattering2
only supports color images where the size of the third dimension is 3.
Example: sf = waveletScattering2('ImageSize',[100 200]) creates a network for 100-
by-200 images and 100-by-200-by-3 color images.
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InvarianceScale — Scattering transform invariance scale
64 (default) | positive scalar

Scattering transform invariance scale, specified as a positive scalar. InvarianceScale specifies the
spatial support in the row and column dimensions of the scaling filter. InvarianceScale cannot
exceed the minimum size of the row and column dimensions of the image.

By default, InvarianceScale is one-half the minimum of the row and column sizes of the image
rounded to the nearest integer.
Example: sf = waveletScattering2('ImageSize',[101 200]) creates a framework with
InvarianceScale equal to 51.

NumRotations — Number of rotations per wavelet
[6 6] (default) | integer-valued vector

Number of rotations per wavelet per filter bank in the scattering network, specified as an integer-
valued vector. Specify one integer less than or equal to 12 for each filter bank in the scattering
network.

For each wavelet in each filter bank, there are NumRotations linearly spaced angles between 0 and
π radians. The wavelet is rotated in a clockwise direction. The length of the vector specified in
NumRotations must equal the length of the vector specified in QualityFactors.
Example: sf = waveletScattering2('NumRotations',[7 5]) creates a network with seven
rotations per wavelet in the first filter bank and five rotations per wavelet in the second filter bank.

Note The 2-D wavelet scattering network is constructed by rotating the 2-D Morlet wavelets in a
clockwise direction. The opposite convention is used in the Image Processing Toolbox™. Creating a
Gabor filter bank to apply to an image involves rotating the Gabor filter in a counter-clockwise
direction. See “Slant Parameter” on page 1-523, and gabor in the Image Processing Toolbox.

QualityFactors — Scattering filter bank quality factors
[1 1] (default) | integer-valued vector

Scattering filter bank quality factors, specified as an integer-valued vector. The quality factor is the
number of wavelet filters per octave. The number of wavelet filter banks in the scattering network is
equal to the number of elements in QualityFactors. Valid quality factors are integers less than or
equal to 4. If QualityFactors is specified as a vector, the elements of QualityFactors must be
nonincreasing.

The length of the vector specified in QualityFactors must equal the length of the vector specified
in NumRotations.
Example: sf = waveletScattering2('QualityFactors',[2 1])

Precision — Precision of scattering coefficients and filters
'single' (default) | 'double'

Precision of scattering coefficients and filters:

• 'single' — Single precision
• 'double' — Double precision
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Note

• All calculations involving the wavelet scattering network are carried out in Precision.
• The precision of the output of the scatteringTransform function does not exceed the precision

of the waveletScattering2 object.

OversamplingFactor — Oversampling factor
0 (default) | nonnegative integer | Inf

Oversampling factor, specified as a nonnegative integer or Inf. The factor specifies how much the
image scattering coefficients are oversampled with respect to the critically downsampled values. The
oversampling factor is on a log2 scale. For example, if sf =
waveletScattering2('OversamplingFactor',1), the scattering transform returns 21-by-21-by-
P as many coefficients for each scattering path with respect to the critically sampled number. You can
use coefficientSize to determine the number of coefficients obtained for a scattering network. By
default, OversamplingFactor is set to 0, which corresponds to critically downsampling the
coefficients.

If you specify an oversampling factor that would result in an output image size larger than the input,
the output size is truncated to the size of the input image. You can also specify the
OversamplingFactor as Inf, which provides a fully undecimated scattering transform where each
scattering path contains coefficient matrices equal in size to the input image.

Due to the computational complexity of the scattering transform, the recommended setting for the
OversamplingFactor property is 0, 1, or 2. Values of 1 and 2 indicate a 21-by-21-by-P and a 22-
by-22-by-P increase in the number of scattering coefficients per path, respectively.
Example: sf.OversamplingFactor = 1 sets the OversamplingFactor property of an existing
network to 1.

OptimizePath — Optimize scattering transform logical
true (default) | false

Optimize scattering transform logical, which determines whether the scattering transform reduces
the number of scattering paths to compute based on a bandwidth consideration.

When OptimizePath is set to true, a scattering path is computed only if the bandwidth of the
parent node overlaps significantly with the bandwidth of the child node. 'Significant' in this context is
defined as follows: for a quality factor of 1, 1/2 the 3-dB bandwidth of the child node is subtracted
from the child node's wavelet center frequency. If that value is less than the 3-dB bandwidth of the
parent, the scattering path is computed. For quality factors greater than 1, significant overlap is
defined to be an overlap between the center frequency of the child minus the child's 3-dB bandwidth.
If that overlaps with the 3-dB bandwidth of the parent, the scattering path is computed.

You can use paths to determine which and how many scattering paths are computed.
OptimizePath generally results in computational savings in the second and subsequent filter banks
only when the quality factors are equal in each filter bank.
Example: sf.OptimizePath = false sets the OptimizePath property of an existing network to
false.
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Object Functions
scatteringTransform Wavelet 2-D scattering transform
featureMatrix Image scattering feature matrix
log Natural logarithm of 2-D scattering transform
filterbank Wavelet and scaling filters
littlewoodPaleySum Littlewood-Paley sum
coefficientSize Size of image scattering coefficients
numorders Number of scattering orders
numfilterbanks Number of scattering filter banks
paths Scattering paths

Examples

Wavelet Image Scattering with Default Values

Create a wavelet image scattering network with default settings. The default image size is 128-
by-128, and the default invariance scale is 64.

sf = waveletScattering2

sf = 
  waveletScattering2 with properties:

             ImageSize: [128 128]
       InvarianceScale: 64
          NumRotations: [6 6]
        QualityFactors: [1 1]
             Precision: 'single'
    OversamplingFactor: 0
          OptimizePath: 1

Use the filterbank function to obtain the Fourier transform of the scaling function, the wavelet
filters, and the center spatial frequencies of the wavelet filters.

[phif,psif,f] = filterbank(sf);

The invariance scale gives the width in the x- and y-directions of the 2-D Gaussian scaling function. To
confirm the scaling function has the expected spatial width, first take the inverse Fourier transform of
phif. Use the helper function helperPlotPhiSurface to plot the scaling function with the extent
of the invariance scale in both x and y designated. The source code for helperPlotPhiSurface is
provided in the appendix at the end of this example.

phi = ifftshift(ifft2(phif));
figure
helperPlotPhiSurface(sf,phi)
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The scaling function is larger than 128-by-128 because it has been padded to avoid edge effects.

Extract the Fourier transform of the coarsest scale wavelet in the second filter bank and take its
inverse Fourier transform. Use helperPlotPsiSurface to plot the real and imaginary parts of the
wavelet and confirm the spatial extent of the coarsest scale wavelet does not exceed the invariance
scale. Similar to the scaling function, the wavelet has been padded to avoid edge effects. The source
code for helperPlotPsiSurface is provided in the appendix at the end of this example.

psiF = psif{2}(:,:,end);
psiL = ifftshift(ifft2(psiF));
figure
helperPlotPsiSurface(sf,psiL)
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Appendix

The following helper functions are used in this example.

helperPlotPhiSurface

function helperPlotPhiSurface(scatFrame,data)
halfscale = scatFrame.InvarianceScale/2;
surf(data)
shading interp
view(-20,35)
Ysize = size(data,1);
Xsize = size(data,2);
Ycenter = Ysize/2;
Xcenter = Xsize/2;
hold on
plot([Xcenter-halfscale Xcenter-halfscale],[0 Ysize],'r','LineWidth',2);
plot([Xcenter+halfscale Xcenter+halfscale],[0 Ysize],'r','LineWidth',2);
plot([0 Xsize],[Ycenter-halfscale Ycenter-halfscale],'r','LineWidth',2);
plot([0 Xsize],[Ycenter+halfscale Ycenter+halfscale],'r','LineWidth',2);
title('$\phi(x,y)$','FontSize',14,'Interpreter','Latex');
xlabel('$x$','FontSize',14,'Interpreter','Latex')
ylabel('$y$','FontSize',14,'Interpreter','Latex')
end

helperPlotPsiSurface
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function helperPlotPsiSurface(scatFrame,data)
halfscale = scatFrame.InvarianceScale/2;
Ysize = size(data,1);
Xsize = size(data,2);
Ycenter = Ysize/2;
Xcenter = Xsize/2;
surf(real(data))
shading interp
view(-5,13)
hold on
surf(imag(data))
shading interp
plot([Xcenter-halfscale Xcenter-halfscale],[0 Ysize],'r','LineWidth',2);
plot([Xcenter+halfscale Xcenter+halfscale],[0 Ysize],'r','LineWidth',2);
plot([0 Xsize],[Ycenter-halfscale Ycenter-halfscale],'r','LineWidth',2);
plot([0 Xsize],[Ycenter+halfscale Ycenter+halfscale],'r','LineWidth',2); 
title('$\frac{1}{2^{2J}}\psi(x/2^J,y/2^J)$','FontSize',14,...
    'Interpreter','Latex');
xlabel('$x$','FontSize',14,'Interpreter','Latex')
ylabel('$y$','FontSize',14,'Interpreter','Latex')
view(-10,51)
end

Version History
Introduced in R2019a

References
[1] Bruna, J., and S. Mallat. "Invariant Scattering Convolution Networks." IEEE Transactions on

Pattern Analysis and Machine Intelligence. Vol. 35, Number 8, 2013, pp. 1872–1886.

[2] Sifre, L., and S. Mallat. "Rigid-Motion Scattering for Texture Classification". arXiv preprint. 2014,
pp. 1–19. https://arxiv.org/abs/1403.1687.

[3] Sifre, L., and S. Mallat. "Rotation, scaling and deformation invariant scattering for texture
discrimination." 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013,
pp 1233–1240.

See Also
Functions
cwtft2 | dddtree2 | wavedec2

Objects
waveletScattering

Topics
“Wavelet Scattering”
“Wavelet Scattering Invariance Scale and Oversampling”
“Texture Classification with Wavelet Image Scattering”
“Digit Classification with Wavelet Scattering”
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Wavelet Signal Analyzer
Analyze and compress signals using wavelets

Description
The Wavelet Signal Analyzer app enables visualization, analysis, and compression of 1-D signals
using the nondecimated discrete wavelet transform. The app plots the decomposition of the signal
and its corresponding reconstruction. The app also shows statistics of the decomposition, including
the approximate frequency band of each component. With the Wavelet Signal Analyzer app, you
can:

• Access all single-channel, real- and complex-valued 1-D signals in the MATLAB workspace
• Compare reconstructions from different analyses by varying the wavelet or the decomposition

level
• Visualize the time-aligned coefficients
• Extend the signal periodically or by reflection before computing the wavelet transform
• Apply a threshold to the wavelet coefficients to compress the signal
• Plot the energy for all decomposition levels and display histograms of the original and compressed
coefficients at a specific level

• Export decomposition coefficients, compressed coefficients, and compressed signals to the
MATLAB workspace

• Generate MATLAB scripts to reproduce results in your workspace

The Wavelet Signal Analyzer app supports single- and double-precision data.
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Open the Wavelet Signal Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter waveletSignalAnalyzer.

Examples

Visualize Wavelet Decomposition Using Wavelet Signal Analyzer

This example shows how to use the Wavelet Signal Analyzer app to visualize the wavelet
decomposition of a 1-D signal using the nondecimated discrete wavelet transform.

Import Data

Load an electroencephalogram (ECG) signal.

load wecg

Visualize Wavelet Decomposition

Open Wavelet Signal Analyzer. On the Analyzer tab, click Import. A window appears with a list of
all the workspace variables the app can process. Select wecg and click Import. A four-level
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nondecimated wavelet decomposition of the signal appears. The decomposed signal is named wecg1
in the Scenarios pane. The decomposition type Nondecimated Wavelet identifies the
decomposition. The original signal, wecg, and the reconstruction, wecg1, are plotted in the
Reconstructed-Compressed Signal pane. By default, the plots are identical. To hide the plot of the
original signal, click wecg in the plot legend. The text fades and the plot of the original signal
disappears. You can use the legend to hide any plot in the Reconstructed-Compressed Signal
pane.

The plots in the Decomposition Coefficients pane are the amplitudes of the coefficients of the
wavelet decomposition of the signal at each scale. To compress the signal, you can threshold the
coefficients in the plots. For more information, see “Compress Signal and Generate Script” on page 1-
1507. To plot the magnitudes or the sorted magnitudes of the coefficients, choose the desired option
from the Coefficients ▼ menu on the Analyzer tab.

By default, plots are with respect to sample index and frequencies are in cycles per sample. To
specify a sample rate, select the Sample Rate radio button on the Analyzer tab. The default sample
rate is 1 hertz. To instead specify a sample period, select the Sample Period radio button. The
default sample period is 1 second. Plots update automatically to reflect how you specify time.

For each scale, the Levels pane shows: the number of coefficients, the number of nonzero
coefficients, and the approximate frequency band. The frequency units depend on how you specify
time. A check box in the Plot Coefficients column controls whether to plot the coefficients in the
Decomposition Coefficients pane.
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Plot Histogram

To plot a histogram of the coefficients, click Histogram on the Analyzer tab. The Histogram tab
appears, and a histogram of the level 1 coefficients is shown in the Histogram pane. To choose a
different level, use the Histogram Level ▼ menu in the toolstrip. For example, to plot the histogram
of the level 3 coefficients, select Level 3 from the menu. In the toolstrip, you can also specify a
different histogram bin width and normalization scheme.
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Plot Energy by Level

The nondecimated discrete wavelet transform partitions the energy of the signal across all levels. To
plot the energy percentage of all levels, in the Analyzer tab, select Energy by Level from the
Histogram ▼ menu.

Modify Wavelet Transform Parameters

To access the parameters used to generate the decomposition, click the Wavelet tab. The parameters
correspond to input arguments of the modwt function. Parameter settings are the default values. To
generate a new decomposition, change one or more of the parameters and click Analyze. All plots,
such as the histogram, update.

• Wavelet — Wavelet family
• Number — Wavelet filter number
• Level — Decomposition level
• Boundary — Specify boundary handling condition
• Time Align — Circularly shift the wavelet coefficients at all levels (scales) and the scaling
coefficients to correct for the delay of the scaling and wavelet filters

Note: Checking the Time Align checkbox is strictly only for visualization purposes. The plotted
reconstruction is always from the original coefficients, and not the time-aligned coefficients. Similarly,
compressed signals are based on the thresholded original coefficients. Only original or thresholded
coefficients are exported.
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Changing any parameter in the toolstrip enables the Analyze button. For more information about the
parameters, see modwt.

Export Decomposition

To export the decomposition of the selected scenario to your MATLAB™ workspace, on the Analyzer
tab, choose To Workspace under Decomposition Coefficients in the Export ▼ menu. The variable
scenarioNameDecomposition is created. If a variable of the same name already exists in the
workspace, the app gives you the option to overwrite it. For example, exporting the decomposition for
the scenario wecg1 creates the workspace variable wecg1Decomposition.
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Compress Signal and Generate Script

This example shows how to compress a signal and generate a script to recreate the compressed
signal in the workspace.

Import Data

Load the electrical consumption signal.

load nelec

Open Wavelet Signal Analyzer and import the signal into the app. By default, a four-level
nondecimated wavelet decomposition of the signal appears. The table in the Levels pane indicates
there are 2000 original and retained coefficients at all levels.

Inspect the histograms of the coefficients at all levels. The approximation coefficients are in the
interval [100, 500]. Observe that at levels 1 through 4, most wavelet coefficients are in the interval [–
10, 10].
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Apply Threshold

On the Analyzer tab, click Compress. The app applies a default threshold thr to the coefficients. All
coefficients that lie in the interval [–thr, thr] are set to 0.

• The Levels pane reports the number of coefficients retained at each level after thresholding.
• The Histogram pane updates to include the retained coefficients.
• The Reconstructed-Compressed Signal pane now includes a plot of the compressed signal,

nelec1_compressed. Click nelec and nelec1 in the plot legend to show only the compressed
signal.
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To apply a different threshold thr, click the Decomposition Coefficients pane. In any level
coefficients plot, you can either drag the horizontal cursor to the desired threshold or enter the
threshold in the cursor text field. The same threshold is applied to coefficients at all levels. Instead of
thresholding plots of the coefficient amplitudes, you can choose a different plot style. In the
Coefficients ▼ menu, select Sorted Magnitude and Thresholded Coefficients. Specify a threshold
of 250. The plot of the compressed signal updates, as do the values in the Level pane, and histogram.

 Wavelet Signal Analyzer

1-1509



If you want to compress a signal using two different thresholds and compare the results, on the
Analyzer tab, click Duplicate. A second scenario, nelec1Copy, appears in the Scenarios pane.
Select the new scenario and apply the second threshold. You can then alternate selected scenarios to
compare the compressed signal plots.

Generate Script

You have a number of export options available. You can export the original coefficients or generate a
script to recreate the decomposition in your workspace. Because compression is enabled, you can
also export the compressed signal or thresholded coefficients, as well as generate a script to recreate
the compressed signal in your workspace. To recreate the compressed signal in your workspace, in
the Export ▼ menu, choose Generate MATLAB™ Script under Compressed Signal.
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An untitled script opens in your editor with the following executable code. You can save the script as
is or modify it to apply the same compression to other signals. Run the code.

Note: The generated script always uses the original coefficients. Checking the Time Align checkbox
in the Wavelet tab is strictly only for visualization purposes. The state of the checkbox has no impact
on the generated script.

% Perform the decomposition using modwt
wt = modwt(nelec,'sym4',4);

numberOfLevelsPlusOne = size(wt,1);

% Compute the energy by level for the decomposition
energyByLevel = 100*sum((wt.^2),2)/sum(wt.^2,'all');

% Thresholds for compressing the imported signal
compressionThresholds = repmat(250, 1, numberOfLevelsPlusOne);

% Duplicate coefficients for thresholding
wc = wt;

for idx = 1:numel(compressionThresholds)
    thr = compressionThresholds(idx);
    w = wc(idx,:);
    w(abs(w) <= abs(thr)) = 0;
    wc(idx,:) = w;
end

% Energy by level for the compressed signal
energyByLevelForCompressed = 100*sum((wc.^2),2)/sum(wc.^2,'all');
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% Compute the compressed signal
nelec1_compressed = imodwt(wc,'sym4');

Plot the original signal, nelec, and the compressed signal, nelec1_compressed. Except for
possibly the colors, the plots match those shown in the app.

plot(nelec)
hold on
plot(nelec1_compressed,LineWidth=2)
hold off
axis tight
title("Original and Compressed Signals")
legend("Original","Compressed")

Compare the energies by level of the original and thresholded coefficients. Because all the wavelet
(detail) coefficients have been set to 0, all of the energy in the thresholded coefficients is contained in
the approximation level.

[energyByLevel energyByLevelForCompressed]

ans = 5×2

    0.0152         0
    0.0124         0
    0.0125         0
    0.0260         0
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   99.9338  100.0000

Visualize Wavelet Decomposition of Complex-Valued Signal

Load the NPG2006 dataset. Extract the complex-valued signal from the npg2006 structure array.

load npg2006
npgdata = npg2006.cx;

Open Wavelet Signal Analyzer and import the signal into the app. A four-level nondecimated
wavelet decomposition of the signal appears. By default, the app plots the real and imaginary parts of
the decomposition and reconstruction.

Show the histogram of the level 3 coefficients. Because the decomposition is complex valued, the app
shows separate histograms of the real and imaginary parts of the coefficients.
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Show the energy by level. Most of the energy is concentrated in the approximation coefficients.
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Specify a threshold thr and compress the signal. Coefficients whose magnitudes are in the interval [–
thr, thr] are set to 0. You can specify a threshold in a coefficients plot of any style: amplitude,
magnitude, or sorted magnitude. For convenience, set the threshold in the plot of the sorted
magnitudes of the coefficients. Show the thresholded coefficients. Show only the real part of the
original and compressed signals.
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Programmatic Use
waveletSignalAnalyzer opens the Wavelet Signal Analyzer app. Once the app initializes, import
a signal from your workspace for analysis and compression by clicking Import.

waveletSignalAnalyzer(sig) opens the Wavelet Signal Analyzer app and imports,
decomposes, and displays the nondecimated discrete wavelet transform of sig using the modwt
function with the sym4 wavelet and default settings.

sig is a variable in the workspace. sig can be:

• A 1-by-N or N-by-1 real- or complex-valued vector
• Single or double precision

Tips
• To decompose more than one signal simultaneously, run multiple instances of the Wavelet Signal

Analyzer app.

1 Functions

1-1516



Version History
Introduced in R2023a

See Also
Apps
Wavelet Image Analyzer | Wavelet Signal Denoiser | Wavelet Time-Frequency Analyzer |
Signal Multiresolution Analyzer

Functions
modwt | imodwt | modwtmra
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Wavelet Signal Denoiser
Visualize and denoise time series data

Description
The Wavelet Signal Denoiser app is an interactive tool for visualizing and denoising real-valued 1-D
signals and comparing results. With the app, you can:

• Access all the signals in the MATLAB workspace.
• Easily adjust default parameters and apply different denoising techniques.
• Visualize and compare results.
• Export denoised signals to your workspace.
• Recreate the denoised signal in your workspace by generating a MATLAB script.

The Wavelet Signal Denoiser app provides a way to work with multiple versions of denoised data
simultaneously.

A typical workflow for denoising a signal and comparing results using the app is:

1 Start the app and import a 1-D signal from the MATLAB workspace. The app provides an initial
denoised version of your data using default parameters.

2 Adjust the denoising parameters and produce multiple versions of the denoised signal.
3 Compare results and export the desired denoised signal to your workspace.
4 To apply the same denoising parameters to other signals in your workspace, generate a MATLAB

script and modify it as you see fit.

For more information, see “Denoise a Signal with the Wavelet Signal Denoiser”.
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Open the Wavelet Signal Denoiser App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter waveletSignalDenoiser.

Examples

Denoise Signal Using Default Settings

This example shows how to denoise a 1-D signal using the app default settings.

Load the noisy Doppler signal.

load noisdopp

Start the Wavelet Signal Denoiser app by choosing it from the Apps tab on the MATLAB®
Toolstrip. You can also start the app by typing waveletSignalDenoiser at the MATLAB command
prompt.
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Load the noisy Doppler signal from the workspace into the app by clicking Import in the toolstrip.
From the list of workspace variables that can be loaded into the app, select noisdopp and click
Import.

The app displays the original signal, noisdopp, the denoised signal, noisdopp1, and the coarse
scale approximation, Approximation.
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To toggle what plots are visible, you can:

• Click Signals ▼ in the toolstrip and use the drop-down menu to toggle the visibility of the original
and approximation plots.

• Click individual signals in the plot legend.

Parameters
Wavelet — Wavelet family
sym (default) | bior | coif | db | fk

Wavelet family used to denoise the signal, specified as one of the following:

• sym — Symlets
• bior — Biorthogonal spline wavelets
• coif — Coiflets
• db — Daubechies wavelets
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• fk — Fejér-Korovkin wavelets

For additional information, see wdenoise.

Method — Denoising method
Bayes (default) | BlockJS | FDR | Minimax | SURE | UniversalThreshold

Denoising method to apply, specified as one of the following:

• Bayes — Empirical Bayes
• BlockJS — Block James-Stein
• FDR — False Discovery Rate
• Minimax — Minimax Estimation
• SURE — Stein's Unbiased Risk Estimate
• UniversalThreshold — Universal Threshold

For additional information, see wdenoise.

Rule — Thresholding rule
Median (default) | Mean | Soft | Hard | James-Stein

Thresholding rule to use. Valid options depend on the denoising method.

• Block James-Stein — James-Stein
• Empirical Bayes — Median, Mean, Soft, Hard
• False Discovery Rate — Hard
• Minimax Estimation — Soft, Hard
• Stein's Unbiased Risk Estimate — Soft, Hard
• Universal Threshold —Soft, Hard

For additional information, see wdenoise.

Programmatic Use
waveletSignalDenoiser opens the Wavelet Signal Denoiser app. Once the app initializes,
import a signal to denoise by clicking Import.

waveletSignalDenoiser(sig) opens the Wavelet Signal Denoiser app, and imports and
denoises sig using wdenoise with default settings. The app plots sig, the denoised signal, and its
coarse scale approximation.

sig is a variable in the workspace.

• sig can be a 1-by-N or N-by-1 real-valued vector.
• sig is double precision.
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Tips
To denoise more than one signal simultaneously, run multiple instances of the Wavelet Signal
Denoiser app.

Version History
Introduced in R2017b

See Also
Apps
Wavelet Signal Analyzer | Signal Multiresolution Analyzer | Wavelet Time-Frequency
Analyzer

Functions
wdenoise | wdenoise2

Topics
“Denoise a Signal with the Wavelet Signal Denoiser”
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waveletsupport
CWT filter bank time supports

Syntax
spsi = waveletsupport(fb)
spsi = waveletsupport(fb,thresh)

Description
spsi = waveletsupport(fb) returns the wavelet time supports, defined as the time interval in
which all of the wavelet's energy occurs. The default tolerance is 99.99% of the energy. The time
supports are returned in the MATLAB table spsi. The wavelets are normalized to have unit energy.

spsi = waveletsupport(fb,thresh) specifies the threshold for the integrated energy. The time
support of the wavelet is defined as the first instant the integrated energy exceeds thresh and the
last instant the integrated energy is less than 1−thresh. If unspecified, thresh defaults to 10−4.

Examples

Wavelet Filter Bank Time Supports

Create a continuous wavelet transform filter bank. Set the sampling frequency to 1000 Hz and the
frequency limits to range from 100 Hz to 200 Hz. Obtain the time supports of the wavelets in the
filter bank.

fb = cwtfilterbank('SamplingFrequency',1000,'FrequencyLimits',[100 200]);
spsi = waveletsupport(fb)

spsi=11×5 table
      CF      IsAnalytic    TimeSupport    Begin      End 
    ______    __________    ___________    ______    _____

       200    "Analytic"       0.032       -0.016    0.016
    186.61    "Analytic"       0.034       -0.017    0.017
    174.11    "Analytic"       0.038       -0.019    0.019
    162.45    "Analytic"        0.04        -0.02     0.02
    151.57    "Analytic"       0.042       -0.021    0.021
    141.42    "Analytic"       0.046       -0.023    0.023
    131.95    "Analytic"       0.048       -0.024    0.024
    123.11    "Analytic"       0.052       -0.026    0.026
    114.87    "Analytic"       0.056       -0.028    0.028
    107.18    "Analytic"        0.06        -0.03     0.03
       100    "Analytic"       0.064       -0.032    0.032

Obtain the time domain wavelets from the filter bank and plot their magnitudes. Use the table to set
the minimum and maximum limits of the x-axis to the smallest Begin value and largest End value,
respectively.
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[psi,t] = wavelets(fb);
plot(t,abs(psi))
grid on
xlim([spsi.Begin(end) spsi.End(end)])
xlabel('Time (sec)')
ylabel('Magnitude')
title('Time Domain Wavelets')

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

thresh — Time support threshold
10e–4 (default) | positive real number

Time support threshold for the wavelet, specified as a positive real number between 0 and 0.05. The
time support of the wavelet is defined as the first instant the integrated energy of the wavelet
exceeds thresh and the last instant the integrated energy is less than 1−thresh.
Data Types: double
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Output Arguments
spsi — Wavelet time supports
table

Wavelet time supports, returned as an Ns-by-5 MATLAB table, where Ns is the number of wavelet
bandpass frequencies (equal to the number of scales). The table has five variables:

CF — Wavelet center frequency
positive real number

Wavelet center frequency, returned as a positive real number.
Data Types: double

IsAnalytic — Wavelet designation
"Analytic" | "Nonanalytic"

Wavelet designation, returned as a string. Wavelets that do not decay to 5% of their peak value at the
Nyquist frequency are not considered analytic. The time support information for those wavelets are
returned as NaNs.
Data Types: string

TimeSupport — Wavelet time support
positive integer | NaN

Wavelet time support, returned in samples, seconds, or MATLAB durations. The units of
TimeSupport depend on whether you specify SamplingFrequency or SamplingPeriod. If you
specify a SamplingFrequency, the units are seconds. If you specify a SamplingPeriod, the units
are the same as the SamplingPeriod. If no SamplingFrequency or SamplingPeriod is specified,
the units are samples.
Data Types: double

Begin — Beginning of wavelet time support
integer

Beginning of wavelet time support, returned as an integer. Begin is defined as the first instant the
wavelet integrated energy exceeds the default threshold, 10−4. Begin has the same units as
TimeSupport.
Data Types: double

End — End of wavelet time support
integer

End of wavelet time support, returned as an integer. End is defined as the last instant the wavelet
integrated energy is less than 1 − 10−4. End has the same units as TimeSupport.
Data Types: double

Data Types: table

Version History
Introduced in R2018a
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See Also
cwtfilterbank | wavelets
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waveletsupport
DWT filter bank time supports

Syntax
spsi = waveletsupport(fb)
spsi = waveletsupport(fb,thresh)
[spsi,sphi] = waveletsupport(fb)
[spsi,sphi,tlow,thigh] = waveletsupport(fb)

Description
spsi = waveletsupport(fb) returns the wavelet time supports of the discrete wavelet transform
(DWT) filter bank fb. The time supports are defined as the time interval in which all the wavelet
energy occurs (> 99.99% of the energy for the default threshold).

spsi = waveletsupport(fb,thresh) specifies the threshold for the integrated energy. thresh
is a positive real number in the interval 0 < thresh ≤ 0.05.

[spsi,sphi] = waveletsupport(fb) returns the scaling function time supports at all levels.
sphi is a real-valued L-by-1 vector, where L is the number of levels in the DWT filter bank fb.

[spsi,sphi,tlow,thigh] = waveletsupport(fb) returns the instants the integrated energy in
the wavelets and scaling functions exceed thresh in tlow and the last instant the integrated energy
is less than 1 − thresh in thigh.

Examples

DWT Filter Bank Wavelet Time Supports

Find the time supports for a Haar wavelet filter bank.

fb = dwtfilterbank('Wavelet','haar','Level',8);
Spsi = waveletsupport(fb)

Spsi = 8×1

     2
     4
     8
    16
    32
    64
   128
   256
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Input Arguments
fb — Discrete wavelet transform filter bank
dwtfilterbank object

Discrete wavelet transform (DWT) filter bank, specified as a dwtfilterbank object.

thresh — Threshold for the integrated energy
1e-6 (default) | positive scalar

Threshold for the integrated energy, specified as a positive scalar in the interval 0 < thresh ≤ 0.05.
If unspecified, thresh defaults to 10-6.

The percent energy contained in the time support is (1 − 2 × thresh) × 100. The time support of the
wavelet is defined as the first instant the integrated energy exceeds thresh and the last instant it is
less than 1-thresh. The wavelets are normalized to have unit energy for the computation.

Output Arguments
spsi — Wavelet time supports
real-valued column vector

Wavelet time supports, returned as a real-valued column vector of length L, where L is the number of
levels in the DWT filter bank.

sphi — Scaling function time supports
real-valued column vector

Scaling function time supports, returned as a real-valued column vector of length L, where L is the
number of levels in the DWT filter bank.

tlow — First instants
real-valued matrix

First instants the integrated energy in the wavelet and scaling functions exceed thresh, returned as
real-valued L-by-2 matrix, where L is the number of levels in the filter bank. The first column of tlow
contains the times for the wavelets. The second column of tlow contains the times for the scaling
functions.

The difference between the first column of thigh and the first column of tlow plus one sampling
period equals pspi. The difference between the second column of thigh and the second column of
tlow plus one sampling period equals sphi.

thigh — Last instants
real-valued matrix

Last instants the integrated energy in the wavelet and scaling functions is less than 1−thresh,
returned as real-valued L-by-2 matrix, where L is the number of levels in the filter bank. The first
column of thigh contains the times for the wavelets. The second column of thigh contains the times
for the scaling functions.

The difference between the first column of thigh and the first column of tlow plus one sampling
period equals pspi. The difference between the second column of thigh and the second column of
tlow plus one sampling period equals sphi.
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Version History
Introduced in R2018a

See Also
dwtfilterbank | scalingfunctions | wavelets
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Wavelet Time-Frequency Analyzer
Visualize scalogram of signals

Description
The Wavelet Time-Frequency Analyzer app is an interactive tool for visualizing scalograms of real-
and complex-valued 1-D signals. The scalogram is the absolute value of the continuous wavelet
transform (CWT) plotted as a function of time and frequency. Frequency is plotted on a logarithmic
scale. With the app, you can:

• Access all 1-D signals in your MATLAB workspace
• Import multiple signals simultaneously
• Adjust default parameters and visualize scalograms using cwt
• Select desired analytic wavelet
• Adjust analytic Morse wavelet symmetry and time-bandwidth parameters
• Export the CWT to your workspace
• Recreate the scalogram in your workspace by generating a MATLAB script
• Import multiple signals

For more information, see “Using Wavelet Time-Frequency Analyzer App”.
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Open the Wavelet Time-Frequency Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter waveletTimeFrequencyAnalyzer.

Examples

Visualize Scalograms Using Default Settings

Load three 1-D signals into the MATLAB® workspace: an electrocardiogram signal, a hyperbolic
chirp signal, and the NPG2006 dataset.

load wecg
load hyperbolchirp
load npg2006

Extract the complex-valued signal from the npg2006 structure array.
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npgdata = npg2006.cx;
whos

  Name                  Size            Bytes  Class        Attributes

  hyperbolchirp      2048x1             33759  timetable              
  npg2006               1x1             37184  struct                 
  npgdata            1117x1             17872  double       complex   
  wecg               2048x1             16384  double                 

Open Wavelet Time-Frequency Analyzer and click Import Signals. A window appears listing all
the workspace variables the app can process.

Select all the signals and click Import. After a brief, one-time initialization, the Signals pane is
populated with the names of the imported signals, along with their types. In the case of
hyperbolchirp, the name of the timetable variable containing the signal is appended to the name of
the timetable: hyperbolchirp_hchirp. The app displays the scalogram of the highlighted signal.
The scalogram is obtained using the cwt function with default settings. The cone of influence
showing where edge effects become significant is also plotted. Gray regions outside the dashed white
lines delineate regions where edge effects are significant. By default, frequencies are in cycles/
sample.
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The ECG signal is real valued. In the Signals pane, select the complex-valued signal npgdata. The
positive and negative components of the scalogram are displayed.
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Select hyperbolchirp_hchirp. Because the timetable contains temporal information, the
scalogram is plotted as a function of frequency in hertz and uses the row times of the timetable as the
basis for the time axis. The disabled Sample Rate field displays the sampling rate as determined
from the row times.
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Adjust Morse Wavelet Parameters

Load the hyperbolic chirp signal.

load hyperbolchirp

Open Wavelet Time-Frequency Analyzer and import the signal into the app. To access the
parameter settings, click the Scalogram tab. By default, the app displays the scalogram obtained
using the analytic Morse (3, 60) wavelet and the cwt function with default settings.

You can reset the CWT parameters to their default values at any time by clicking Reset Parameters.
Resetting the parameters enables the Compute Scalogram button.
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To visualize the scalogram using the (1,5) Morse wavelet, set Time-Bandwidth Product to 5. In the
status bar, text appears stating there are pending changes. The Compute Scalogram button is now
enabled. If you instead first set Symmetry to 1, the app would automatically change that value
because a symmetry value of 1 violates the constraint that the ratio of Time-Bandwidth Product to
Symmetry should not exceed 40. For more information, see “Tips” on page 1-1545.
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Now set Symmetry to 1 and click Compute Scalogram. The app displays the scalogram obtained
using the (1, 5) Morse wavelet.
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To visualize the scalogram using the (6, 50) Morse wavelet, first set Time-Bandwidth Product to 50
and Symmetry to 6, then click Compute Scalogram.

Adjust Scalogram Frequency Axis Scale

Import Signal

Load a hyperbolic chirp signal into your workspace.

load hyperbolchirp

Visualize Scalogram

Open Wavelet Time-Frequency Analyzer and import the signal. To access the parameter settings,
click the Scalogram tab. By default, the app displays the scalogram obtained using the Morse (3,60)
wavelet and the cwt function with default settings. Because the signal is a timetable, the scalogram is
plotted as a function of frequency in hertz. The time axis is based on the row times of the timetable.
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In the Scalogram tab, adjust the default settings. Specify the Morse (5,20) wavelet. Visualize the
scalogram using 26 voices per octave and periodic boundary extension. The frequencies are plotted
on a logarithmic scale.

Generate Script

To adjust the frequency axis scale in the scalogram, first reproduce the wavelet analysis in your
workspace.

Generate a script that recreates the scalogram in your workspace. From the Export ▼ menu, select
Generate MATLAB Script. An untitled script opens in your MATLAB® Editor. To include the
boundary line of the cone of influence in the plot, add a third output argument, coi, to the cwt
function call in the script. Save and execute the script. The variables scalogram and frequency
contain the scalogram and frequency vector, respectively.

%Parameters
waveletParameters = [5,20];
voicesPerOctave = 26;
extendSignal = false;

%Compute cwt
%Run the function call below without output arguments to plot the results
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[waveletTransform,frequency,coi] = cwt(hyperbolchirp,...
    WaveletParameters = waveletParameters,...
    VoicesPerOctave = voicesPerOctave,...
    ExtendSignal = extendSignal);
scalogram = abs(waveletTransform);

In order to plot the scalogram using the correct time axis, extract the vector of row times, Time, from
the hyperbolchirp timetable.

dataTimes = hyperbolchirp.Time;

Adjust Frequency Axis — Linear Scale

Use the pcolor function to plot the scalogram. Include the cone of influence boundary. Frequency is
plotted on a linear scale.

pcolor(dataTimes,frequency,scalogram)
shading flat
title("Scalogram")
xlabel("Time (s)")
ylabel("Frequency (Hz)")
hold on
plot(dataTimes,coi,"w--",LineWidth=2)
hold off
colorbar
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Adjust Frequency Axis — Logarithmic Scale

To plot frequency on a logarithmic scale, get the handle to the current axes and set YScale to "log".

AX = gca;
set(AX,YScale="log")

In MATLAB, logarithmic axes are in powers of 10 (decades). By default, MATLAB places frequency
ticks at 1, 10, and 100 because they are the powers of 10 between the minimum and maximum
frequencies. To add more frequency axis ticks, obtain the minimum and maximum frequencies in
frequency. Create a logarithmically spaced set of frequencies between the minimum and maximum
frequencies. Note that cwt returns frequencies ordered from high to low.

minf = frequency(end);
maxf = frequency(1);
numfreq = 10;
freq = logspace(log10(minf),log10(maxf),numfreq);

Replace the frequency axis ticks and labels with the new frequencies.

AX.YTickLabelMode = "auto";
AX.YTick = freq;
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In the CWT, frequencies are computed in powers of two. Create the frequency ticks and tick labels in
powers of two.

freq = 2.^(round(log2(minf)):round(log2(maxf)));
AX.YTickLabelMode = "auto";
AX.YTick = freq;
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• “Using Wavelet Time-Frequency Analyzer App”

Parameters
Wavelet — Analytic wavelet
Morse (default) | Morlet | bump

Analytic wavelet used to compute the CWT. Valid options are Morse, Morlet, and bump, which
specify the Morse, Morlet (Gabor), and bump wavelet, respectively.

Time-Bandwidth Product — Time-bandwidth product of the Morse wavelet
60 (default) | scalar greater than or equal to the Symmetry value

Specify the time-bandwidth product of the Morse wavelet as a scalar greater than or equal to the
Symmetry value. The ratio of the Time-Bandwidth Product value to the Symmetry value cannot
exceed 40.

The values of Time-Bandwidth Product and Symmetry correspond to the WaveletParameters
name-value argument of cwt.
Example: Setting Time-Bandwidth Product to 40 and Symmetry value to 5 is equivalent to setting
the WaveletParameters name-value argument cwt(…,WaveletParameters=[5 40],…).

Symmetry — Symmetry parameter of the Morse wavelet
3 (default) | scalar greater than or equal to 1
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Specify the symmetry parameter of the Morse wavelet as a scalar greater than or equal to 1. The
ratio of the Time-Bandwidth Product value to the Symmetry value cannot exceed 40.

The values of Symmetry and Time-Bandwidth Product correspond to the WaveletParameters
name-value argument of cwt.

Voices Per Octave — Number of voices per octave
10 (default) | integer between 1 and 48

Specify the number of voices per octave to use for the CWT as an integer from 1 to 48. The CWT
scales are discretized using the specified number of voices per octave. The energy spread of the
wavelet in frequency and time automatically determines the minimum and maximum scales.

Programmatic Use
waveletTimeFrequencyAnalyzer opens the Wavelet Time-Frequency Analyzer app. Once the
app initializes, import a signal for analysis by clicking Import Signals.

waveletTimeFrequencyAnalyzer(sig) opens the Wavelet Time-Frequency Analyzer app and
imports, generates, and plots the scalogram of sig using cwt with default settings.

sig is a variable in the workspace. sig can be:

• A real- or complex-valued vector.
• A single-variable regularly sampled timetable.
• Single or double precision.

sig must have at least four samples.

By default, the app plots the scalogram as a function of frequency in cycles/sample and uses sample
index as the basis of the time axis. If the signal is a timetable, then the app plots the scalogram as a
function of frequency in hertz and uses the row times of the timetable as the basis for the time axis.

Limitations
• The MATLAB script you generate to create the scalogram in your workspace uses the name of the

selected signal in the Signals pane. The script will throw an error if the variable does not exist in
the MATLAB workspace. If an error occurs, either replace the variable name in the script with the
name of the original signal or create the variable in your workspace.

• You can run only one instance of the Wavelet Time-Frequency Analyzer app in a MATLAB
session.

Tips
• The Morse wavelet parameters, Time-Bandwidth Product and Symmetry, must satisfy three

constraints:

• Symmetry, or gamma, must be greater than or equal to 1.
• Time-Bandwidth Product must be greater than or equal to Symmetry.
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• The ratio of Time-Bandwidth Product to Symmetry cannot exceed 40.

To prevent attempts to visualize a scalogram using invalid settings, the app validates any
parameter you change. If you enter a value that violates a constraint, the app automatically
replaces it with a valid value. The new value might not be the desired value. To avoid unexpected
results, you should ensure any value you enter always results in a valid setting. For more
information, see the example “Adjust Morse Wavelet Parameters” on page 1-1536.

Version History
Introduced in R2022a

See Also
Apps
Wavelet Signal Analyzer | Signal Multiresolution Analyzer | Signal Analyzer

Functions
cwt | cwtfilterbank | cwtfreqbounds

Topics
“Using Wavelet Time-Frequency Analyzer App”
“Morse Wavelets”
“Practical Introduction to Time-Frequency Analysis Using the Continuous Wavelet Transform”
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wavemngr
Wavelet manager

Syntax
wavemngr('add',FN,FSN,WT,NUMS,FILE)
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE)
wavemngr( ___ ,B)

wavemngr('del',N)

wavemngr('restore')
wavemngr('restore',IN2)

out = wavemngr('read')
out = wavemngr('read',IN2)
out = wavemngr('read_asc')

wavetype = wavemngr('type',wname)

Description
Use wavemngr to add, delete, restore, or read wavelets.

wavemngr('add',FN,FSN,WT,NUMS,FILE) adds a wavelet family to the toolbox. These parameters
define the wavelet family:

• FN — Family name
• FSN — Family short name
• WT — Wavelet family type
• NUMS — Wavelet parameters
• FILE — Wavelet definition file

Note When you use wavemngr to add a wavelet family, three wavelet extension files are created in
the current folder: the two ASCII files wavelets.asc and wavelets.prv, and the MAT-file
wavelets.inf. If you add a new wavelet family, it is available in this folder only.

wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE) adds a wavelet family with parameter
NUMS with input format type TYPNUMS.

wavemngr( ___ ,B) adds a wavelet family, where B specifies the effective support for the wavelets.
The B input argument is valid only for wavelets of type WT = 3, 4, and 5. You can use this syntax with
any of the previous syntaxes.

wavemngr('del',N) deletes the wavelet or wavelet family specified by N.

wavemngr('restore') restores the previous wavelets.asc ASCII file
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wavemngr('restore',IN2) restores the initial wavelets.asc ASCII file. Here IN2 is a dummy
argument.

out = wavemngr('read') returns all wavelet family names in a character array.

out = wavemngr('read',IN2) returns all wavelet names in a character array. Here IN2 is a
dummy argument.

out = wavemngr('read_asc') reads the wavelets.asc ASCII file and returns all wavelet
information.

wavetype = wavemngr('type',wname) returns the family type of the wavelet wname.

Examples

Wavelet Names and Family Names

List the wavelet families available by default.

wavemngr('read')

ans = 23x35 char array
    '==================================='
    'Haar                     ->->haar    '
    'Daubechies               ->->db      '
    'Symlets                  ->->sym     '
    'Coiflets                 ->->coif    '
    'BiorSplines              ->->bior    '
    'ReverseBior              ->->rbio    '
    'Meyer                    ->->meyr    '
    'DMeyer                   ->->dmey    '
    'Gaussian                 ->->gaus    '
    'Mexican_hat              ->->mexh    '
    'Morlet                   ->->morl    '
    'Complex Gaussian         ->->cgau    '
    'Shannon                  ->->shan    '
    'Frequency B-Spline       ->->fbsp    '
    'Complex Morlet           ->->cmor    '
    'Fejer-Korovkin           ->->fk      '
    'Best-localized Daubechies->->bl      '
    'Morris minimum-bandwidth ->->mb      '
    'Beylkin                  ->->beyl    '
    'Vaidyanathan             ->->vaid    '
    'Han linear-phase moments ->->han     '
    '==================================='

List all wavelets.

wavemngr('read',1)

ans = 89x44 char array
    '===================================         '
    'Haar                     ->->haar             '
    '===================================         '
    'Daubechies               ->->db               '
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    '------------------------------              '
    'db1->db2->db3->db4->                            '
    'db5->db6->db7->db8->                            '
    'db9->db10->db**->                              '
    '===================================         '
    'Symlets                  ->->sym              '
    '------------------------------              '
    'sym2->sym3->sym4->sym5->                        '
    'sym6->sym7->sym8->sym**->                       '
    '===================================         '
    'Coiflets                 ->->coif             '
    '------------------------------              '
    'coif1->coif2->coif3->coif4->                    '
    'coif5->                                      '
    '===================================         '
    'BiorSplines              ->->bior             '
    '------------------------------              '
    'bior1.1->bior1.3->bior1.5->bior2.2->            '
    'bior2.4->bior2.6->bior2.8->bior3.1->            '
    'bior3.3->bior3.5->bior3.7->bior3.9->            '
    'bior4.4->bior5.5->bior6.8->                    '
    '===================================         '
    'ReverseBior              ->->rbio             '
    '------------------------------              '
    'rbio1.1->rbio1.3->rbio1.5->rbio2.2->            '
    'rbio2.4->rbio2.6->rbio2.8->rbio3.1->            '
    'rbio3.3->rbio3.5->rbio3.7->rbio3.9->            '
    'rbio4.4->rbio5.5->rbio6.8->                    '
    '===================================         '
    'Meyer                    ->->meyr             '
    '===================================         '
    'DMeyer                   ->->dmey             '
    '===================================         '
    'Gaussian                 ->->gaus             '
    '------------------------------              '
    'gaus1->gaus2->gaus3->gaus4->                    '
    'gaus5->gaus6->gaus7->gaus8->                    '
    '===================================         '
    'Mexican_hat              ->->mexh             '
    '===================================         '
    'Morlet                   ->->morl             '
    '===================================         '
    'Complex Gaussian         ->->cgau             '
    '------------------------------              '
    'cgau1->cgau2->cgau3->cgau4->                    '
    'cgau5->cgau6->cgau7->cgau8->                    '
    '===================================         '
    'Shannon                  ->->shan             '
    '------------------------------              '
    'shan1-1.5->shan1-1->shan1-0.5->shan1-0.1->      '
    'shan2-3->shan**->                             '
    '===================================         '
    'Frequency B-Spline       ->->fbsp             '
    '------------------------------              '
    'fbsp1-1-1.5->fbsp1-1-1->fbsp1-1-0.5->fbsp2-1-1->'
    'fbsp2-1-0.5->fbsp2-1-0.1->fbsp**->             '
    '===================================         '
    'Complex Morlet           ->->cmor             '
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    '------------------------------              '
    'cmor1-1.5->cmor1-1->cmor1-0.5->cmor1-1->        '
    'cmor1-0.5->cmor1-0.1->cmor**->                 '
    '===================================         '
    'Fejer-Korovkin           ->->fk               '
    '------------------------------              '
    'fk4->fk6->fk8->fk14->                           '
    'fk18->fk22->                                  '
    '===================================         '
    'Best-localized Daubechies->->bl               '
    '------------------------------              '
    'bl7->bl9->bl10->                               '
    '===================================         '
    'Morris minimum-bandwidth ->->mb               '
    '------------------------------              '
    'mb4.2->mb8.2->mb8.3->mb8.4->                    '
    'mb10.3->mb12.3->mb14.3->mb16.3->                '
    'mb18.3->mb24.3->mb32.3->                       '
    '===================================         '
    'Beylkin                  ->->beyl             '
    '===================================         '
    'Vaidyanathan             ->->vaid             '
    '===================================         '
    'Han linear-phase moments ->->han              '
    '------------------------------              '
    'han2.3->han3.3->han4.5->han5.5->                '
    '===================================         '

Add Wavelet Families

This example shows how to add new compactly supported orthogonal wavelets to the toolbox. These
wavelets, which are a slight generalization of the Daubechies wavelets, are based on the use of
Bernstein polynomials and are due to Kateb and Lemarié.

Add a new family of orthogonal wavelets. You must define:

• Family Name: Lemarie
• Family Short Name: lem
• Type of wavelet: 1 (orth)
• Wavelet numbers: 1 2 3 4 5
• File driver: lemwavf

The source code for lemwavf.m is provided at the end of the example. The input argument of
lemwavf is a character vector of the form lemN, where N = 1, 2, 3, 4, or 5.

wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf')

The ASCII file wavelets.asc is saved as wavelets.prv, then information defining the new family
is added to wavelets.asc, and the MAT-file wavelets.inf is generated.

Note that wavemngr works on the current folder. If you add a new wavelet family, it is available in
this folder only.
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List the available wavelet families. Confirm the new wavelet family is added.

wavemngr('read')

ans = 24x35 char array
    '==================================='
    'Haar                     ->->haar    '
    'Daubechies               ->->db      '
    'Symlets                  ->->sym     '
    'Coiflets                 ->->coif    '
    'BiorSplines              ->->bior    '
    'ReverseBior              ->->rbio    '
    'Meyer                    ->->meyr    '
    'DMeyer                   ->->dmey    '
    'Gaussian                 ->->gaus    '
    'Mexican_hat              ->->mexh    '
    'Morlet                   ->->morl    '
    'Complex Gaussian         ->->cgau    '
    'Shannon                  ->->shan    '
    'Frequency B-Spline       ->->fbsp    '
    'Complex Morlet           ->->cmor    '
    'Fejer-Korovkin           ->->fk      '
    'Best-localized Daubechies->->bl      '
    'Morris minimum-bandwidth ->->mb      '
    'Beylkin                  ->->beyl    '
    'Vaidyanathan             ->->vaid    '
    'Han linear-phase moments ->->han     '
    'Lemarie                  ->->lem     '
    '==================================='

Remove the added family. Regenerate the list of wavelet families.

wavemngr('del','Lemarie')
wavemngr('read')

ans = 23x35 char array
    '==================================='
    'Haar                     ->->haar    '
    'Daubechies               ->->db      '
    'Symlets                  ->->sym     '
    'Coiflets                 ->->coif    '
    'BiorSplines              ->->bior    '
    'ReverseBior              ->->rbio    '
    'Meyer                    ->->meyr    '
    'DMeyer                   ->->dmey    '
    'Gaussian                 ->->gaus    '
    'Mexican_hat              ->->mexh    '
    'Morlet                   ->->morl    '
    'Complex Gaussian         ->->cgau    '
    'Shannon                  ->->shan    '
    'Frequency B-Spline       ->->fbsp    '
    'Complex Morlet           ->->cmor    '
    'Fejer-Korovkin           ->->fk      '
    'Best-localized Daubechies->->bl      '
    'Morris minimum-bandwidth ->->mb      '
    'Beylkin                  ->->beyl    '
    'Vaidyanathan             ->->vaid    '
    'Han linear-phase moments ->->han     '
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    '==================================='

Restore the previous ASCII file wavelets.prv, then build the MAT-file wavelets.inf. List the
restored wavelets. Because wavemngr reads the ASCII file in the current working directory, the new
family appears in the list.

wavemngr('restore')
wavemngr('read',1)

ans = 94x44 char array
    '===================================         '
    'Haar                     ->->haar             '
    '===================================         '
    'Daubechies               ->->db               '
    '------------------------------              '
    'db1->db2->db3->db4->                            '
    'db5->db6->db7->db8->                            '
    'db9->db10->db**->                              '
    '===================================         '
    'Symlets                  ->->sym              '
    '------------------------------              '
    'sym2->sym3->sym4->sym5->                        '
    'sym6->sym7->sym8->sym**->                       '
    '===================================         '
    'Coiflets                 ->->coif             '
    '------------------------------              '
    'coif1->coif2->coif3->coif4->                    '
    'coif5->                                      '
    '===================================         '
    'BiorSplines              ->->bior             '
    '------------------------------              '
    'bior1.1->bior1.3->bior1.5->bior2.2->            '
    'bior2.4->bior2.6->bior2.8->bior3.1->            '
    'bior3.3->bior3.5->bior3.7->bior3.9->            '
    'bior4.4->bior5.5->bior6.8->                    '
    '===================================         '
    'ReverseBior              ->->rbio             '
    '------------------------------              '
    'rbio1.1->rbio1.3->rbio1.5->rbio2.2->            '
    'rbio2.4->rbio2.6->rbio2.8->rbio3.1->            '
    'rbio3.3->rbio3.5->rbio3.7->rbio3.9->            '
    'rbio4.4->rbio5.5->rbio6.8->                    '
    '===================================         '
    'Meyer                    ->->meyr             '
    '===================================         '
    'DMeyer                   ->->dmey             '
    '===================================         '
    'Gaussian                 ->->gaus             '
    '------------------------------              '
    'gaus1->gaus2->gaus3->gaus4->                    '
    'gaus5->gaus6->gaus7->gaus8->                    '
    '===================================         '
    'Mexican_hat              ->->mexh             '
    '===================================         '
    'Morlet                   ->->morl             '
    '===================================         '
    'Complex Gaussian         ->->cgau             '
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    '------------------------------              '
    'cgau1->cgau2->cgau3->cgau4->                    '
    'cgau5->cgau6->cgau7->cgau8->                    '
    '===================================         '
    'Shannon                  ->->shan             '
    '------------------------------              '
    'shan1-1.5->shan1-1->shan1-0.5->shan1-0.1->      '
    'shan2-3->shan**->                             '
    '===================================         '
    'Frequency B-Spline       ->->fbsp             '
    '------------------------------              '
    'fbsp1-1-1.5->fbsp1-1-1->fbsp1-1-0.5->fbsp2-1-1->'
    'fbsp2-1-0.5->fbsp2-1-0.1->fbsp**->             '
    '===================================         '
    'Complex Morlet           ->->cmor             '
    '------------------------------              '
    'cmor1-1.5->cmor1-1->cmor1-0.5->cmor1-1->        '
    'cmor1-0.5->cmor1-0.1->cmor**->                 '
    '===================================         '
    'Fejer-Korovkin           ->->fk               '
    '------------------------------              '
    'fk4->fk6->fk8->fk14->                           '
    'fk18->fk22->                                  '
    '===================================         '
    'Best-localized Daubechies->->bl               '
    '------------------------------              '
    'bl7->bl9->bl10->                               '
    '===================================         '
    'Morris minimum-bandwidth ->->mb               '
    '------------------------------              '
    'mb4.2->mb8.2->mb8.3->mb8.4->                    '
    'mb10.3->mb12.3->mb14.3->mb16.3->                '
    'mb18.3->mb24.3->mb32.3->                       '
    '===================================         '
    'Beylkin                  ->->beyl             '
    '===================================         '
    'Vaidyanathan             ->->vaid             '
    '===================================         '
    'Han linear-phase moments ->->han              '
    '------------------------------              '
    'han2.3->han3.3->han4.5->han5.5->                '
    '===================================         '
    'Lemarie                  ->->lem              '
    '------------------------------              '
    'lem1->lem2->lem3->lem4->                        '
    'lem5->                                       '
    '===================================         '

Restore the initial wavelets. Restore the initial ASCII file wavelets.ini and the initial MAT-file
wavelets.bin. Regenerate the list of wavelet families. The list does not include the new family.

wavemngr('restore',0)
wavemngr('read')

ans = 23x35 char array
    '==================================='
    'Haar                     ->->haar    '
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    'Daubechies               ->->db      '
    'Symlets                  ->->sym     '
    'Coiflets                 ->->coif    '
    'BiorSplines              ->->bior    '
    'ReverseBior              ->->rbio    '
    'Meyer                    ->->meyr    '
    'DMeyer                   ->->dmey    '
    'Gaussian                 ->->gaus    '
    'Mexican_hat              ->->mexh    '
    'Morlet                   ->->morl    '
    'Complex Gaussian         ->->cgau    '
    'Shannon                  ->->shan    '
    'Frequency B-Spline       ->->fbsp    '
    'Complex Morlet           ->->cmor    '
    'Fejer-Korovkin           ->->fk      '
    'Best-localized Daubechies->->bl      '
    'Morris minimum-bandwidth ->->mb      '
    'Beylkin                  ->->beyl    '
    'Vaidyanathan             ->->vaid    '
    'Han linear-phase moments ->->han     '
    '==================================='

All command line capabilities are available for new families of wavelets. Create a new family.
Compute the four associated filters and the scale and wavelet functions.

wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf');
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('lem3');
[phi,psi,xval] = wavefun('lem3');
plot(xval,[phi;psi]);
legend('Scaling Function','Wavelet')
grid on
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Remove the added family.

wavemngr('del','Lemarie')

lemwavf.m
function F = lemwavf(wname) 
%LEMWAVF Lemarie wavelet filters. 
%   F = LEMWAVF(W) returns the scaling filter associated with the Lemarie
%   wavelet specified by the character array, 'lemN'. 
%   Possible values for N are 1, 2, 3, 4 or 5. 
%
%   This function is only for use in the "Add Wavelet Families" example. It
%   may change or be removed in a future release.
%
%   Copyright 2019 The MathWorks, Inc.
 
TFlem = startsWith(wname,'lem');
if ~TFlem
    error('Wavelet short name is lem followed by filter number');
end
fnum = regexp(wname,'(\d+)','match','Once');

if isempty(fnum) 
    error('Specify a filter number as 1,2,3,4,or 5'); 
end 

if ~isempty(fnum) 
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    num = str2double(fnum);
end

tffilt = ismember(num,[1 2 3 4 5]);

if ~tffilt
    error('Filter number must be 1, 2, 3, 4, or 5');
end

 
switch num 
    case 1 
F = [... 
   0.46069299844871  0.53391629051346  0.03930700681965  -0.03391629578182 ... 
]; 
 
    case 2 
F = [... 
   0.31555164655258  0.59149765057882  0.20045477817080  -0.10034811856888 ... 
  -0.01528128420694  0.00846362066021  -0.00072514051618  0.00038684732960 ... 
        ]; 
 
    case 3 
F = [... 
   0.23108942231941  0.56838231367966  0.33173980738190  -0.09447000132310 ... 
  -0.06203683305244  0.02661631105889  -0.00209952890579  0.00001769381066 ... 
   0.00128429679795  -0.00053703458679  0.00002283826072 -0.00000928544107 ... 
        ]; 
 
    case 4 
F = [... 
   0.17565337503255  0.52257484913870  0.42429244721660  -0.04601056550580 ... 
  -0.11292720306517  0.03198741803409  0.00813124691980  -0.00743764392677 ... 
   0.00548090619143 -0.00140066128481  -0.00054200083128   0.00025607264164 ... 
  -0.00008795126642  0.00003025515674  -0.00000082014466  0.00000027569334 ... 
        ]; 
 
    case 5 
F = [... 
   0.13807658847623  0.47310642622099  0.48217097800239  0.02112933622031 ... 
  -0.15081998732499  0.01935767268926  0.02716532750995  -0.01588522540421 ... 
   0.00671209165995  0.00120022744496  -0.00321203819186  0.00115266788547 ... 
  -0.00018266213413  -0.00002953360842  0.00008433396295  -0.00002997969339 ... 
   0.00000534552866  -0.00000159098026  0.00000003069431 -0.00000000895816 ... 
        ]; 
 
end

Input Arguments
FN — Wavelet family name
character vector | string scalar

Wavelet family name, specified as a character vector or string scalar.

FSN — Wavelet family short name
character vector | string scalar
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Wavelet family short name, specified as a character vector or string scalar. The number of characters
in FSN must be less than or equal to 4.

WT — Wavelet family type
1 | 2 | 3 | 4 | 5

Wavelet family type, specified as one of the following:

• 1 — Orthogonal wavelets
• 2 — Biorthogonal wavelets
• 3 — Wavelet with a scaling function
• 4 — Wavelet without a scaling function
• 5 — Complex wavelet without a scaling function

NUMS — Wavelet parameters
'' | character vector | string scalar

Wavelet parameters, specified as:

• If the family consists of a single wavelet, NUMS is the empty string ''. For example, the mexh and
morl families each contain a single wavelet.

• If the wavelet is member of a finite family of wavelets, NUMS contains a space-separated list of
items representing wavelet parameters. For example, for the biorthogonal wavelet family bior,
NUMS = '1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8'.

• If the wavelet is member of an infinite family of wavelets, NUMS contains a space-separated list of
items representing wavelet parameters, terminated by the special sequence **. Two examples are
listed in the following table.

Wavelet Family NUMS
db NUMS = '1 2 3 4 5 6 7 8 9 10 **'
shan NUMS = '1-1.5 1-1 1-0.5 1-0.1 2-3 **'

TYPNUMS — Wavelet parameter input format
'integer' (default) | 'real' | 'charactervector'

Wavelet parameter input format, specified as:

• 'integer' — Use this option when the parameter is an integer. For example, the Daubechies
wavelet family db uses an integer parameter.

• 'real' — Use this option when the parameter is real. For example, the biorthogonal wavelet
family bior uses a real parameter.

• 'charactervector' — Use this option when the parameter is a character vector. For example,
the Shannon wavelet family uses a character vector.

FILE — Wavelet definition file
character vector | string scalar

Wavelet definition file, specified as a character vector or string scalar. FILE is the name of a MAT-file
or a code file name that defines the wavelet family.
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If the wavelet family contains only one type 1 (orthogonal) or type 2 (biorthogonal) wavelet, you can
define the wavelet in a MAT-file. The MAT-file contains the scaling filter coefficients. The filename
must match the wavelet family short name.

• If you define an orthogonal wavelet in a MAT-file, the name of the variable containing the scaling
filter coefficients must match the name of the wavelet family short name.

• If you define a biorthogonal wavelet in a MAT-file, the names of the variables containing the
scaling filter coefficients must be Df and Rf.

For more information, see “Add Quadrature Mirror and Biorthogonal Wavelet Filters”.
Example: If a family that contains a single orthogonal wavelet has the short name wfsn, the variable
wfsn must contain the scaling filter coefficients. To create the necessary MAT-file, you would use the
command save wfsn wfsn.

B — Effective support
two-element real-valued vector

Effective support for wavelets with family type WT equal to 3, 4, or 5, specified as a two-element real-
valued vector. If B = [lb ub], then lb specifies the lower bound, and ub specifies the upper bound.
Data Types: double

N — Wavelet
character vector | string scalar

Wavelet or wavelet family to delete, specified by a character vector or string scalar. N is either the
wavelet name or wavelet family short name.
Example: wavemngr('del','Lemarie')

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. To learn what wavelets are available in a
wavelet family, use waveinfo and the family short name.
Example: ty = wavemngr('type',"coif4")

Output Arguments
out — Wavelet manager output
character array

Wavelet manager output, returned as a character array.

wavetype — Wavelet family type
integer

Wavelet family type, returned as an integer.

• 1 — Orthogonal wavelets
• 2 — Biorthogonal wavelets
• 3 — Wavelet with a scaling function
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• 4 — Wavelet without a scaling function
• 5 — Complex wavelet without a scaling function

Limitations
• wavemngr allows you to add a wavelet. You must verify that it is truly a wavelet. No check is

performed to confirm the addition is a wavelet or to confirm the type of the new wavelet. You can
use isorthwfb and isbiorthwfb to determine if a wavelet is orthogonal or biorthogonal.

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

See Also
waveinfo | wfilters

Topics
“Add Quadrature Mirror and Biorthogonal Wavelet Filters”
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wavenames
(To be removed) Wavelet names for LWT

Note wavenames will be removed in a future release. Use liftingScheme. For more information,
see “Compatibility Considerations”.

Syntax
W = wavenames(T)

Description
W = wavenames(T) returns a cell array that contains the name of all wavelets of type T. The valid
values for T are

• 'all' — all wavelets
• 'lazy' — “lazy” wavelet
• 'orth' — orthogonal wavelets
• 'bior' — biorthogonal wavelets

W = wavenames is equivalent to W = wavenames('all').

Version History
Introduced before R2006a

R2021a: wavenames will be removed
Not recommended starting in R2021a

The wavenames function will be removed in a future release. See the Wavelet property of
liftingScheme for a list of valid wavelets.

See Also
liftingScheme
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waverec
Multilevel 1-D discrete wavelet transform reconstruction

Syntax
x = waverec(c,l,wname)
x = waverec(c,l,LoR,HiR)

Description
x = waverec(c,l,wname) reconstructs the 1-D signal x based on the multilevel wavelet
decomposition structure [c,l] and the wavelet specified by wname. See wavedec.

Note: x = waverec(c,l,wname) is equivalent to x = appcoef(c,l,wname,0).

x = waverec(c,l,LoR,HiR) reconstructs the signal using the specified lowpass and highpass
wavelet reconstruction filters LoR and HiR, respectively.

Examples

Multilevel 1-D Wavelet Reconstruction

Load a signal. Perform a level 3 wavelet decomposition of the signal using the db6 wavelet.

load leleccum
wv = 'db6';
[c,l] = wavedec(leleccum,3,wv);

Reconstruct the signal using the wavelet decomposition structure.

x = waverec(c,l,wv);

Check for perfect reconstruction.

err = norm(leleccum-x)

err = 1.0087e-09

Input Arguments
c — Wavelet decomposition
vector

Wavelet decomposition, specified as a vector. The vector contains the wavelet coefficients. The
bookkeeping vector l contains the number of coefficients by level. See wavedec.
Data Types: single | double

l — Bookkeeping vector
vector
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Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition c by level. See wavedec.
Data Types: single | double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar.

Note waverec supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters
for a list of orthogonal and biorthogonal wavelets.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.
Data Types: single | double

Output Arguments
x — Reconstructed signal
vector

Reconstructed signal, returned as a vector.

Version History
Introduced before R2006a

References
[1] Daubechies, I. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied

Mathematics. Philadelphia, PA: SIAM Ed, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 11, Issue 7, July 1989,
pp. 674–693.

[3] Meyer, Y. Wavelets and Operators. Translated by D. H. Salinger. Cambridge, UK: Cambridge
University Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.
• For optimized GPU code generation, specify the bookkeeping vector l as a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
appcoef | idwt | wavedec
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waverec2
Multilevel 2-D discrete wavelet transform reconstruction

Syntax
imrec = waverec2(c,s,wname)
imrec = waverec2(c,s,LoR,HiR)
imrec = waverec2( ___ ,Name=Value)

Description
imrec = waverec2(c,s,wname) reconstructs the image, imrec, based on the multilevel discrete
wavelet transform (DWT), c, and the bookkeeping matrix, s. The waverec2 function uses the wavelet
specified by wname.

imrec = waverec2(c,s,wname) is equivalent to imrec = appcoef2(c,s,wname,0).

imrec = waverec2(c,s,LoR,HiR) reconstructs imrec using the specified lowpass (scaling) and
highpass (wavelet) reconstruction filters LoR and HiR, respectively.

imrec = waverec2( ___ ,Name=Value) specifies options using one or more name-value
arguments in addition to the input arguments in previous syntaxes. For example, to specify a gain of
0.25 for the lowpass (scaling) coefficients, set LowpassGain to 0.25.

Examples

2-D Wavelet Reconstruction

Load an image.

load woman

Perform a level 2 wavelet decomposition of the image using the sym4 wavelet.

wv = 'sym4';
[c,s] = wavedec2(X,2,wv);

Reconstruct the image from the wavelet decomposition structure.

xrec = waverec2(c,s,wv);

Check for perfect reconstruction.

max(abs(X(:)-xrec(:)))

ans = 2.0989e-10
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Apply Gains to Wavelet Subbands and Reconstruct Image

Import an image of a hexagon.

im = imread("hexagon.jpg");
imagesc(im)
title("Original Image")

Obtain a one-level discrete wavelet decomposition of the image using the bior4.4 wavelet.

wv = "bior4.4"; 
lev = 1;
[c,s] = wavedec2(im,lev,wv);

Reconstruct the image without the finest-scale HH subband. Recall the HH subband corresponds to the
diagonal details in the image.

dgain = ones(lev,3);
dgain(lev,3) = 0;
imrec = waverec2(c,s,wv,DetailGain=dgain);
imagesc(imrec)
title("Reconstruction")
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Input Arguments
c — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector, specified as a real-valued vector. The vector c contains the
approximation and detail coefficients organized by level. The bookkeeping matrix s is used to parse c.
c and s are outputs of wavedec2.
Data Types: double

s — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix, specified as an integer-valued matrix. The matrix s contains the dimensions of
the wavelet coefficients by level and is used to parse the wavelet decomposition vector c. c and s are
outputs of wavedec2.
Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet, specified as a character vector or string scalar.
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Note waverec2 supports only Type 1 (orthogonal) or Type 2 (biorthogonal) wavelets. See wfilters
for a list of orthogonal and biorthogonal wavelets.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass (scaling) reconstruction filter, and HiR is the highpass (wavelet) reconstruction filter. The
lengths of LoR and HiR must be equal. See wfilters for additional information.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: imrec = waverec2(c,s,Lo,Hi,LowpassGain=0.5) sets the lowpass gain to 0.5.

DetailGain — Wavelet subband gains
lev-by-3 matrix of ones, where lev is the level of the DWT (default) | lev-by-3 matrix

Wavelet subband gains, specified as a real-valued lev-by-3 matrix, where lev is the level of the DWT.
lev is equal to size(s,1)-2. DetailGain must have three columns, one for each of the wavelet
subbands in the order LH (horizontal details), HL (vertical details), and HH (diagonal details). The
elements of DetailGain are real numbers in the interval [0,1] and represent the gain the
waverec2 function applies to the coefficients in each subband.
Example: imrec = waverec2(c,s,Lo,Hi,DetailGain=[0 1 1; 0 1 1]) sets gain of the LH
subband at all levels to 0.
Data Types: double

LowpassGain — Lowpass gain
1 (default) | real number

Lowpass gain, specified as a real number in the interval [0,1]. The waverec2 function applies the
gain to the scaling coefficients for use in the reconstruction.
Example: imrec = waverec2(c,s,"db2",Lowpassgain=0) sets the gain for the lowpass
(scaling) coefficients to 0.
Data Types: double

Tips
• If c and s are obtained from an indexed image analysis or a truecolor image analysis, imrec is an

m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

Version History
Introduced before R2006a

 waverec2

1-1567



R2023a: Specify gains for lowpass coefficients and wavelet coefficient subbands

To specify gains for the lowpass (scaling) coefficients and wavelet subbands, use the name-value
arguments LowpassGain and DetailGain, respectively.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The input wname must be constant.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The input wname must be constant.
• For optimized GPU code generation, specify the bookkeeping matrix s as a compile-time constant.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported. See dwtmode.

See Also
Apps
Wavelet Image Analyzer

Functions
appcoef2 | idwt2 | wavedec2
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waverec3
Multilevel 3-D discrete wavelet transform reconstruction

Syntax
x = waverec3(wdec)
c = waverec3(wdec,type,n)

Description
x = waverec3(wdec) reconstructs the 3-D array x based on the multilevel wavelet decomposition
structure wdec.

c = waverec3(wdec,type,n) reconstructs or extracts at level n the multilevel components
specified by type. If type begins with 'c' or 'C', waverec3 extracts the specified components.
Otherwise, waverec3 reconstructs the components.

x = waverec3(wdec,'a',0) and x = waverec3(wdec,'ca',0) are equivalent to x =
waverec3(wdec), where 'a' specifies the lowpass component. x is the reconstruction of the
coefficients in wdec at level 0.

c = waverec3(wdec,type) is equivalent to c = waverec3(wdec,type,wdec.level).

Examples

Perfect Reconstruction with 3-D Discrete Wavelet Transform

Construct a 3-D matrix, obtain the wavelet transform down to level 2 using the 'db2' wavelet, and
reconstruct the matrix to verify perfect reconstruction.

Create 3-D matrix.

M = magic(8);
X = repmat(M,[1 1 8]);

Obtain the 3-D discrete wavelet transform of the matrix and reconstruct the input based on the 3-D
approximation and detail coefficients.

wd = wavedec3(X,2,'db2');
XR = waverec3(wd);

Verify perfect reconstruction using the wavelet decomposition down to level 2.

err1 = max(abs(X(:)-XR(:)))

err1 = 8.6050e-11

Verify that the data matrix is the sum of the approximation and the details from levels 2 and 1.
Reconstruct the sum of components different from the lowpass component and check that X = A + D.
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A = waverec3(wd,'LLL');
D = waverec3(wd,'d');
err2 = max(abs(X(:)-A(:)-D(:)))

err2 = 8.6054e-11

Compare waverec3 and idwt3

Compare level-1 reconstructions based on the filtering operations 'LLH' using idwt3 and
waverec3.

M = magic(8);
X = repmat(M,[1 1 8]);
wd = wavedec3(X,2,'db2','mode','per');
dwtOut = dwt3(X,'db2');
Xr = idwt3(dwtOut,'LLH');
Xrec = waverec3(wd,'LLH',1);
norm(Xr(:)-Xrec(:))

ans = 2.2773e-14

Input Arguments
wdec — Wavelet decomposition
structure

Wavelet decomposition, specified as a structure. The structure is the output of wavedec3 and has the
following fields:

sizeINI — Size
vector

Size of the 3-D array, specified as a 1-by-3 vector.

level — Level of the decomposition
integer

Level of the decomposition, specified as an integer.

mode — Name of the wavelet transform extension mode
character vector

Name of the wavelet transform extension mode, specified as a character vector.

filters — Wavelet filters
structure

Wavelet filters used for the decomposition, specified as a structure with the following fields:

• LoD — lowpass decomposition filter
• HiD — highpass decomposition filter
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• LoR — lowpass decomposition filter
• HiR — highpass decomposition filter

dec — Decomposition coefficients
cell array

Decomposition coefficients, specified as an N-by-1 cell array, where N equals 7× wdec.level+1.

dec{1} contains the lowpass component (approximation) at the level of the decomposition. The
approximation is equivalent to the filtering operations 'LLL'.

dec{k+2},...,dec{k+8} with k = 0,7,14,...,7*(wdec.level-1) contain the 3-D wavelet
coefficients for the multiresolution starting with the coarsest level when k=0.

For example, if wdec.level=3, dec{2},...,dec{8} contain the wavelet coefficients for level 3
(k=0), dec{9},...,dec{15} contain the wavelet coefficients for level 2 (k=7), and
dec{16},...,dec{22} contain the wavelet coefficients for level 1 (k=7*(wdec.level-1)).

At each level, the wavelet coefficients in dec{k+2},...,dec{k+8} are in the following order:
'HLL','LHL','HHL','LLH','HLH','LHH','HHH'.

The sequence of letters gives the order in which the separable filtering operations are applied from
left to right. For example, 'LHH' means that the lowpass (scaling) filter with downsampling is applied
to the rows of x, followed by the highpass (wavelet) filter with downsampling applied to the columns
of x. Finally, the highpass filter with downsampling is applied to the 3rd dimension of x.

sizes — Successive sizes
matrix

Successive sizes of the decomposition components, specified as a wdec.level+1-by-2 matrix.

type — Type of reconstruction or extraction
character vector | string scalar

Type of reconstruction or extraction, specified as a character vector or string scalar. For
reconstruction, valid values of type are:

• A group of three characters 'xyz', one per direction, with 'x','y' and 'z' selected in the set
{'a', 'd', 'l', 'h'} or in the corresponding uppercase set {'A','D', 'L', 'H'}, where 'A' (or
'L') is a lowpass filter and 'D' (or 'H') is a highpass filter.

• The char 'd' (or 'h' or 'D' or 'H') gives the sum of all the components different from the
lowpass component.

• The char 'a' (or 'l' or 'A' or 'L') gives the lowpass component (the approximation at level n).

To extract coefficients, the valid values for type are the same but prefixed by 'c' or 'C'.

n — Decomposition level
wdec.level (default) | integer

Decomposition level, specified as an integer.

 waverec3

1-1571



Output Arguments
x — Reconstruction
3-D array

Reconstruction, returned as a 3-D array of size sz(1)-by-sz(2)-by-sz(3), where sz =
wpdec.sizeINI.

c — Extracted coefficients
3-D array

Extracted coefficients, returned as a 3-D array.

Version History
Introduced in R2010a

See Also
idwt3 | waveinfo | wavedec3
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wavsupport
Wavelet support

Syntax
[LB,UB] = wavsupport(wname)
B = wavsupport(wname)

Description
[LB,UB] = wavsupport(wname) returns the lower bound, LB, and upper bound, UB, of the support
for the wavelet specified by wname.

B = wavsupport(wname) returns the lower and upper bounds of the support of the wavelet.

Examples

Support of Haar Wavelet

Return the lower bound and upper bound of the support for the Haar wavelet.

[LB,UB] = wavsupport('haar')

LB = -0.5000

UB = 0.5000

The length of the Haar wavelet filter is 2. Compare LB and UB to the lower and upper bounds for
orthogonal and biorthogonal wavelets (type 1 and type 2).

LF = 2;
LowerBound = -0.5*(LF-1)

LowerBound = -0.5000

UpperBound = 0.5*(LF-1)

UpperBound = 0.5000

Support of Complex-Valued Gaussian Wavelet

Return the lower bound and upper bound of the support for the complex-valued Gaussian wavelet.

[LB,UB] = wavsupport("cgau3")

LB = -5

UB = 5
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Input Arguments
wname — Wavelet
character vector | string scalar

Wavelet, specified by a character vector or string scalar. The wavelet must be recognized by
wavemngr.
Example: "db4"
Data Types: char | string

Output Arguments
LB,UB — Wavelet support
scalars

Wavelet support, returned as scalars. LB and UB are the lower and upper bounds, respectively, of the
support.

• For real-valued wavelets with and without scaling functions and complex-valued wavelets without
scaling functions (wavelets type 3,4, and 5), the bounds indicate the effective support of the
wavelet.

• For orthogonal and biorthogonal wavelets (type 1 and type 2 respectively), the lower and upper
bounds are LB = -0.5*(LF-1) and UB = 0.5*(LF-1), where LF is the length of the wavelet
filter.

Data Types: double

B — Support of the wavelet
vector

Support of the wavelet, returned as a vector: B = [LB,UB].
Data Types: double

Version History
Introduced in R2010b

See Also
wavemngr
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wbmpen
Penalized threshold for wavelet 1-D or 2-D denoising

Syntax
thr = wbmpen(c,l,sigma,alpha)
thr = wbmpen(c,l,sigma,alpha,ARG)

Description
thr = wbmpen(c,l,sigma,alpha) returns the global threshold thr for denoising. c,l is the
wavelet decomposition structure of the signal or image to be denoised. sigma is the standard
deviation of the zero mean Gaussian white noise in the denoising model (see wnoisest for more
information). alpha is a tuning parameter for the penalty term.

thr = wbmpen(c,l,sigma,alpha,ARG) computes the global threshold and plots three curves:

• 2×sigma^2×t×(alpha + log(n/t))
• sum(c(k)^2,k≤t)
• crit(t)

where n is the number of coefficients and

crit(t) = -sum(c(k)^2,k≤t) + 2×sigma^2×t×(alpha + log(n/t)) 

For more information, see “Penalized Criterion” on page 1-1579.

Examples

Apply Threshold for Signal Denoising

Load the noisy bumps signal.

load noisbump
x = noisbump;

Perform a wavelet decomposition of the signal at level 5 using the sym6 wavelet.

wname = "sym6";
lev = 5;
[c,l] = wavedec(x,lev,wname);

Estimate the noise standard deviation from the detail coefficients at level 1, using wnoisest.

sigma = wnoisest(c,l,1);

Use wbmpen to obtain a global threshold for signal thresholding, using the tuning parameter.

alpha = 2;
thr = wbmpen(c,l,sigma,alpha)
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thr = 2.7681

Use wdencmp for denoising the signal using the threshold with soft thresholding and approximation
kept.

keepapp = 1;
xd = wdencmp("gbl",c,l,wname,lev,thr,"s",keepapp);

Plot the original and denoised signals.

subplot(2,1,1)
plot(x)
axis tight
title("Original Signal")
subplot(2,1,2)
plot(xd)
axis tight
title("Denoised Signal")

Apply Threshold for Image Denoising

Load an image.

load noiswom
nbc = size(map,1);
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Perform a wavelet decomposition of the image at level 3 using the coif2 wavelet.

wname = "coif2";
lev = 3;
[c,s] = wavedec2(X,lev,wname);

Estimate the noise standard deviation from the detail coefficients at level 1.

det1 = detcoef2("compact",c,s,1);
sigma = median(abs(det1))/0.6745;

Use wbmpen for selecting a global threshold for image denoising.

alpha = 1.2;
thr = wbmpen(c,s,sigma,alpha)

thr = 39.2910

Use wdencmp for denoising the image using the threshold with soft thresholding and approximation
kept.

keepapp = 1;
xd = wdencmp("gbl",c,s,wname,lev,thr,"s",keepapp);

Plot the original and denoised images.

colormap(pink(nbc))
subplot(1,2,1)
image(wcodemat(X,nbc))
axis equal
axis tight
title("Original Image")
subplot(1,2,2)
image(wcodemat(xd,nbc))
axis equal
axis tight
title("Denoised Image")
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Input Arguments
c,l — Wavelet decomposition structure
vectors

Wavelet decomposition structure of a signal or image, specified by the vectors c and l. The vector c
contains the wavelet coefficients. The bookkeeping vector l contains the number of coefficients by
level. For more information, see wavedec and wavedec2.
Data Types: double

sigma — Standard deviation
scalar

Standard deviation of the zero mean Gaussian white noise in the denoising model, specified as a
scalar. For more information, see wnoisest and “Penalized Criterion” on page 1-1579.
Data Types: double

alpha — Tuning parameter
scalar

Tuning parameter for the penalty term, specified as a scalar greater than 1. The sparsity of the
wavelet representation of the denoised signal or image grows with alpha. Typically, alpha = 2. For
more information, see “Penalized Criterion” on page 1-1579.
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Data Types: double

Output Arguments
thr — Global threshold
scalar

Global threshold for denoising, returned as a scalar. thr is obtained by a wavelet coefficients
selection rule using a penalization method provided by Birgé-Massart. For more information, see
“Penalized Criterion” on page 1-1579.

More About
Penalized Criterion

The global threshold thr is obtained by a wavelet coefficients selection rule using a penalization
method provided by Birgé-Massart.

The global threshold minimizes the penalized criterion given by the following:

Let t* be the minimizer of

crit(t) = -sum(c(k)^2,k≤t) + 2×sigma^2×t×(alpha + log(n/t)) 

where c(k) are the wavelet coefficients sorted in decreasing order of their absolute value and n is the
number of coefficients; then thr = |c(t*)|

Version History
Introduced before R2006a

References
[1] Birgé, Lucien, and Pascal Massart. “From Model Selection to Adaptive Estimation.” In Festschrift

for Lucien Le Cam, edited by David Pollard, Erik Torgersen, and Grace L. Yang, 55–87. New
York, NY: Springer New York, 1997. https://doi.org/10.1007/978-1-4612-1880-7_4.

See Also
wdenoise | wden | wdencmp | wpbmpen | wpdencmp
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wcodemat
Extended pseudocolor matrix scaling

Syntax
y = wcodemat(x)
y = wcodemat(x,nbcodes)
y = wcodemat(x,nbcodes,opt)
y = wcodemat(x,nbcodes,opt,absol)

Description
wcodemat rescales an input matrix to a specified range for display. If the specified range is the full
range of the current colormap, wcodemat is similar in behavior to imagesc.

y = wcodemat(x) rescales the matrix x as integers in the range [1,16].

y = wcodemat(x,nbcodes) rescales x as integers in the range [1,nbcodes].

y = wcodemat(x,nbcodes,opt) rescales x along the dimension specified by opt.

y = wcodemat(x,nbcodes,opt,absol) rescales X based on the absolute values of the entries in x
if absol is nonzero, or based on the signed values of x if absol is equal to zero.

Examples

Extended Pseudocolor Matrix Scaling

Load an image.

load woman

Obtain the range of the colormap.

NBCOL = size(map,1)

NBCOL = 255

Obtain the single-level discrete wavelet transform of the image using the Haar wavelet.

[cA1,cH1,cV1,cD1] = dwt2(X,"db1");

Scale the level-one approximation coefficients globally to the full range of the colormap.

cA1scaled = wcodemat(cA1,NBCOL);

Display the approximation coefficients without scaling and with scaling.

image(cA1);
colormap(map)
title("Unscaled Image")
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image(cA1scaled)
colormap(map)
title("Scaled Image")
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Display histograms of the unscaled and scaled approximation coefficients.

subplot(1,2,1)
histogram(cA1)
title("Unscaled")
subplot(1,2,2)
histogram(cA1scaled)
title("Scaled")
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Input Arguments
x — Input
matrix

Input, specified as a matrix.
Data Types: double

nbcodes — Upper bound
16 (default) | positive integer

Upper bound of range to rescale x as integers, specified as a positive integer.
Data Types: double

opt — Dimension
"mat" (default) | "m" | "column" | "c" | "row" | "r"

Dimension along which to rescale the matrix, specified as one of the following:

• "mat" or "m" — rescale x globally
• "column" or "c" — rescale x column-wise
• "row" or "r" — rescale x row-wise
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Data Types: string

absol — Rescale basis
1 (default) | scalar

Rescale basis, specified as a scalar. If absol is nonzero, wcodemat rescales x based on the absolute
values of the elements of x. If absol is equal to zero, wcodemat rescales x based on the signed
values of the elements of x.
Data Types: double

Version History
Introduced before R2006a

See Also
dwt2 | wavedec2
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wcoherence
Wavelet coherence and cross-spectrum

Syntax
wcoh = wcoherence(x,y)
[wcoh,wcs] = wcoherence(x,y)
[wcoh,wcs,period] = wcoherence(x,y,ts)
[wcoh,wcs,f] = wcoherence(x,y,fs)
[wcoh,wcs,f,coi] = wcoherence( ___ )
[wcoh,wcs,period,coi] = wcoherence( ___ ,ts)
[ ___ ,coi,wtx,wty] = wcoherence( ___ )
[ ___ ] = wcoherence( ___ ,Name,Value)
wcoherence( ___ )

Description
wcoh = wcoherence(x,y) returns the magnitude-squared wavelet coherence, which is a measure
of the correlation between signals x and y in the time-frequency plane. Wavelet coherence is useful
for analyzing nonstationary signals. The inputs x and y must be equal length, 1-D, real-valued signals.
The coherence is computed using the analytic Morlet wavelet.

[wcoh,wcs] = wcoherence(x,y) returns the wavelet cross-spectrum of x and y. You can use the
phase of the wavelet cross-spectrum values to identify the relative lag between the input signals.

[wcoh,wcs,period] = wcoherence(x,y,ts) uses the positive duration ts as the sampling
interval. The duration ts is used to compute the scale-to-period conversion, period. The duration
array period has the same format as specified in ts.

[wcoh,wcs,f] = wcoherence(x,y,fs) uses the positive sampling frequency, fs, to compute the
scale-to-frequency conversion, f. The sampling frequency fs is in Hz.

[wcoh,wcs,f,coi] = wcoherence( ___ ) returns the cone of influence, coi, for the wavelet
coherence in cycles per sample. If you specify the sampling frequency, fs, the cone of influence is in
Hz.

[wcoh,wcs,period,coi] = wcoherence( ___ ,ts) returns the cone of influence, coi, in cycles
per unit time.

[ ___ ,coi,wtx,wty] = wcoherence( ___ ) returns the continuous wavelet transforms (CWT) of
x and y in wtx, wty, respectively. wtx and wty are used in the formation of the wavelet cross
spectrum and coherence estimates.

[ ___ ] = wcoherence( ___ ,Name,Value) specifies additional options using one or more name-
value pair arguments. This syntax may be used in any of the previous syntaxes.

wcoherence( ___ ) with no output arguments plots the wavelet coherence and cone of influence in
the current figure. Due to the inverse relationship between frequency and period, a plot that uses the
sampling interval is the inverse of a plot the uses the sampling frequency. For areas where the
coherence exceeds 0.5, plots that use the sampling frequency display arrows to show the phase lag of
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y with respect to x. The arrows are spaced in time and scale. The direction of the arrows corresponds
to the phase lag on the unit circle. For example, a vertical arrow indicates a π/2 or quarter-cycle
phase lag. The corresponding lag in time depends on the duration of the cycle.

Examples

Wavelet Coherence of Two Sine Waves

Use default wcoherence settings to obtain the wavelet coherence between a sine wave with random
noise and a frequency-modulated signal with decreasing frequency over time.

t  = linspace(0,1,1024);
x = -sin(8*pi*t) + 0.4*randn(1,1024);
x = x/max(abs(x));
y = wnoise('doppler',10);
wcoh = wcoherence(x,y);

The default coherence computation uses the analytic Morlet wavelet, 12 voices per octave and
smooths 12 scales. The default number of octaves is equal to floor(log2(numel(x)))-1, which in
this case is 9.

Effect of Sampling Interval on Wavelet Coherence

Obtain the wavelet coherence data for two signals, specifying a sampling interval of 0.001 seconds.
Both signals consist of two sine waves (10 Hz and 50 Hz) in white noise. The sine waves have
different time supports.

Set the random number generator to its default settings for reproducibility. Then create the two
signals.

rng default;
t = 0:0.001:2;
x = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+ ...
cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));
subplot(2,1,1)
plot(t,x)
title('X')
subplot(2,1,2)
plot(t,y)
title('Y')
xlabel('Time (seconds)')

1 Functions

1-1586



Obtain the coherence of the two signals.

[wcoh,~,period,coi] = wcoherence(x,y,seconds(0.001));

Use the pcolor command to plot the coherence and cone of influence.

figure
period = seconds(period);
coi = seconds(coi);
h = pcolor(t,log2(period),wcoh);
h.EdgeColor = 'none';
ax = gca;
ytick=round(pow2(ax.YTick),3);
ax.YTickLabel=ytick;
ax.XLabel.String='Time';
ax.YLabel.String='Period';
ax.Title.String = 'Wavelet Coherence';
hcol = colorbar;
hcol.Label.String = 'Magnitude-Squared Coherence';
hold on;
plot(ax,t,log2(coi),'w--','linewidth',2)
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Use wcoherence(x,y,seconds(0.001)) without any outputs arguments. This plot includes the
phase arrows and the cone of influence.

wcoherence(x,y,seconds(0.001));
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Effect of Sampling Frequency on Wavelet Coherence

Obtain the wavelet coherence for two signals, specifying a sampling frequency of 1000 Hz. Both
signals consist of two sine waves (10 Hz and 50 Hz) in white noise. The sine waves have different
time supports.

Set the random number generator to its default settings for reproducibility and create the two
signals.

rng default
t = 0:0.001:2;
x = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+...
    cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
    sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));

Obtain the wavelet coherence. The coherence plot is flipped with respect to the plot in the previous
example, which specifies a sampling interval instead of a sampling frequency.

wcoherence(x,y,1000)
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Obtain the scale-to-frequency conversion output in f.

[wcoh,wcs,f] = wcoherence(x,y,1000);

Effect of Number of Smoothed Scales on Wavelet Coherence

Obtain the wavelet coherence for two signals. Both signals consist of two sine waves (10 Hz and 50
Hz) in white noise. Use the default number of scales to smooth. This value is equivalent to the
number of voices per octave. Both values default to 12.

Set the random number generator to its default settings for reproducibility. Then, create the two
signals and obtain the coherence.

rng default;
t = 0:0.001:2;
x = cos(2*pi*10*t).*(t>=0.5 & t<1.1)+ ...
cos(2*pi*50*t).*(t>= 0.2 & t< 1.4)+0.25*randn(size(t));
y = sin(2*pi*10*t).*(t>=0.6 & t<1.2)+...
sin(2*pi*50*t).*(t>= 0.4 & t<1.6)+ 0.35*randn(size(t));
wcoherence(x,y)
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Set the number of scales to smooth to 18. The increased smoothing causes reduced low frequency
resolution.

wcoherence(x,y,'NumScalesToSmooth',18)
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Effect of Phase Display Threshold on Wavelet Coherence of Weather Data

Compare the effects of using different phase display thresholds on the wavelet coherence.

Plot the wavelet coherence between the El Nino time series and the All India Average Rainfall Index.
The data are sampled monthly. Specify the sampling interval as 1/12 of a year to display the periods
in years. Use the default phase display threshold of 0.5, which shows phase arrows only where the
coherence is greater than or equal to 0.5.

load ninoairdata;
wcoherence(nino,air,years(1/12));
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Set the phase display threshold to 0.7. The number of phase arrows decreases.

wcoherence(nino,air,years(1/12),'PhaseDisplayThreshold',0.7);

 wcoherence

1-1593



Input Arguments
x — Input signal
vector of real values

Input signal, specified as a vector of real values. x must be a 1-D, real-valued signal. The two input
signals, x and y, must be the same length and must have at least four samples.

y — Input signal
vector of real values

Input signal, specified as vector of real values. y must be a 1-D, real-valued signal. The two input
signals, x and y, must be the same length and must have at least four samples.

ts — Sampling interval
duration with positive scalar input

Sampling interval, also known as the sampling period, specified as a duration with positive scalar
input. Valid durations are years, days, hours, seconds, and minutes. You can also use the
duration function to specify ts. You cannot use calendar durations (caldays, calweeks,
calmonths, calquarters, or calyears).

You cannot specify both a sampling frequency fs and a sampling period ts.
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fs — Sampling frequency
positive scalar | []

Sampling frequency, specified as a positive scalar.

If you specify fs as empty, wcoherence uses normalized frequency in cycles/sample. The Nyquist
frequency is ½.

You cannot specify both a sampling frequency fs and a sampling period ts.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'PhaseDisplayThreshold',0.7; specifies the threshold for displaying phase vectors.

FrequencyLimits — Frequency limits
two-element scalar vector

Frequency limits to use in wcoherence, specified as a two-element vector with positive strictly
increasing elements. The first element specifies the lowest peak passband frequency and must be
greater than or equal to the product of the wavelet peak frequency in hertz and two time standard
deviations divided by the signal length. The second element specifies the highest peak passband
frequency and must be less than or equal to the Nyquist frequency. The base 2 logarithm of the ratio
of the maximum frequency to the minimum frequency must be greater than or equal to 1/NV where
NV is the number of voices per octave.

If you specify frequency limits outside the permissible range, wcoherence truncates the limits to the
minimum and maximum valid values. Use cwtfreqbounds with the wavelet set to 'amor' to
determine frequency limits for different parameterizations of the wavelet coherence.
Example: 'FrequencyLimits',[0.1 0.3]

PeriodLimits — Period limits
two-element duration array

Period limits to use in wcoherence, specified as a two-element duration array with strictly increasing
positive elements. The first element must be greater than or equal to 2×ts where ts is the sampling
period. The base 2 logarithm of the ratio of the minimum period to the maximum period must be less
than or equal to -1/NV where NV is the number of voices per octave. The maximum period cannot
exceed the signal length divided by the product of two time standard deviations of the wavelet and
the wavelet peak frequency.

If you specify period limits outside the permissible range, wcoherence truncates the limits to the
minimum and maximum valid values. Use cwtfreqbounds with the wavelet set to 'amor' to
determine period limits for different parameterizations of the wavelet coherence.
Example: 'PeriodLimits',[seconds(0.2) seconds(1)]
Data Types: duration

VoicesPerOctave — Number of voices per octave
12 (default) | even integer from 10 to 32
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Number of voices per octave to use in the wavelet coherence, specified as an even integer from 10 to
32.

NumScalesToSmooth — Number of scales to smooth
positive integer

Number of scales to smooth in time and scale, specified as a positive integer less than or equal to one
half N, where N is the number of scales in the wavelet transform. If unspecified,
NumScalesToSmooth defaults to the minimum of floor(N/2) and VoicesPerOctave. The
function uses a moving average filter to smooth across scale. If your coherence is noisy, you can
specify a larger NumScalesToSmooth value to smooth the coherence more.

NumOctaves — Number of octaves
positive integer

Number of octaves to use in the wavelet coherence, specified as a positive integer between 1 and
floor(log2(numel(x)))-1. If you do not need to examine lower frequency values, use a smaller
NumOctaves value.

The 'NumOctaves' name-value pair is not recommended and will be removed in a future release.
The recommended way to modify the frequency or period range of wavelet coherence is with the
'FrequencyLimits' or 'PeriodLimits' name-value pairs. You cannot specify both the
'NumOctaves' and 'FrequencyLimits' or 'PeriodLimits' name-value pairs. See
cwtfreqbounds.

PhaseDisplayThreshold — Threshold for displaying phase vectors
0.5 (default) | real scalar between 0 and 1

Threshold for displaying phase vectors, specified as a real scalar between 0 and 1. This function
displays phase vectors for regions with coherence greater than or equal to the specified threshold
value. Lowering the threshold value displays more phase vectors. If you use wcoherence with any
output arguments, the PhaseDisplayThreshold value is ignored.

Output Arguments
wcoh — Wavelet coherence
matrix

Wavelet coherence, returned as a matrix. The coherence is computed using the analytic Morlet
wavelet over logarithmic scales, with a default value of 12 voices per octave. The default number of
octaves is equal to floor(log2(numel(x)))-1. If you do not specify a sampling interval, sampling
frequency is assumed.

wcs — Wavelet cross spectrum
matrix of complex values

Wavelet cross-spectrum, returned as a matrix of complex values. You can use the phase of the wavelet
cross-spectrum values to identify the relative lag between the input signals.

period — Scale-to-period conversion
array of durations

Scale-to-period conversion, returned as an array of durations. The conversion values are computed
from the sampling period specified in ts. Each period element has the same format as ts.
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f — Scale-to-frequency conversion
vector

Scale-to-frequency conversion, returned as a vector. The vector contains the peak frequency values
for the wavelets used to compute the coherence. If you want to output f, but do not specify a
sampling frequency input, fs, the returned wavelet coherence is in cycles per sample.

coi — Cone of influence
array of doubles | array of durations

Cone of influence for the wavelet coherence, returned as either an array of doubles or array of
durations. The cone of influence indicates where edge effects occur in the coherence data. If you
specify a sampling frequency, fs, the cone of influence is in Hz. If you specify a sampling interval or
period, ts, the cone of influence is in periods. Due to the edge effects, give less credence to areas of
apparent high coherence that are outside or overlap the cone of influence. The cone of influence is
indicated by a dashed line.

For additional information, see “Boundary Effects and the Cone of Influence”.

wtx — Continuous wavelet transform of x
matrix

Continuous wavelet transform of x, returned as a matrix.

wty — Continuous wavelet transform of y
matrix

Continuous wavelet transform of y, returned as a matrix.

More About
Wavelet Cross Spectrum

The wavelet cross-spectrum is a measure of the distribution of power of two signals.

The wavelet cross spectrum of two time series, x and y, is:

Cxy(a, b) = S(Cx*(a, b)Cy(a, b))

Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of x and y at scales a and positions b.
The superscript * is the complex conjugate, and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet cross-spectrum is real-valued if you use a real-valued
analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

Wavelet Coherence

Wavelet coherence is a measure of the correlation between two signals.

The wavelet coherence of two time series x and y is:

S(Cx*(a, b)Cy(a, b)) 2

S( Cx(a, b) 2 ) · S( Cy(a, b) 2 )
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Cx(a,b) and Cy(a,b) denote the continuous wavelet transforms of x and y at scales a and positions b.
The superscript * is the complex conjugate and S is a smoothing operator in time and scale.

For real-valued time series, the wavelet coherence is real-valued if you use a real-valued analyzing
wavelet, and complex-valued if you use a complex-valued analyzing wavelet.

Version History
Introduced in R2016a

R2020a: 'NumOctaves' name-value pair will be removed
Not recommended starting in R2020a

The 'NumOctaves' name-value pair argument will be removed in a future release. Use either:

• Name-value pair argument 'FrequencyLimits' to modify the frequency range of wavelet
coherence.

• Name-value pair argument 'PeriodLimits' to modify the period range of wavelet coherence.

See cwtfreqbounds for additional information.

References
[1] Grinsted, A, J., C. Moore, and S. Jevrejeva. “Application of the cross wavelet transform and wavelet

coherence to geophysical time series.” Nonlinear Processes in Geophysics. Vol. 11, Issue 5/6,
2004, pp. 561–566.

[2] Maraun, D., J. Kurths, and M. Holschneider. "Nonstationary Gaussian processes in wavelet
domain: Synthesis, estimation and significance testing.” Physical Review E 75. 2007, pp.
016707-1–016707-14.

[3] Torrence, C., and P. Webster. "Interdecadal changes in the ESNO-Monsoon System." Journal of
Climate. Vol. 12, 1999, pp. 2679–2690.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The following input arguments are not supported: ts (sampling interval), PeriodLimits name-
value pair, and PhaseDisplayThreshold name-value pair.

• The duration data type is not supported.
• Plotting is not supported.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).
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See Also
cwt | cwtfreqbounds | cwtfilterbank
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wcompress
True compression of images using wavelets

Syntax
wcompress('c',x,cname,compmthd)
wcompress('c',fname, ___ )
wcompress('c',I, ___ )
wcompress( ___ ,Name,Value)
[comprat,bpp] = wcompress('c', ___ )

xc = wcompress('u',cname)
xc = wcompress('u',cname,'plot')
xc = wcompress('u',cname,'step')

Description
The wcompress function performs either compression or uncompression of grayscale or truecolor
images.
Compression

wcompress('c',x,cname,compmthd) compresses the image x using the compression method
compmthd and saves the result in the file cname. The image x can be either a 2-D array containing an
indexed image or a 3-D array of uint8 containing a truecolor image. Both the row and column size of
the image must be powers of two.

You must have write permission in the current working directory or the function will change directory
to tempdir and write the compressed image in that directory.

Note

• The Discrete Wavelet Transform uses the periodized extension mode.
• Data written to the files uses uint64 precision. In releases previous to R2016b, data was written

using uint32 . If your code is affected adversely by this change, use the legacy option to
compress and uncompress your data using the previous behavior.

wcompress('c',x,cname,compmthd,'legacy')

wcompress('c',fname, ___ ) loads the image from the file fname.

wcompress('c',I, ___ ) converts the indexed image I{1} to a truecolor image Y using the
colormap I{2} and then compresses Y.

wcompress( ___ ,Name,Value) specifies options related to display, data transform, and
compression methods using one or more name-value pair arguments in addition to the input
arguments in previous syntaxes. The name can be in uppercase or lowercase. For example,
'level',3,'CC','klt' sets the level of the decomposition to 3 and the Color Conversion
parameter if x is a truecolor image to the Karhunen-Loève transform.
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[comprat,bpp] = wcompress('c', ___ ) returns the compression ratio comprat and the bit-per-
pixel ratio bpp.

Uncompression

xc = wcompress('u',cname) uncompresses the file cname which contains the compressed image,
and the returns the image xc.

xc = wcompress('u',cname,'plot') plots the uncompressed image.

xc = wcompress('u',cname,'step') shows the step-by-step uncompression (only for
Progressive Coefficients Significance Methods).

Examples

Image Compression Using Basic Parameters

This example shows how to compress and uncompress the jpeg image arms.jpg.

Use the spatial orientation tree wavelet ('stw') compression method and save the compressed image
to a file.

wcompress('c','arms.jpg','comp_arms.wtc','stw');

Load the stored image and display the step-by-step uncompression to produce the uncompressed
image.

wcompress('u','comp_arms.wtc','step');
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Compression and Uncompression of a Grayscale Image

This example shows how to compress a grayscale image using the set partitioning in hierarchical
trees ('spiht') compression method. It also computes the mean square error (MSE) and the peak
signal to noise ratio (PSNR) error values. You use these two measures to quantify the error between
two images. The PSNR is expressed in decibels.

Load the image and store it in a file.

load mask;       
[cr,bpp] = wcompress('c',X,'mask.wtc','spiht','maxloop',12)

cr = 2.8610

bpp = 0.2289

Load the stored image from the file, uncompress it, and delete the file.

Xc = wcompress('u','mask.wtc');
delete('mask.wtc')

Display the original and compressed images.

colormap(pink(255))
subplot(1,2,1); image(X);  title('Original image')
axis square
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subplot(1,2,2); image(Xc); title('Compressed image')
axis square

Compute the MSE and PSNR.

D = abs(X-Xc).^2;
mse  = sum(D(:))/numel(X)

mse = 33.6564

psnr = 10*log10(255*255/mse)

psnr = 32.8601

Image Compression and Uncompression Using Advanced Parameters.

This example show how to compress a jpeg image using the adaptively scanned wavelet difference
reduction compression method ('aswdr'). The conversion color ('cc') uses the Karhunen-Loeve
transform ('kit'). The maximum number of loops ('maxloop') is set to 11 and the plot type
('plotpar') is set to step through the compression. Show the compression ratio (cratio) and the
bit-per-pixel ratio (bpp), which indicate the quality of the compression.

[cratio,bpp] = wcompress('c','woodstatue.jpg','woodstatue.wtc', ...
             'aswdr','cc','klt','maxloop',11,'plotpar','step');
cratio
bpp
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cratio =

    3.0792

bpp =

    0.7390

Load the compressed image and step through the uncompression process.

wcompress('u','woodstatue.wtc','step');
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Compression and Uncompression of a Truecolor Image

This example shows how to compress a truecolor image using the set partitioning in hierarchical
trees - 3D ('spiht_3D') compression method.

Load, compress, and store the image in a file. Plot the original and compressed images. Display the
compression ratio ('cratio') and the bits-per-pixel ('bpp'), which indicate the quality of the
compression.

load mask;     
X = imread('wpeppers.jpg');
[cratio,bpp] = wcompress('c',X,'wpeppers.wtc','spiht','maxloop',12)

cratio = 1.6549

bpp = 0.3972

Xc = wcompress('u','wpeppers.wtc');
delete('wpeppers.wtc')

Display the original and compressed images.

subplot(1,2,1)
image(X)
title('Original image')
axis square
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subplot(1,2,2)
image(Xc)
title('Compressed image')
axis square

Compute the mean square error (MSE) and the peak signal-to-noise ratio (PSNR) error values. You
use these two measures to quantify the error between two images. The PSNR is expressed in
decibels.

D = abs(double(X)-double(Xc)).^2;
mse  = sum(D(:))/numel(X)

mse = 26.7808

psnr = 10*log10(255*255/mse)

psnr = 33.8526

Input Arguments
x — Input image
2-D matrix | 3-D array

Input image to compress, specified as a 2-D array containing an indexed image or a 3-D array of
uint8 containing a truecolor image. Both the row and column size of the image must be powers of
two.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

cname — Compressed image filename
character vector | string scalar
Compression

Compressed image filename, specified as a character vector or string scalar. The wcompress function
writes the compressed image to the file cname.
Uncompression

Compressed image filename, specified as a character vector or string scalar. The wcompress function
reads the compressed image from the file cname for uncompression.

fname — Image filename
character vector | string scalar

Image filename, specified as a character vector or string scalar. The file is a MATLAB Supported
Format (MSF) file: MAT-file or other image files (see imread).

compmthd — Compression method
character vector | string scalar

Compression method, specified as a character vector or string scalar. The valid compression methods
are divided into two categories.

• Progressive Coefficients Significance Methods (PCSM):

compmthd Compression Method Name
'ezw' Embedded Zerotree Wavelet
'spiht' Set Partitioning In Hierarchical Trees
'stw' Spatial-orientation Tree Wavelet
'wdr' Wavelet Difference Reduction
'aswdr' Adaptively Scanned Wavelet Difference Reduction
'spiht_3d' Set Partitioning In Hierarchical Trees 3D for truecolor images

For additional information of these methods, see the references and especially [3] and [6].
• Coefficients Thresholding Methods (CTM):

compmthd Compression Method Name
'lvl_mmc' Subband thresholding of coefficients and Huffman encoding
'gbl_mmc_f' Global thresholding of coefficients and fixed encoding
'gbl_mmc_h' Global thresholding of coefficients and Huffman encoding

For additional details on the 'lvl_mmc' method, see [5]

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
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Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'IT','g' sets the Image type transform to grayscale.

Data Transform Parameters

wname — Wavelet name
'bior4.4' (default) | character vector | string scalar

Wavelet name, specified as the comma-separated pair consisting of 'wname' and a character vector
or string scalar. See waveletfamilies.

level — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as the comma-separated pair consisting of 'level' and a
positive integer. The decomposition level level must be such that 1 ≤ level ≤ levmax, where
levmax is the maximum possible level (see wmaxlev).

The default level depends on the compression method compmthd.

• For PCSM methods,level is equal to levmax.
• For CTM methods, level is equal to fix(levmax/2).

Data Types: single | double

it — Image type transform
'n' (default) | 'g' | 'c'

Image type transform, specified as the comma-separated pair consisting of 'it' and one of the
values listed:

• 'n' — no transformation (default), image type (truecolor or grayscale) is automatically detected
• 'g' — grayscale transformation type
• 'c' — color transformation type (RGB uint8)

cc — Color conversion parameter
'rgb' or 'none' (default) | 'yuv' | 'klt' | 'yiq' | 'xyz'

Color conversion parameter, specified as the comma-separated pair consisting of 'cc' and one of the
values listed:

• 'rgb' or 'none' — no conversion (default)
• 'yuv' — YUV color space transform
• 'klt' — Karhunen-Loève transform
• 'yiq' — YIQ color space transform
• 'xyz' — CIEXYZ color space transform

Progressive Coefficients Significance Methods (PCSM)

maxloop — Maximum number of steps
10 (default) | positive integer | Inf
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Maximum number of steps for the compression algorithm, specified as the comma-separated pair
consisting of 'maxloop' and a positive integer or Inf.
Data Types: single | double

Coefficients Thresholding Methods (CTM)

bpp — Bit-per-pixel ratio
0.25 (default) | scalar

Bit-per-pixel ratio, specified as the comma-separated pair consisting of 'bpp' and a scalar. The ratio
must be greater than 0 and less than or equal to 8 (grayscale) or 24 (truecolor).

If you specify the bit-per-pixel ratio, you cannot specify comprat.
Data Types: single | double

comprat — Compression ratio
0.25 (default) | scalar

Compression ratio, specified as the comma-separated pair consisting of 'comprat' and a scalar. The
ratio must be greater than 0 and less than or equal to 100.

If you specify the compression ratio, you cannot specify bpp.
Data Types: single | double

nbclas — Number of classes for quantization
75 (default) | positive integer

Number of classes for quantization, specified as the comma-separated pair consisting of 'nbclas'
and positive integer greater than or equal to 2 and less than or equal to 100.

nbclas is valid only for the global thresholding methods.
Data Types: single | double

threshold — Threshold value for compression
nonnegative integer

Threshold value for compression, specified as the comma-separated pair consisting of 'threshold'
and a nonnegative number.

threshold is valid only for the global thresholding methods.

If you specify threshold, you cannot specify nbcfs, percfs, bpp, or comprat.
Data Types: single | double

nbcfs — Number of preserved coefficients
nonnegative integer

Number of preserved coefficients in the wavelet decomposition, specified as the comma-separated
pair consisting of 'nbcfs' and nonnegative integer less than or equal to the total number of
coefficients in the wavelet decomposition.

nbcfs is valid only for the global thresholding methods.

 wcompress

1-1609



If you specify nbcfs, you cannot specify threshold, percfs, bpp, or comprat.
Data Types: single | double

percfs — Percentage of preserved coefficients
real number

Percentage of preserved coefficients in the wavelet decomposition, specified as the comma-separated
pair consisting of 'percfs' and real number greater than or equal to 0 and less than or equal to
100.

percfs is valid only for the global thresholding methods.

If you specify percfs, you cannot specify threshold, nbcfs, bpp, or comprat.
Data Types: single | double

Display Parameter

plotpar — Plot parameter
'plot' or 0 | 'step' or 1

Plot parameter, specified as the comma-separated pair consisting of 'plotpar' and one of the values
listed:

• 'plot' or 0 — plot only the compressed image
• 'step' or 1 — display each step of the encoding process (only for PCSM methods)

Output Arguments
comprat — Compression ratio
scalar

Compression ratio, returned as a scalar.

bpp — Bit-per-pixel ratio
scalar

Bit-per-pixel ratio, returned as a scalar.

xc — Uncompressed image
2-D array | 3-D array

Uncompressed image, returned as a 2-D array containing either an indexed image or a 3-D array of
uint8 containing a truecolor image.

Version History
Introduced in R2008b

References
[1] Christophe, Emmanuel, Pierre Duhamel, and Corinne Mailhes. “Adaptation of Zerotrees Using

Signed Binary Digit Representations for 3D Image Coding.” EURASIP Journal on Image and
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[3] Said, A., and W.A. Pearlman. “A New, Fast, and Efficient Image Codec Based on Set Partitioning in
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(June 1996): 243–50. https://doi.org/10.1109/76.499834.

[4] Shapiro, J.M. “Embedded Image Coding Using Zerotrees of Wavelet Coefficients.” IEEE
Transactions on Signal Processing 41, no. 12 (December 1993): 3445–62. https://doi.org/
10.1109/78.258085.
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Compression. A Primer on Wavelets and Their Scientific Applications. Vol. 29. Studies in
Advanced Mathematics. CRC Press, 1999. https://doi.org/10.1201/9781420050011.

See Also
imread | imwrite | wmaxlev | tempdir | path

Topics
“Wavelet Compression for Images”
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wdcbm
Thresholds for wavelet 1-D using Birgé-Massart strategy

Syntax
[thr,nkeep] = wdcbm(C,L,alpha,M)

Description
[thr,nkeep] = wdcbm(C,L,alpha,M) returns level-dependent thresholds thr and numbers of
coefficients to be kept nkeep, for denoising or compressing a signal. wdcbm uses a wavelet
coefficients selection rule based on the Birgé-Massart strategy to obtain the thresholds.

[C,L] is the wavelet decomposition structure of the signal to be denoised or compressed, at level N
= length(L)-2. alpha and M are real numbers greater than 1.

wdcbm(C,L,alpha) is equivalent to wdcbm(C,L,alpha,L(1)).

Examples

Compress Signal Using Birgé-Massart Strategy

Load the electrical signal. Select a portion of the signal.

load leleccum
indx = 2600:3100;
x = leleccum(indx);

Obtain the wavelet decomposition of the signal at level 5 using the db3 wavelet.

wname = "db3";
lev = 5;
[c,l] = wavedec(x,lev,wname);

Use wdcbm to select level-dependent thresholds for signal compression. Use the suggested
parameters.

alpha = 1.5;
m = l(1);
[thr,nkeep] = wdcbm(c,l,alpha,m)

thr = 1×5

   19.5569   17.1415   20.2599   42.8959   15.0049

nkeep = 1×5

     1     2     3     4     7

Use wdencmp for compressing the signal using the thresholds. Use hard thresholding.
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[xd,cxd,lxd,perf0,perfl2] = wdencmp("lvd",c,l,wname,lev,thr,"h");

Plot the original and compressed signals.

subplot(2,1,1)
plot(indx,x)
title("Original Signal")
subplot(2,1,2)
plot(indx,xd)
title("Compressed Signal")
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' %  -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2])

Input Arguments
C — Wavelet decomposition
vector

Wavelet decomposition of the signal to be denoised or compressed, specified as a vector. The vector
contains the wavelet coefficients. The bookkeeping vector L contains the number of coefficients by
level. See wavedec.
Data Types: double
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L — Bookkeeping vector
vector

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition C by level. See wavedec.
Data Types: double

alpha — Sparsity parameter
real-valued scalar

Sparsity parameter to use in the Birgé-Massart strategy, specified as a real-valued scalar greater than
1. Typically, alpha = 1.5 for compression and alpha = 3 for denoising. For more information, see
“Wavelet Coefficients Selection” on page 1-1614.
Data Types: double

M — Factor
L(1) | real-valued scalar

Factor to use in the Birgé-Massart strategy, specified as a real-valued scalar greater than 1. The
default value is L(1), the number of the coarsest approximation coefficients. Recommended values
for M are from L(1) to 2*L(1). For more information, see “Wavelet Coefficients Selection” on page
1-1614.
Data Types: double

Output Arguments
thr — Level-dependent thresholds
vector

Level-dependent thresholds, returned as a vector of length N, where N = length(L)-2. thr(i)
contains the threshold for level i. The thresholds are obtained using a wavelet coefficients selection
rule based on the Birgé-Massart strategy. For more information, see “Wavelet Coefficients Selection”
on page 1-1614.

nkeep — Number of coefficients
vector

Number of coefficients to be kept at each level, returned as a vector of length N, where N =
length(L)-2. nkeep(i) contains the number of coefficients to be kept for level i.
Data Types: double

More About
Wavelet Coefficients Selection

Thresholds are obtained using a wavelet coefficients selection rule based on the Birgé-Massart
strategy. The values N=length(L)-2, M and alpha define the strategy.

• At level N+1 (and coarser levels), everything is kept.
• For level i from 1 to N, the ni largest coefficients are kept, where ni = M / (N+2-i)alpha.
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The default value of M = L(1) corresponds to the formula nN+1 = M / (N+2-(N+1))alpha = M.

Version History
Introduced before R2006a

References
[1] Birgé, Lucien, and Pascal Massart. “From Model Selection to Adaptive Estimation.” In Festschrift

for Lucien Le Cam: Research Papers in Probability and Statistics, edited by David Pollard,
Erik Torgersen, and Grace L. Yang, 55–87. New York, NY: Springer, 1997. https://doi.org/
10.1007/978-1-4612-1880-7_4.

See Also
wdenoise | wdencmp | wpdencmp
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wdcbm2
Thresholds for wavelet 2-D using Birgé-Massart strategy

Syntax
[thr,nkeep] = wdcbm2(C,S,alpha,M)

Description
[thr,nkeep] = wdcbm2(C,S,alpha,M) returns level-dependent thresholds thr and numbers of
coefficients to be kept nkeep, for denoising or compressing an image. wdcbm2 uses a wavelet
coefficients selection rule based on the Birgé-Massart strategy to obtain the thresholds.

[C,S] is the wavelet decomposition structure of the image to be denoised or compressed, at level N
= size(S,1)-2. alpha and M are real numbers greater than 1.

wdcbm2(C,S,alpha) is equivalent to wdcbm2(C,S,alpha,prod(S(1,:))).

Examples

Compress Image Using Birgé-Massart Strategy

Load an image.

load detfingr
nbc = size(map,1);

Obtain the wavelet decomposition of the image at level 3 using the sym4 wavelet.

wname = "sym4";
lev = 3;
[c,s] = wavedec2(X,lev,wname);

Use wdcbm2 to select level-dependent thresholds for image compression. Use the suggested
parameters.

alpha = 1.5;
m = 2.7*prod(s(1,:));
[thr,nkeep] = wdcbm2(c,s,alpha,m)

thr = 3×3

   21.4814   46.8354   40.7907
   21.4814   46.8354   40.7907
   21.4814   46.8354   40.7907

nkeep = 1×3

         624         961        1765
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Use wdencmp2 for compressing the image using the thresholds. Use hard thresholding.

[xd,cxd,sxd,perf0,perfl2] = ...
    wdencmp("lvd",c,s,wname,lev,thr,"h");

Plot the original and compressed images.

colormap(pink(nbc))
subplot(2,2,1)
image(wcodemat(X,nbc))
title("Original Image")
subplot(2,2,2)
image(wcodemat(xd,nbc))
title("Compressed Image")
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' %  -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);

Input Arguments
C — Wavelet decomposition
real-valued vector

Wavelet decomposition of the image to be denoised or compressed, specified as a real-valued vector.
The vector C contains the approximation and detail coefficients organized by level. The bookkeeping
matrix S is used to parse C. See wavedec2.
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Data Types: double

S — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix, specified as an integer-valued matrix. The matrix S contains the dimensions of
the wavelet coefficients by level and is used to parse the wavelet decomposition vector C. See
wavedec2.
Data Types: double

alpha — Sparsity parameter
real-valued scalar

Sparsity parameter to use in the Birgé-Massart strategy, specified as a real-valued scalar greater than
1. Typically, alpha = 1.5 for compression and alpha = 3 for denoising. For more information, see
“Wavelet Coefficients Selection” on page 1-1618.
Data Types: double

M — Factor
prod(S(1,:)) | real-valued scalar

Factor to use in the Birgé-Massart strategy, specified as a real-valued scalar greater than 1. The
default value is prod(S(1,:)), the length of the coarsest approximation coefficients. Recommended
values for M are from prod(S(1,:)) to 6*prod(S(1,:)). For more information, see “Wavelet
Coefficients Selection” on page 1-1618.
Data Types: double

Output Arguments
thr — Level-dependent thresholds
matrix

Level-dependent thresholds, returned as a 3-by-N matrix, where N = size(S,1)-2. thr(:,i)
contains the thresholds in the three orientations: horizontal, diagonal, and vertical, for level i. The
thresholds are obtained using a wavelet coefficients selection rule based on the Birgé-Massart
strategy. For more information, see “Wavelet Coefficients Selection” on page 1-1618.

nkeep — Number of coefficients
vector

Number of coefficients to be kept at each level, returned as a vector of length N, where N =
size(S,1)-2. nkeep(i) contains the number of coefficients to be kept at level i.
Data Types: double

More About
Wavelet Coefficients Selection

Thresholds are obtained using a wavelet coefficients selection rule based on the Birgé-Massart
strategy. The values N = prod(S(1,:)), M and alpha define the strategy.
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• At level N+1 (and coarser levels), everything is kept.
• For level i from 1 to N, the ni largest coefficients are kept, where ni = M / (N+2-i)alpha.

The default value of M = prod(S(1,:)) corresponds to the formula nN+1 = M / (N+2-(N+1))alpha
= M.

Version History
Introduced before R2006a

References
[1] Birgé, Lucien, and Pascal Massart. “From Model Selection to Adaptive Estimation.” In Festschrift

for Lucien Le Cam: Research Papers in Probability and Statistics, edited by David Pollard,
Erik Torgersen, and Grace L. Yang, 55–87. New York, NY: Springer, 1997. https://doi.org/
10.1007/978-1-4612-1880-7_4.

See Also
wdenoise2 | wdencmp | wpdencmp
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wdecenergy
Multisignal 1-D decomposition energy distribution

Syntax
[E,PEC,PECFS] = wdecenergy(DEC)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort')
[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG)

Description
[E,PEC,PECFS] = wdecenergy(DEC) computes the vector E that contains the energy (L2-Norm)
of each decomposed signal, the matrix PEC that contains the percentage of energy for each wavelet
component (approximation and details) of each signal, and the matrix PECFS that contains the
percentage of energy for each coefficient.

• E(i) is the energy (L2-norm) of the ith signal.
• PEC(i,1) is the percentage of energy for the approximation of level MAXLEV = DEC.level of the ith

signal.
• PEC(i,j), j=2,...,MAXLEV+1 is the percentage of energy for the detail of level (MAXLEV+1-j) of the

ith signal.
• PECFS(i,j), is the percentage of energy for jth coefficients of the ith signal.

[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort') returns PECFS sorted (by row)
in ascending order and an index vector IDXSORT.

• Replacing 'sort' by 'ascend' returns the same result.
• Replacing 'sort' by 'descend' returns PECFS sorted in descending order.

LONGS is a vector containing the lengths of each family of coefficients.

[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG) returns the values for the signals whose
indices are given by the IDXSIG vector.

[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG) returns the values for
the signals whose indices are given by the IDXSIG vector, the index vector IDXSORT, and LONGS,
which is a vector containing the lengths of each family of coefficients. Valid values for OPTSORT are
'none', 'sort', 'ascend', 'descend'.

Examples

Multisignal 1-D Decomposition Energy Distribution

Load the 23 channel EEG data Espiga3 [1]. The channels are arranged column-wise. The data is
sampled at 200 Hz.

load Espiga3
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Perform a decomposition at level 2 using the db2 wavelet.

dec = mdwtdec('c',Espiga3,2,'db2')

dec = struct with fields:
        dirDec: 'c'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [995 23]
            ca: [251x23 double]
            cd: {[499x23 double]  [251x23 double]}

Compute the energy distribution.

[e,pec,pecfs] = wdecenergy(dec);

Display the total energy and the distribution of energy for each wavelet component (A2, D2, D1) in
the second channel.

idx = 2;
e(idx)

ans = 8.0761e+05

perA2D2D1 = pec(idx,:)

perA2D2D1 = 1×3

   99.0583    0.8535    0.0882

Compare the coefficient energy distribution for signal 1 and signal 10. Because most of the energy is
in the approximation coefficients, zoom in the x-axis by the number of approximation coefficients.

sigA = 1;
sigB = 10;
pecfsA = pecfs(sigA,:);
pecfsB = pecfs(sigB,:);
plot(pecfsA,'r--')
hold on
plot(pecfsB,'b')
grid on
legend('pecfsA','pecfsB')
xlim([0 size(dec.ca,1)])
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Version History
Introduced in R2012a

References
[1] Mesa, Hector. “Adapted Wavelets for Pattern Detection.” In Progress in Pattern Recognition,

Image Analysis and Applications, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/
10.1007/11578079_96.

See Also
mdwtdec | mdwtrec
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wden
Automatic 1-D denoising

Note wden is no longer recommended. Use wdenoise instead.

Syntax
XD = wden(X,TPTR,SORH,SCAL,N,wname)
XD = wden(C,L, ___ )
XD = wden(W,'modwtsqtwolog',SORH,'mln',N,wname)
[XD,CXD] = wden( ___ )
[XD,CXD,LXD] = wden( ___ )
[XD,CXD,LXD,THR] = wden( ___ )
[XD,CXD,THR] = wden( ___ )

Description
XD = wden(X,TPTR,SORH,SCAL,N,wname) returns a denoised version XD of the signal X. The
function uses an N-level wavelet decomposition of X using the specified orthogonal or biorthogonal
wavelet wname to obtain the wavelet coefficients. The thresholding selection rule TPTR is applied to
the wavelet decomposition. SORH and SCAL define how the rule is applied.

XD = wden(C,L, ___ ) returns a denoised version XD of the signal X using the same options as in
the previous syntax, but obtained directly from the wavelet decomposition structure [C,L] of X. [C,L]
is the output of wavedec.

XD = wden(W,'modwtsqtwolog',SORH,'mln',N,wname) returns the denoised signal XD
obtained by operating on the maximal overlap discrete wavelet transform (MODWT) matrix W, where
W is the output of modwt. You must use the same orthogonal wavelet in both modwt and wden.

[XD,CXD] = wden( ___ ) returns the denoised wavelet coefficients. For discrete wavelet transform
(DWT) denoising, CXD is a vector (see wavedec). For MODWT denoising, CXD is a matrix with N+1
rows (see modwt). The number of columns of CXD is equal to the length of the input signal X.

[XD,CXD,LXD] = wden( ___ ) returns the number of coefficients by level for DWT denoising. See
wavedec for details. The LXD output is not supported for MODWT denoising. The additional output
arguments [CXD,LXD] are the wavelet decomposition structure (see wavedec for more information)
of the denoised signal XD.

[XD,CXD,LXD,THR] = wden( ___ ) returns the denoising thresholds by level for DWT denoising.

[XD,CXD,THR] = wden( ___ ) returns the denoising thresholds by level for MODWT denoising
when you specify the 'modwtsqtwolog' input argument.

Examples
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Automatic 1-D Denoising Using Wavelets

This example shows how to apply three different denoising techniques to a noisy signal. It compares
the results with plots and the threshold values produced by each technique.

First, to ensure reproducibility of results, set a seed that will be used to generate the random noise.

rng('default')

Create a signal consisting of a 2 Hz sine wave with transients at 0.3 and 0.72 seconds. Add randomly
generated noise to the signal and plot the result.

N = 1000;
t = linspace(0,1,N);
x = 4*sin(4*pi*t);
x = x - sign(t-0.3) - sign(0.72-t);
sig = x + 0.5*randn(size(t));
plot(t,sig)
title('Signal')
grid on

Using the sym8 wavelet, perform a level 5 wavelet decomposition of the signal and denoise it by
applying three different threshold selection rules to the wavelet coefficients: SURE, minimax, and
Donoho and Johnstone's universal threshold with level-dependent estimation of the noise. In each
case, apply hard thresholding.

lev = 5;
wname = 'sym8';
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[dnsig1,c1,l1,threshold_SURE] = wden(sig,'rigrsure','h','mln',lev,wname);
[dnsig2,c2,l2,threshold_Minimax] = wden(sig,'minimaxi','h','mln',lev,wname);
[dnsig3,c3,l3,threshold_DJ] = wden(sig,'sqtwolog','h','mln',lev,wname);

Plot and compare the three denoised signals.

subplot(3,1,1)
plot(t,dnsig1)
title('Denoised Signal - SURE')
grid on
subplot(3,1,2)
plot(t,dnsig2)
title('Denoised Signal - Minimax')
grid on
subplot(3,1,3)
plot(t,dnsig3)
title('Denoised Signal - Donoho-Johnstone')
grid on

Compare the thresholds applied at each detail level for the three denoising methods.

threshold_SURE

threshold_SURE = 1×5

    0.9592    0.6114    1.4734    0.7628    0.4360

threshold_Minimax
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threshold_Minimax = 1×5

    1.1047    1.0375    1.3229    1.1245    1.0483

threshold_DJ

threshold_DJ = 1×5

    1.8466    1.7344    2.2114    1.8798    1.7524

Compare DWT and MODWT Denoising of a Sinusoid with Two Jumps

This example denoises a signal using the DWT and MODWT. It compares the results with plots and
the threshold values produced by each technique.

First, to ensure reproducibility of results, set a seed that will be used to generate random noise.

rng('default')

Create a signal consisting of a 2 Hz sine wave with transients at 0.3 and 0.72 seconds. Add randomly
generated noise to the signal and plot the result.

N = 1000;
t = linspace(0,1,N);
x = 4*sin(4*pi*t);
x = x - sign(t-0.3) - sign(0.72-t);
sig = x + 0.5*randn(size(t));
plot(t,sig)
title('Signal')
grid on
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Using the db2 wavelet, perform a level 3 wavelet decomposition of the signal and denoise it using
Donoho and Johnstone's universal threshold with level-dependent estimation of the noise. Obtain
denoised versions using DWT and MODWT, both with soft thresholding.

wname = 'db2';
lev = 3;
[xdDWT,c1,l1,threshold_DWT] = wden(sig,'sqtwolog','s','mln',lev,wname);
[xdMODWT,c2,threshold_MODWT] = wden(sig,'modwtsqtwolog','s','mln',lev,wname);

Plot and compare the results.

subplot(2,1,1)
plot(t,xdDWT)
grid on
title('DWT Denoising')
subplot(2,1,2)
plot(t,xdMODWT)
grid on
title('MODWT Denoising')
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Compare the thresholds applied in each case.

threshold_DWT

threshold_DWT = 1×3

    1.7783    1.6876    2.0434

threshold_MODWT

threshold_MODWT = 1×3

    1.2760    0.6405    0.3787

Compare DWT and MODWT Denoising of a Blocky Signal

This example denoises a blocky signal using the Haar wavelet with DWT and MODWT denoising. It
compares the results with plots and metrics for the original and denoised versions.

First, to ensure reproducibility of results, set a seed that will be used to generate random noise.

rng('default')

1 Functions

1-1628



Generate a signal and a noisy version with the square root of the signal-to-noise ratio equal to 3. Plot
and compare each.

[osig,nsig] = wnoise('blocks',10,3);
plot(nsig,'r')
hold on
plot(osig,'b')
legend('Noisy Signal','Original Signal')

Using the Haar wavelet, perform a level 6 wavelet decomposition of the noisy signal and denoise it
using Donoho and Johnstone's universal threshold with level-dependent estimation of the noise.
Obtain denoised versions using DWT and MODWT, both with soft thresholding.

wname = 'haar';
lev = 6 ;
[xdDWT,c1,l1] = wden(nsig,'sqtwolog','s','mln',lev,wname);
[xdMODWT,c2] = wden(nsig,'modwtsqtwolog','s','mln',lev,wname);

Plot and compare the original, noise-free version of the signal with the two denoised versions.

figure
plot(osig,'b')
hold on
plot(xdDWT,'r--')
plot(xdMODWT,'k-.')
legend('Original','DWT','MODWT')
hold off
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Calculate the L2 and L-infinity norms of the difference between the original signal and the two
denoised versions.

L2norm_original_DWT = norm(abs(osig-xdDWT),2)

L2norm_original_DWT = 36.1194

L2norm_original_MODWT = norm(abs(osig-xdMODWT),2)

L2norm_original_MODWT = 14.5987

LInfinity_original_DWT = norm(abs(osig-xdDWT),Inf)

LInfinity_original_DWT = 4.7181

LInfinity_original_MODWT = norm(abs(osig-xdMODWT),Inf)

LInfinity_original_MODWT = 2.9655

Input Arguments
X — Input data
real-valued vector

Input data to denoise, specified as a real-valued vector.
Data Types: double
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C — Wavelet expansion coefficients
real-valued vector

Wavelet expansion coefficients of the data to be denoised, specified as a real-valued vector. C is the
output of wavedec.
Example: [C,L] = wavedec(randn(1,1024),3,'db4')
Data Types: double

L — Size of wavelet expansion coefficients
vector of positive integers

Size of wavelet expansion coefficients of the signal to be denoised, specified as a vector of positive
integers. L is the output of wavedec.
Example: [C,L] = wavedec(randn(1,1024),3,'db4')
Data Types: double

W — Maximal overlap wavelet decomposition structure
real-valued matrix

Maximal overlap wavelet decomposition structure of the signal to denoise, specified as a real-valued
matrix. W is the output of modwt. You must use the same orthogonal wavelet in both modwt and wden.
Data Types: double

TPTR — Threshold selection rule
character array

Threshold selection rule to apply to the wavelet decomposition structure of X:

• 'rigsure' — Use the principle of Stein's Unbiased Risk.
• 'heursure' — Use a heuristic variant of Stein's Unbiased Risk.
• 'sqtwolog — Use the universal threshold 2ln(length(x)) .
• 'minimaxi' — Use minimax thresholding. (See thselect for more information.)

SORH — Type of thresholding
's' | 'h'

Type of thresholding to perform:

• 's' — Soft thresholding
• 'h' — Hard thresholding

SCAL — Multiplicative threshold rescaling
'one' | 'sln' | 'mln'

Multiplicative threshold rescaling:

• 'one' — No rescaling
• 'sln' — Rescaling using a single estimation of level noise based on first-level coefficients
• 'mln' — Rescaling using a level-dependent estimation of level noise
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N — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer. Use wmaxlev to ensure that the
wavelet coefficients are free from boundary effects. If boundary effects are not a concern in your
application, a good rule is to set N less than or equal to fix(log2(length(X))).

wname — Name of wavelet
character array

Name of wavelet, specified as a character array, to use for denoising. For DWT denoising, the wavelet
must be orthogonal or biorthogonal. For MODWT denoising, the wavelet must be orthogonal.
Orthogonal and biorthogonal wavelets are designated as type 1 and type 2 wavelets, respectively, in
the wavelet manager, wavemngr.

• Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin
("beyl"), Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han
linear-phase moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and
Vaidyanathan ("vaid").

• Valid built-in biorthogonal wavelet families are: Biorthogonal Spline ("bior"), and Reverse
Biorthogonal Spline ("rbio").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1) or biorthogonal (returns 2). For example,
wavemngr("type","db6") returns 1.

Output Arguments
XD — Denoised signal
real-valued vector

Denoised data, returned as a real-valued vector.
Data Types: double

CXD — Denoised wavelet coefficients
real-valued vector or matrix

Denoised wavelet coefficients, returned as a real-valued vector or matrix. For DWT denoising, CXD is
a vector (see wavedec). For MODWT denoising, CXD is a matrix with N+1 rows (see modwt). The
number of columns is equal to the length of the input signal X.
Data Types: double

LXD — Size of denoised wavelet coefficients
vector of positive integers

Size of denoised wavelet coefficients by level for DWT denoising, returned as a vector of positive
integers (see wavedec). The LXD output is not supported for MODWT denoising. [CXD,LXD] is the
wavelet decomposition structure of the denoised signal XD.
Data Types: double
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THR — Denoising thresholds
real-valued vector

Denoising thresholds by level, returned as a length N real-valued vector.
Data Types: double

Algorithms
The most general model for the noisy signal has the following form:

s(n) = f (n) + σe(n),

where time n is equally spaced. In the simplest model, suppose that e(n) is a Gaussian white noise
N(0,1), and the noise level σ is equal to 1. The denoising objective is to suppress the noise part of the
signal s and to recover f.

The denoising procedure has three steps:

1 Decomposition — Choose a wavelet, and choose a level N. Compute the wavelet decomposition of
the signal s at level N.

2 Detail coefficients thresholding — For each level from 1 to N, select a threshold and apply soft
thresholding to the detail coefficients.

3 Reconstruction — Compute wavelet reconstruction based on the original approximation
coefficients of level N and the modified detail coefficients of levels from 1 to N.

More details about threshold selection rules are in “Wavelet Denoising and Nonparametric Function
Estimation” and in the help of the thselect function. Note that:

• The detail coefficients vector is the superposition of the coefficients of f and the coefficients of e.
The decomposition of e leads to detail coefficients that are standard Gaussian white noises.

• Minimax and SURE threshold selection rules are more conservative and more convenient when
small details of function f lie in the noise range. The two other rules remove the noise more
efficiently. The option 'heursure' is a compromise.

In practice, the basic model cannot be used directly. To deal with model deviations, the remaining
parameter scal must be specified. It corresponds to threshold rescaling methods.

• The option scal = 'one' corresponds to the basic model.
• The option scal = 'sln' handles threshold rescaling using a single estimation of level noise

based on the first-level coefficients.

In general, you can ignore the noise level that must be estimated. The detail coefficients CD1 (the
finest scale) are essentially noise coefficients with standard deviation equal to σ. The median
absolute deviation of the coefficients is a robust estimate of σ. The use of a robust estimate is
crucial. If level 1 coefficients contain f details, these details are concentrated in a few coefficients
to avoid signal end effects, which are pure artifacts due to computations on the edges.

• The option scal = 'mln' handles threshold rescaling using a level-dependent estimation of the
level noise.

When you suspect a nonwhite noise e, thresholds must be rescaled by a level-dependent
estimation of the level noise. The same kind of strategy is used by estimating σlev level by level.
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This estimation is implemented in the file wnoisest, which handles the wavelet decomposition
structure of the original signal s directly.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size data support must be enabled.
• The input wname must be constant.

See Also
Functions
thselect | wavedec | wdencmp | wfilters | wthresh | wdenoise | wavemngr
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wdencmp
Denoising or compression

Syntax
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,wname,N,THR,SORH,KEEPAPP)
[ ___ ] = wdencmp('gbl',C,L,wname,N,THR,SORH,KEEPAPP)
[ ___ ] = wdencmp('lvl',X,wname,N,THR,SORH)
[ ___ ] = wdencmp('lvl',C,L,wname,N,THR,SORH)

Description
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,wname,N,THR,SORH,KEEPAPP) returns a
denoised or compressed version XC of the input data X obtained by wavelet coefficients thresholding
using the global positive threshold THR. X is a real-valued vector or matrix. [CXC,LXC] is the N-level
wavelet decomposition structure of XC (see wavedec or wavedec2 for more information). PERFL2
and PERF0 are the L2-norm recovery and compression scores in percentages, respectively. If KEEPAPP
= 1, the approximation coefficients are kept. If KEEPAPP = 0, the approximation coefficients can be
thresholded.

[ ___ ] = wdencmp('gbl',C,L,wname,N,THR,SORH,KEEPAPP) uses the wavelet decomposition
structure [C,L] of the data to be denoised or compressed.

[ ___ ] = wdencmp('lvl',X,wname,N,THR,SORH) uses the level-dependent thresholds THR. The
approximation coefficients are kept.

[ ___ ] = wdencmp('lvl',C,L,wname,N,THR,SORH) uses the wavelet decomposition structure
[C,L].

Examples

Denoise 1-D Signal Using Default Global Threshold

Denoise 1-D electricity consumption data using the Donoho-Johnstone global threshold.

Load the signal and select a segment for denoising.

load leleccum; indx = 2600:3100;
x = leleccum(indx);

Use ddencmp to determine the default global threshold and denoise the signal. Plot the original and
denoised signals.

[thr,sorh,keepapp] = ddencmp('den','wv',x);
xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);
subplot(211)
plot(x); title('Original Signal');
subplot(212)
plot(xd); title('Denoised Signal');
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Denoise Image Using Default Global Threshold

Denoise an image in additive white Gaussian noise using the Donoho-Johnstone universal threshold.

Load an image and add white Gaussian noise.

load sinsin
Y = X+18*randn(size(X));

Use ddencmp to obtain the threshold.

[thr,sorh,keepapp] = ddencmp('den','wv',Y);

Denoise the image. Use the order 4 Symlet and a two-level wavelet decomposition. Plot the original
image, the noisy image, and the denoised result.

xd = wdencmp('gbl',Y,'sym4',2,thr,sorh,keepapp);
subplot(2,2,1)
imagesc(X)
title('Original Image')
subplot(2,2,2)
imagesc(Y)
title('Noisy Image')
subplot(2,2,3)
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imagesc(xd)
title('Denoised Image')

Input Arguments
X — Input data
real-valued vector | real-valued matrix

Input data to denoise or compress, specified by a real-valued vector or matrix.
Data Types: double

C — Wavelet expansion coefficients
real-valued vector

Wavelet expansion coefficients of the data to be compressed or denoised, specified as a real-valued
vector. If the data is one-dimensional, C is the output of wavedec. If the data is two-dimensional, C is
the output of wavedec2.
Example: [C,L] = wavedec(randn(1,1024),3,'db4')
Data Types: double

L — Size of wavelet expansion coefficients
vector of positive integers | matrix of positive integers
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Size of wavelet expansion coefficients of the signal or image to be compressed or denoised, specified
as a vector or matrix of positive integers.

For signals, L is the output of wavedec. For images, L is the output of wavedec2.
Example: [C,L] = wavedec(randn(1,1024),3,'db4')
Data Types: double

wname — Name of wavelet
character vector | string scalar

Name of wavelet, specified as a character vector or string scalar, to use for denoising or compression.
See wavemngr for more information. wdencmp uses wname to generate the N-level wavelet
decomposition of X.

N — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer.

THR — Threshold
scalar | real-valued vector | real-valued matrix

Threshold to apply to the wavelet coefficients, specified as a scalar, real-valued vector, or real-valued
matrix.

• For the case 'gbl', THR is a scalar.
• For the one-dimensional case and 'lvd' option, THR is a length N real-valued vector containing

the level-dependent thresholds.
• For the two-dimensional case and 'lvd' option, THR is a 3-by-N matrix containing the level-

dependent thresholds in the three orientations: horizontal, diagonal, and vertical.

Data Types: double

SORH — Type of thresholding
's' | 'h'

Type of thresholding to perform:

• 's' — Soft thresholding
• 'h' — Hard thresholding

See wthresh for more information.

KEEPAPP — Threshold approximation setting
0 | 1

Threshold approximation setting, specified as either 0 or 1. If KEEPAPP = 1, the approximation
coefficients cannot be thresholded. If KEEPAPP = 0, the approximation coefficients can be
thresholded.
Data Types: double
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Output Arguments
XC — Denoised or compressed data
real-valued vector | real-valued matrix

Denoised or compressed data, returned as a real-valued vector or matrix. XC and X have the same
dimensions.

CXC — Wavelet expansion coefficients
real-valued vector

Wavelet expansion coefficients of the denoised or compressed data XC, returned as a real-valued
vector. LXC contains the number of coefficients by level.

LXC — Size of wavelet expansion coefficients
vector of positive integers | matrix of positive integers

Size of wavelet expansion coefficients of the denoised or compressed data XC, returned as a vector or
matrix of positive integers. If the data is one-dimensional, LXC is a vector of positive integers (see
wavedec for more information). If the data is two-dimensional, LXC is a matrix of positive integers
(see wavedec2 for more information).

PERF0 — Compression score
scalar

Compression score, returned as a real number. PERF0 is the percentage of thresholded coefficients
that are equal to 0.

PERFL2 — L2 energy recovery
scalar

PERFL2 = 100 * (vector-norm of CXC / vector-norm of C)2 if [C,L] denotes the wavelet decomposition
structure of X.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is reduced to

100 XC 2

X 2

Algorithms
The denoising and compression procedures contain three steps:

1 Decomposition.
2 Thresholding.
3 Reconstruction.

The two procedures differ in Step 2. In compression, for each level in the wavelet decomposition, a
threshold is selected and hard thresholding is applied to the detail coefficients.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Variable-size data support must be enabled.
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wdenoise
Wavelet signal denoising

Syntax
XDEN = wdenoise(X)
XDEN = wdenoise(X,LEVEL)

XDEN = wdenoise( ___ ,Name,Value)

[XDEN,DENOISEDCFS] = wdenoise( ___ )
[XDEN,DENOISEDCFS,ORIGCFS] = wdenoise( ___ )

Description
XDEN = wdenoise(X) denoises the data in X using an empirical Bayesian method with a Cauchy
prior. By default, the sym4 wavelet is used with a posterior median threshold rule. Denoising is down
to the minimum of floor(log2N) and wmaxlev(N,"sym4") where N is the number of samples in
the data. (For more information, see wmaxlev.) X is a real-valued vector, matrix, or timetable.

• If X is a matrix, wdenoise denoises each column of X.
• If X is a timetable, wdenoise must contain real-valued vectors in separate variables, or one real-

valued matrix of data.
• X is assumed to be uniformly sampled.
• If X is a timetable and the timestamps are not linearly spaced, wdenoise issues a warning.

XDEN = wdenoise(X,LEVEL) denoises X down to LEVEL. LEVEL is a positive integer less than or
equal to floor(log2N) where N is the number of samples in the data. If unspecified, LEVEL defaults
to the minimum of floor(log2N) and wmaxlev(N,"sym4").

XDEN = wdenoise( ___ ,Name,Value) specifies one or more options using name-value pair
arguments in addition to any of the input arguments in previous syntaxes. For example, xden =
wdenoise(x,3,"Wavelet","db2") denoises x down to level 3 using the Daubechies db2 wavelet.

[XDEN,DENOISEDCFS] = wdenoise( ___ ) returns the denoised wavelet and scaling coefficients in
the cell array DENOISEDCFS. The elements of DENOISEDCFS are in order of decreasing resolution.
The final element of DENOISEDCFS contains the approximation (scaling) coefficients.

[XDEN,DENOISEDCFS,ORIGCFS] = wdenoise( ___ ) returns the original wavelet and scaling
coefficients in the cell array ORIGCFS. The elements of ORIGCFS are in order of decreasing
resolution. The final element of ORIGCFS contains the approximation (scaling) coefficients.

Examples

Denoise A Signal Using Default Values

Obtain the denoised version of a noisy signal using default values.
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load noisdopp
xden = wdenoise(noisdopp);

Plot the original and denoised signals.

plot([noisdopp' xden'])
legend("Original Signal","Denoised Signal")

Denoise a Timetable Using Block Thresholding

Denoise a timetable of noisy data down to level 5 using block thresholding.

Load a noisy dataset.

load wnoisydata

Denoise the data down to level 5 using block thresholding

xden = wdenoise(wnoisydata,5,DenoisingMethod="BlockJS");

Plot the original data and the denoised data.

h1 = plot(wnoisydata.t,[wnoisydata.noisydata(:,1) xden.noisydata(:,1)]);
h1(2).LineWidth = 2;
legend("Original","Denoised")
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Compare Denoised Signals

Denoise a signal in different ways and compare results.

Load a datafile that contains clean and noisy versions of a signal. Plot the signals.

load fdata
plot(fNoisy)
hold on
plot(fClean)
grid on
legend("Noisy","Clean")
hold off
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Denoise the signal using the sym4 and db1 wavelets, with a nine-level wavelet decomposition. Plot
the results.

cleansym = wdenoise(fNoisy,9,Wavelet="sym4");
cleandb = wdenoise(fNoisy,9,Wavelet="db1");
figure
subplot(2,1,1)
plot(cleansym)
title("Denoised - sym")
grid on
subplot(2,1,2)
plot(cleandb)
title("Denoised - db")
grid on
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Compute the SNR of each denoised signal. Confirm that using the sym4 wavelet produces a better
result.

snrsym = -20*log10(norm(abs(fClean-cleansym))/norm(fClean))

snrsym = 35.9623

snrdb = -20*log10(norm(abs(fClean-cleandb))/norm(fClean))

snrdb = 32.2672

Load in a file which contains noisy data of 100 time series. Every time series is a noisy version of
fClean. Denoise the time series twice, estimating the noise variance differently in each case.

load fdataTS
cleanTSld = wdenoise(fdataTS,9,NoiseEstimate="LevelDependent");
cleanTSli = wdenoise(fdataTS,9,NoiseEstimate="LevelIndependent");

Compare one of the noisy time series with its two denoised versions.

figure
plot(fdataTS.Time,fdataTS.fTS15)
title("Original")
grid on

 wdenoise

1-1645



figure
subplot(2,1,1)
plot(cleanTSli.Time,cleanTSli.fTS15)
title("Level Independent")
grid on
subplot(2,1,2)
plot(cleanTSld.Time,cleanTSld.fTS15)
title("Level Dependent")
grid on
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Input Arguments
X — Input data
vector | matrix | timetable

Input data, specified as a matrix, vector, or timetable of real values. If X is a vector, it must have at
least two samples. If X is a matrix or timetable, it must have at least two rows.
Data Types: double

LEVEL — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer. LEVEL is a positive integer less than
or equal to floor(log2N) where N is the number of samples in the data.

• If unspecified, LEVEL defaults to the minimum of floor(log2N) and wmaxlev(N,"sym4").
• For James-Stein block thresholding, "BlockJS", there must be floor(log2N) coefficients at the

coarsest resolution level, LEVEL.

Data Types: double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: xden = wdenoise(x,4,Wavelet="db6") denoises x down to level 4 using the
Daubechies db6 wavelet.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "Wavelet","db6","DenoisingMethod","Bayes" denoises using the Daubechies db6
wavelet and the empirical Bayesian method.

Wavelet — Wavelet
"sym4" (default) | character vector | string scalar

Wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal or
biorthogonal. Orthogonal and biorthogonal wavelets are designated as type 1 and type 2 wavelets
respectively in the wavelet manager, wavemngr.

• Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin
("beyl"), Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han
linear-phase moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and
Vaidyanathan ("vaid").

• Valid built-in biorthogonal wavelet families are: Biorthogonal Spline ("bior"), and Reverse
Biorthogonal Spline ("rbio").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1) or biorthogonal (returns 2). For example,
wavemngr("type","db6") returns 1.

DenoisingMethod — Denoising method
"Bayes" (default) | "BlockJS" | "FDR" | "Minimax" | "SURE" | "UniversalThreshold"

Denoising method used to determine the denoising thresholds for the data X.

• Bayes — Empirical Bayes

This method uses a threshold rule based on assuming measurements have independent prior
distributions given by a mixture model. Because measurements are used to estimate the weight in
the mixture model, the method tends to work better with more samples. By default, the posterior
median rule is used to measure risk [8].

• BlockJS — Block James-Stein

This method is based on determining an `optimal block size and threshold. The resulting block
thresholding estimator yields simultaneously optimal global and local adaptivity [3].

• FDR — False Discovery Rate

This method uses a threshold rule based on controlling the expected ratio of false positive
detections to all positive detections. The FDR method works best with sparse data. Choosing a
ratio, or Q-value, less than 1/2 yields an asymptotically minimax estimator [1].

• Minimax — Minimax Estimation
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This method uses a fixed threshold chosen to yield minimax performance for mean square error
against an ideal procedure. The minimax principle is used in statistics to design estimators. See
thselect for more information.

• SURE — Stein's Unbiased Risk Estimate

This method uses a threshold selection rule based on Stein’s Unbiased Estimate of Risk (quadratic
loss function). One gets an estimate of the risk for a particular threshold value (t). Minimizing the
risks in (t) gives a selection of the threshold value.

• UniversalThreshold - Universal Threshold 2ln(length(x)) .

This method uses a fixed-form threshold yielding minimax performance multiplied by a small
factor proportional to log(length(X)).

Note For "FDR", there is an optional argument for the Q-value, which is the proportion of false
positives. Q is a real-valued scalar between 0 and 1/2, 0 < Q <= 1/2. To specify "FDR" with a Q-
value, use a cell array where the second element is the Q-value. For example, "DenoisingMethod",
{"FDR",0.01}. If unspecified, Q defaults to 0.05.

ThresholdRule — Threshold rule
character array

Threshold rule, specified as a character array, to use to shrink the wavelet coefficients.
"ThresholdRule" is valid for all denoising methods, but the valid options and defaults depend on
the denoising method. Rules possible for different denoising methods are specified as follows:

• "BlockJS" — The only supported option is "James-Stein". You do not need to specify
ThresholdRule for "BlockJS".

• "SURE", "Minimax", "UniversalThreshold" — Valid options are "Soft" or "Hard". The
default is "Soft".

• "Bayes" — Valid options are "Median", "Mean", "Soft", or "Hard". The default is "Median".
• "FDR" — The only supported option is "Hard". You do not need to define ThresholdRule for

"FDR"

NoiseEstimate — Method of estimating variance of noise
"LevelIndependent" (default) | "LevelDependent"

Method of estimating variance of noise in the data.

• "LevelIndependent" — Estimate the variance of the noise based on the finest-scale (highest-
resolution) wavelet coefficients.

• "LevelDependent" — Estimate the variance of the noise based on the wavelet coefficients at
each resolution level.

Specifying NoiseEstimate with the "BlockJS" denoising method has no effect. The block James-
Stein estimator always uses a "LevelIndependent" noise estimate.

Output Arguments
XDEN — Denoised data
vector | matrix | timetable
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Denoised vector, matrix, or timetable version of X. For timetable input, XDEN has the same variable
names and timestamps as the original timetable.
Data Types: double

DENOISEDCFS — Denoised wavelet and scaling coefficients
cell array

Denoised wavelet and scaling coefficients of the denoised data XDEN, returned in a cell array. The
elements of DENOISEDCFS are in order of decreasing resolution. The final element of DENOISEDCFS
contains the approximation (scaling) coefficients.
Data Types: double

ORIGCFS — Original wavelet and scaling coefficients
cell array

Original wavelet and scaling coefficients of the data X, returned in a cell array. The elements of
ORIGCFS are in order of decreasing resolution. The final element of ORIGCFS contains the
approximation (scaling) coefficients.
Data Types: double

Algorithms
The most general model for the noisy signal has the following form:

s(n) = f (n) + σe(n),

where time n is equally spaced. In the simplest model, suppose that e(n) is a Gaussian white noise
N(0,1), and the noise level σ is equal to 1. The denoising objective is to suppress the noise part of the
signal s and to recover f.

The denoising procedure has three steps:

1 Decomposition — Choose a wavelet, and choose a level N. Compute the wavelet decomposition of
the signal s at level N.

2 Detail coefficients thresholding — For each level from 1 to N, select a threshold and apply soft
thresholding to the detail coefficients.

3 Reconstruction — Compute wavelet reconstruction based on the original approximation
coefficients of level N and the modified detail coefficients of levels from 1 to N.

More details about threshold selection rules are in “Wavelet Denoising and Nonparametric Function
Estimation” and in the help of the thselect function.

Version History
Introduced in R2017b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Timetable input data is not supported.
• The value of the "Wavelet" name-value pair argument must be constant.
• The input LEVEL must be defined as a scalar during compilation.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• Timetable input data is not supported.
• The value of the "Wavelet" name-value pair argument must be constant.
• For optimized GPU code generation, specify LEVEL as a compile-time constant.
• The "Bayes", "UniversalThreshold", "Minimax", and "SURE" denoising methods support

optimized GPU code generation.

See Also
Functions
waveinfo | wavemngr | wdenoise2
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Apps
Wavelet Signal Denoiser

Topics
“Denoise a Signal with the Wavelet Signal Denoiser”
“Denoise Signal Using Generated C Code”
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wdenoise2
Wavelet image denoising

Syntax
IMDEN = wdenoise2(IM)
IMDEN = wdenoise2(IM,LEVEL)
[IMDEN,DENOISEDCFS] = wdenoise2( ___ )

[IMDEN,DENOISEDCFS,ORIGCFS] = wdenoise2( ___ )
[IMDEN,DENOISEDCFS,ORIGCFS,S] = wdenoise2( ___ )
[IMDEN,DENOISEDCFS,ORIGCFS,S,SHIFTS] = wdenoise2( ___ )

[ ___ ] = wdenoise2( ___ ,Name,Value)

wdenoise2( ___ )

Description
IMDEN = wdenoise2(IM) denoises the grayscale or RGB image IM using an empirical Bayesian
method. The bior4.4 wavelet is used with a posterior median threshold rule. Denoising is down to
the minimum of floor(log2([M N])) and wmaxlev([M N],'bior4.4'), where M and N are the
row and column sizes of the image. IMDEN is the denoised version of IM.

For RGB images, by default, wdenoise2 projects the image onto its principal component analysis
(PCA) color space before denoising. To denoise an RGB image in the original color space, use the
ColorSpace name-value pair.

IMDEN = wdenoise2(IM,LEVEL) denoises the image IM down to resolution level LEVEL. LEVEL is
a positive integer less than or equal to floor(log2(min([M N]))), where M and N are the row and
column sizes of the image.

[IMDEN,DENOISEDCFS] = wdenoise2( ___ ) returns the scaling and denoised wavelet coefficients
in DENOISEDCFS using any of the preceding syntaxes.

[IMDEN,DENOISEDCFS,ORIGCFS] = wdenoise2( ___ ) returns the scaling and wavelet
coefficients of the input image in ORIGCFS using any of the preceding syntaxes.

[IMDEN,DENOISEDCFS,ORIGCFS,S] = wdenoise2( ___ ) returns the sizes of the approximation
coefficients at the coarsest scale along with the sizes of the wavelet coefficients at all scales. S is a
matrix with the same structure as the S output of wavedec2.

[IMDEN,DENOISEDCFS,ORIGCFS,S,SHIFTS] = wdenoise2( ___ ) returns the shifts along the
row and column dimensions for cycle spinning. SHIFTS is 2-by-(numshifts+1)2 matrix where each
column of SHIFTS contains the shifts along the row and column dimension used in cycle spinning and
numshifts is the value of CycleSpinning.

[ ___ ] = wdenoise2( ___ ,Name,Value) returns the denoised image with additional options
specified by one or more Name,Value pair arguments, using any of the preceding syntaxes.
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wdenoise2( ___ ) with no output arguments plots the original image along with the denoised image
in the current figure.

Examples

Denoise Grayscale Image Using Default Settings

Load the structure flower. The structure contains a grayscale image of a flower, and a noisy version
of that image. Display the original and noisy images.

load flower
subplot(1,2,1)
imagesc(flower.Orig)
title('Original')
subplot(1,2,2)
imagesc(flower.Noisy)
title('Noisy')
colormap gray

Denoise the noisy image using the default wdenoise2 settings. Compare with the original image.

imden = wdenoise2(flower.Noisy);
subplot(1,2,1)
imagesc(imden)
title('Denoised')
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subplot(1,2,2)
imagesc(flower.Noisy)
title('Noisy')
colormap gray

Note the improvement in SNR before and after denoising.

beforeSNR = ...
    20*log10(norm(flower.Orig(:))/norm(flower.Orig(:)-flower.Noisy(:)))

beforeSNR = 14.1300

afterSNR = ...
    20*log10(norm(flower.Orig(:))/norm(flower.Orig(:)-imden(:)))

afterSNR = 20.1388

Denoise Color Image Using Cycle Spinning

This example shows how to denoise a color image using cycle spinning.

Load the structure colorflower. The structure contains the RGB image of a flower, and a noisy
version of that image. Display the original and noisy images.

load colorflower
subplot(1,2,1)
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imagesc(colorflower.Orig)
title('Original')
subplot(1,2,2)
imagesc(colorflower.Noisy)
title('Noisy')

Denoise the image down to level 2 using the default Bayesian method and cycle spinning with 1 + 1 2

shifts. Display the noisy and denoised images.

imden = wdenoise2(colorflower.Noisy,2,'CycleSpinning',1);
figure
subplot(1,2,1)
imagesc(imden)
title('Denoised')
subplot(1,2,2)
imagesc(colorflower.Noisy)
title('Noisy')
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Compute the SNR before and after denoising.

beforeSNR = ...
    20*log10(norm(colorflower.Orig(:))/norm(colorflower.Orig(:)-colorflower.Noisy(:)))

beforeSNR = 11.2217

afterSNR = ...
    20*log10(norm(colorflower.Orig(:))/norm(colorflower.Orig(:)-imden(:)))

afterSNR = 19.8813

Denoise Image Using Specific Subband

This example shows how to denoise an image using a specific subband to estimate the variance of the
noise.

Load the structure flower. The structure contains the grayscale image of a flower, and a noisy
version of that image. Display the original and noisy images.

load flower
subplot(1,2,1)
imagesc(flower.Orig)
title('Original')
subplot(1,2,2)
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imagesc(flower.Noisy)
title('Noisy')
colormap gray

Denoise the image down to level 2 using the False Discovery Rate method with a Q-value of 0.01.
Denoise only based on the diagonal wavelet coefficients. Display the denoised and noisy images.

imden = wdenoise2(flower.Noisy,2,...
    'DenoisingMethod',{'FDR',0.01},...
    'NoiseDirection',"d");
figure
subplot(1,2,1)
imagesc(imden)
title('Denoised')
subplot(1,2,2)
imagesc(flower.Noisy)
title('Noisy')
colormap gray
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Compute the SNR before and after denoising.

beforeSNR = ...
    20*log10(norm(flower.Orig(:))/norm(flower.Orig(:)-flower.Noisy(:)))

beforeSNR = 14.1300

afterSNR = ...
    20*log10(norm(flower.Orig(:))/norm(flower.Orig(:)-imden(:)))

afterSNR = 19.9164

Input Arguments
IM — Input image
real-valued 2-D matrix | real-valued 3-D array

Input image to denoise, specified as a real-valued 2-D matrix or real-valued 3-D array. If IM is 3-D, IM
is assumed to be a color image in the RGB color space and the third dimension of IM must be 3. For
RGB images, wdenoise2 by default projects the image onto its PCA color space before denoising. To
denoise an RGB image in the original color space, use the ColorSpace name-value pair.

LEVEL — Wavelet decomposition level
positive integer

Wavelet decomposition level used for denoising, specified as a positive integer. LEVEL is a positive
integer less than or equal to floor(log2(min([M N]))), where M and N are the row and column
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sizes of the image. If unspecified, LEVEL defaults to min([floor(log2(min([M
N]))),wmaxlev([M N],wname)]), where wname is the wavelet used ('bior4.4' by default).

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NoiseEstimate','LevelDependent','Wavelet','sym6'

Wavelet — Name of wavelet
'bior4.4' (default) | character vector | string scalar

Wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal or
biorthogonal. Orthogonal and biorthogonal wavelets are designated as type 1 and type 2 wavelets
respectively in the wavelet manager, wavemngr.

• Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin
("beyl"), Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han
linear-phase moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and
Vaidyanathan ("vaid").

• Valid built-in biorthogonal wavelet families are: Biorthogonal Spline ("bior"), and Reverse
Biorthogonal Spline ("rbio").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1) or biorthogonal (returns 2). For example,
wavemngr("type","db6") returns 1.

DenoisingMethod — Denoising method
'Bayes' (default) | 'FDR' | 'Minimax' | 'SURE' | 'UniversalThreshold'

Denoising method to use to determine the denoising thresholds for the image IM.

• Bayes - Empirical Bayes

This method uses a threshold rule based on assuming measurements have independent prior
distributions given by a mixture model. Because measurements are used to estimate the weight in
the mixture model, the method tends to work better with more samples. By default, the posterior
median rule is used to measure risk [7].

• FDR - False Discovery Rate

This method uses a threshold rule based on controlling the expected ratio of false positive
detections to all positive detections. The FDR method works best with sparse data. Choosing a
ratio, or Q-value, less than 1/2 yields an asymptotically minimax estimator [1].

Note For 'FDR', there is an optional argument for the Q-value, which is the proportion of false
positives. Q is a real-valued scalar between 0 and 1/2, 0 < Q <= 1/2. To specify 'FDR' with a
Q-value, use a cell array where the second element is the Q-value. For example,
'DenoisingMethod',{'FDR',0.01}. If unspecified, Q defaults to 0.05.
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• Minimax - Minimax Estimation

This method uses a fixed threshold chosen to yield minimax performance for mean squared error
against an ideal procedure. The minimax principle is used in statistics to design estimators. See
thselect for more information.

• SURE - Stein's Unbiased Risk Estimate

This method uses a threshold selection rule based on Stein’s Unbiased Estimate of Risk (quadratic
loss function). One gets an estimate of the risk for a particular threshold value (t). Minimizing the
risks in (t) gives a selection of the threshold value.

• UniversalThreshold - Universal Threshold 2ln(length(x)) .

This method uses a fixed-form threshold yielding minimax performance multiplied by a small
factor proportional to log(length(X)).

ThresholdRule — Threshold rule
'Hard' | 'Soft' | 'Mean' | 'Median'

Threshold rule to use to shrink the wavelet coefficients. 'ThresholdRule' is valid for all denoising
methods, but the valid options and defaults depend on the denoising method. Rules possible for
different denoising methods are specified as follows:

• 'SURE', 'Minimax', 'UniversalThreshold': Valid options are 'Soft' or 'Hard'. The default
is 'Soft'.

• 'Bayes': Valid options are 'Median', 'Mean', 'Soft', or 'Hard'. The default is 'Median'.
• 'FDR': The only supported option is 'Hard'. You do not need to define 'ThresholdRule' for

'FDR'

NoiseEstimate — Method of estimating variance of noise
'LevelIndependent' (default) | 'LevelDependent'

Method of estimating variance of noise in the image. Valid options are 'LevelIndependent' and
'LevelDependent'.

• 'LevelIndependent' estimates the variance of the noise based on the finest-scale (highest-
resolution) wavelet coefficients.

• 'LevelDependent' estimates the variance of the noise based on the wavelet coefficients at each
resolution level.

There are three wavelet subbands: horizontal, vertical, and diagonal. The value of
'NoiseDirection' specifies which subbands to use in estimating the variance.

NoiseDirection — Wavelet subbands
["h","v","d"] (default) | string vector | scalar string

Wavelet subbands to use to estimate the variance of the noise, specified as a string vector or scalar
string. Valid entries are "h", "v", or "d", for the horizontal, vertical, and diagonal subbands,
respectively.
Example: 'NoiseDirection',["h" "v"] specifies the horizontal and vertical subbands.

CycleSpinning — Number of circular shifts
0 (default) | nonnegative integer
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Number of circular shifts in both the row and column directions to use for denoising IM with cycle
spinning. In cycle spinning, circular shifts of the image along the row and column dimensions are
denoised, shifted back, and averaged together to provide the final result.

Generally, SNR improvements are observed with cycle spinning up to 3-4 shifts and asymptote after
that. Because of the asymptotic effect on SNR and the fact that (CycleSpinning+1)2 images are
being denoised, it is recommended to start with CycleSpinning equal to 0. Then gradually increase
the number of shifts to determine if there is any improvement in SNR to justify the computational
expense.

For example, specifying 'CycleSpinning',1 results in four copies of IM being denoised:

• The original image (unshifted)
• IM circularly shifted a single-element along the row dimension
• IM circularly shifted a single-element along the column dimension
• IM circularly shifted a single-element along both the row and column dimensions

The four denoised copies of IM are denoised, reconstructed, shifted back to their original positions,
and averaged together. The value of CycleSpinning represents the maximum shift along both the
row and column dimensions. For RGB images, there are no shifts applied along the color space
dimension.

ColorSpace — Color space
'PCA' (default) | 'Original'

Color space used for denoising an RGB image. Valid options are 'PCA' and 'Original'.

• 'PCA': The RGB image is first projected onto its PCA color space, denoised in the PCA color
space, and returned to the original color space after denoising.

• 'Original': Denoising is done in the same color space as the input image.

ColorSpace is valid only for RGB images.

Output Arguments
IMDEN — Denoised image
real-valued matrix

Denoised image, returned as a matrix. The dimensions of IM and IMDEN are equal.

DENOISEDCFS — Scaling and denoised wavelet coefficients
real-valued matrix

Scaling and denoised wavelet coefficients of the denoised image, returned as a real-valued matrix.
DENOISEDCFS is a (numshifts+1)2-by-N matrix where N is the number of wavelet coefficients in the
decomposition of IM and numshifts is the value of 'CycleSpinning'. Each row of DENOISEDCFS
contains the denoised wavelet coefficients for one of (numshifts+1)2 shifted versions of IM. For
RGB images, DENOISEDCFS are the denoised coefficients in the specified color space.

The ith row of DENOISEDCFS contains the denoised wavelet coefficients of the image circularly shifted
by the amount returned in the ith column of SHIFTS. For example, if the second column of SHIFTS is
[1 ; 1], the second row of DENOISEDCFS contains the denoised coefficients of the image circularly
shifted by a single element in the row direction and a single element in the column direction.
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ORIGCFS — Scaling and wavelet coefficients
real-valued matrix

Scaling and wavelet coefficients of the input image, returned as a real-valued 2-D matrix. ORIGCFS is
a (numshifts+1)2-by-N matrix where N is the number of wavelet coefficients in the decomposition of
IM and numshifts is the value of the 'CycleSpinning'. Each row of ORIGCFS contains the
wavelet coefficients for one of (numshifts+1)2 shifted versions of IM. For RGB images, ORIGCFS
are the original coefficients in the specified color space.

The ith row of ORIGCFS contains the wavelet coefficients of the image circularly shifted by the amount
returned in the ith column of SHIFTS. For example, if the second column of SHIFTS is [1 ; 1], the
second row of ORIGCFS contains the coefficients of the image circularly shifted by a single element in
the row direction and a single element in the column direction.

S — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix. The matrix S contains the dimensions of the approximation coefficients at the
coarsest scale, the sizes of the wavelet coefficients at all scales, and the size of the original input
image. S is a matrix with the same structure as the S output of wavedec2.

SHIFTS — Image shifts
integer-valued matrix

Image shifts used in cycle spinning, returned as an integer-valued matrix. SHIFTS is 2-by-
(numshifts+1)2 matrix where each column of SHIFTS contains the shifts along the row and column
dimension used in cycle spinning.

Version History
Introduced in R2019a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The value of the Wavelet name-value pair argument must be constant.
• The input LEVEL must be defined as a scalar during compilation.
• When ColorSpace is set to 'PCA', eigenvectors are used to denoise the RGB image. wdenoise2

uses the eig function to calculate the eigenvectors. The eigenvectors calculated by the generated
code might be different in C and C++ code than in MATLAB. As a result, the signs of the detail
coefficients returned by the generated denoising code might be different than in MATLAB. The
lowpass coefficients are not affected. For more information, see eig.

• Plotting is not supported.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• The value of the Wavelet name-value pair argument must be constant.
• For optimized GPU code generation, specify LEVEL as a compile-time constant.
• The 'Bayes', 'UniversalThreshold', 'Minimax', and 'SURE' denoising methods support

optimized GPU code generation.
• When ColorSpace is set to 'PCA', eigenvectors are used to denoise the RGB image. wdenoise2

uses the eig function to calculate the eigenvectors. The eigenvectors calculated by the generated
code might be different in C and C++ code than in MATLAB. As a result, the signs of the detail
coefficients returned by the generated denoising code might be different than in MATLAB. The
lowpass coefficients are not affected. For more information, see eig.

• Plotting is not supported.

See Also
wdenoise | wavedec2

1 Functions

1-1664



wenergy
Energy for 1-D wavelet or wavelet packet decomposition

Syntax
[Ea,Ed] = wenergy(c,l)
E = wenergy(wpt)

Description
[Ea,Ed] = wenergy(c,l) returns, for a 1-D wavelet decomposition, Ea, the percentage of energy
corresponding to the approximation, and Ed, the percentages of energies corresponding to the
details. c and l are outputs of wavedec.

E = wenergy(wpt) returns the percentages of energy corresponding to the terminal nodes of the
wavelet packet tree wpt (see wptree, wpdec, and wpdec2). In this case, wenergy is a method of the
wptree object wpt, which overloads the previous wenergy function.

Examples

Energy of Wavelet Decompositions

Load a 1-D signal.

load noisbump

Obtain the 4-level wavelet decomposition of the signal using the sym4 wavelet.

wv = "sym4";
[c,l] = wavedec(noisbump,4,wv);

Obtain the percentages of energy in the approximation and details coefficients.

[Ea,Ed] = wenergy(c,l)

Ea = 88.2860

Ed = 1×4

    2.1560    1.2286    1.4664    6.8630

Obtain the wavelet packet tree corresponding to the 3-level wavelet packet decomposition of the
signal using the sym4 wavelet.

t = wpdec(noisbump,3,wv);

Obtain the percentages of energy in the terminal nodes.

e = wenergy(t)
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e = 1×8

   95.0329    1.4664    0.6100    0.6408    0.5935    0.5445    0.5154    0.5965

Input Arguments
c — Wavelet decomposition
vector

Wavelet decomposition, specified as a vector. The vector contains the wavelet coefficients. The
bookkeeping vector l contains the number of coefficients by level. See wavedec.
Data Types: single | double
Complex Number Support: Yes

l — Bookkeeping vector
vector

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition c by level. See wavedec.
Data Types: single | double

wpt — Wavelet packet tree
wptree object

Wavelet packet tree, specified as a wptree object. See wptree, wpdec, and wpdec2.

Output Arguments
Ea — Percentage of energy corresponding to approximation
positive scalar

Percentage of energy corresponding to approximation coefficients, returned as a positive scalar.
Data Types: single | double

Ed — Percentage of energy corresponding to details
vector

Percentage of energy corresponding to details coefficients, returned as a vector.
Data Types: single | double

E — Percentage of energy corresponding to terminal nodes
vector

Percentage of energy corresponding to the terminal nodes, returned as a vector.
Data Types: single | double

Version History
Introduced before R2006a
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See Also
wptree | wpdec | wpdec2
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wenergy2
Energy for 2-D wavelet decomposition

Syntax
[Ea,Eh,Ev,Ed] = wenergy2(C,S)
[Ea,EDetail] = wenergy2(C,S)

Description
[Ea,Eh,Ev,Ed] = wenergy2(C,S) returns, for the 2-D wavelet decomposition structure C, S:

• Ea — Percentage of energy corresponding to the approximation.
• Eh, Ev, and Ed — Vectors which contain the percentages of energy corresponding to the

horizontal, vertical, and diagonal details, respectively.

[Ea,EDetail] = wenergy2(C,S) returns EDetail, the sum of the energies corresponding to the
horizontal, vertical, and diagonal details.

Examples

Energy of 2-D Wavelet Decomposition

Load and display an image.

load detail
image(X)
colormap(map)
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Obtain the level 4 wavelet decomposition of the image using the sym4 wavelet.

load detail
[C,S] = wavedec2(X,4,"sym4");

Obtain the percentages of energy in the approximation, and all detail levels and orientations.

[Ea,Eh,Ev,Ed] = wenergy2(C,S)

Ea = 86.9903

Eh = 1×4

    1.1921    1.7396    1.8062    1.0492

Ev = 1×4

    1.0084    1.6559    1.5394    1.0467

Ed = 1×4

    0.4793    0.6951    0.5449    0.2528

Confirm the percentage of energy of the combined details equals the sum of the percentages of the
individual detail orientations.
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[~,EDetail] = wenergy2(C,S)

EDetail = 1×4

    2.6799    4.0906    3.8904    2.3488

sum([Eh;Ev;Ed])

ans = 1×4

    2.6799    4.0906    3.8904    2.3488

Input Arguments
C — Wavelet decomposition vector
vector

Wavelet decomposition vector, specified as a vector. C contains the approximation and detail
coefficients organized by level. The bookkeeping matrix S is used to parse C. For more information,
see wavedec2.
Example: [C,S] = wavedec2(X,3,"db4") returns the level 4 wavelet decomposition of X using
the db4 wavelet.
Data Types: double

S — Bookkeeping matrix
matrix

Bookkeeping matrix, specified as an integer-valued matrix. The matrix S contains the dimensions of
the wavelet coefficients by level and is used to parse the wavelet decomposition vector C. For more
information, see wavedec2.
Data Types: double

Output Arguments
Ea — Percentage of energy corresponding to the approximation
scalar

Percentage of energy corresponding to the approximation, returned as a scalar.
Data Types: double

Eh,Ev,Ed — Percentage of energy corresponding to the details
vectors

Percentage of energy corresponding to the horizontal, vertical, and diagonal details, respectively,
returned as 1-by-L vectors, where L is the level of the wavelet decomposition. The kth element of the
vector is the percentage of energy at the kth level.
Data Types: double

EDetail — Sum of percentage of energy corresponding to the details
vectors
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Percentage of energy corresponding to the details, respectively, returned as a 1-by-L vector, where L
is the level of the wavelet decomposition. The kth element of the vector is the percentage of energy at
the kth level. EDetail is the sum of the vectors Eh, Ev, and Ed.
Data Types: double

Version History
Introduced before R2006a

See Also
wavedec2
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wentropy
Wavelet entropy

Syntax
ent = wentropy(X)
ent = wentropy(X,Name=Value)
[ent,re] = wentropy( ___ )

Description
ent = wentropy(X) returns the normalized Shannon wavelet entropy of X.

ent = wentropy(X,Name=Value) specifies options using one or more name-value arguments.

[ent,re] = wentropy( ___ ) also returns the wavelet relative energies.

Examples

Obtain Wavelet Entropy

Shannon Entropy

Create a signal whose samples are alternating values of 0 and 2.

n = 0:499;
x = 1+(-1).^n;
stem(x)
axis tight
title("Signal")
xlim([0 50])
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Obtain the scaled Shannon entropy of the signal. Specify a one-level wavelet transform, use the
default wavelet and wavelet transform.

ent = wentropy(x,Level=1);
ent

ent = 2×1

    1.0000
    1.0000

Obtain the unscaled Shannon entropy. Divide the entropy by log(n), where n is the length of the
signal. Confirm the result equals the scaled entropy.

ent2 = wentropy(x,Level=1,Scaled=false);
ent2/log(length(x))

ans = 2×1

    1.0000
    1.0000

Create a zero-mean signal from the first signal. Obtain the scaled Shannon entropy of the new signal
using a one-level wavelet transform.
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x = x-1;
ent = wentropy(x,Level=1);
ent

ent = 2×1

    1.0000
         0

Renyi Entropy

Load the Kobe earthquake data. Obtain the level 4 tunable Q-factor wavelet transform of the data
with a quality factor equal to 2.

load kobe
wt = tqwt(kobe,Level=4,QualityFactor=2);

Obtain the Renyi entropy estimates for the tunable Q-factor transform.

ent = wentropy(wt,Entropy="Renyi");
ent

ent = 5×1

    0.8288
    0.8506
    0.8582
    0.8536
    0.7300

Load the ECG data. Obtain the level 5 discrete wavelet transform of the signal using the "db4"
wavelet.

load wecg
wv = "db4";
[C,L] = wavedec(wecg,5,wv);

Package the wavelet and approximation coefficients into a cell array suitable for computing the
wavelet entropy.

X = detcoef(C,L,"cells");
X{end+1} = appcoef(C,L,wv);

Obtain the Renyi entropy by scale.

ent = wentropy(X,Entropy="Renyi");
ent

ent = 6×1

    0.2412
    0.5239
    0.5459
    0.6520
    0.7661
    0.8547
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Tsallis Entropy

Create a Kronecker delta sequence.

N = 512;
seq = zeros(1,N);
seq(N/2) = 1;

Obtain the scaled Shannon entropy of the signal. Specify a level 3 wavelet transform.

ShannonEntropy = wentropy(seq,Level=3);

Obtain the scaled Tsallis entropy of the signal for different values of exponents. Confirm that as the
exponent goes to 1, the Tsallis entropy approaches the Shannon entropy.

exps = 3:-1/4:1;
TsallisExponent = zeros(length(exps),1);
TsallisEntropy = zeros(length(exps),4);
ctr = 1;
for k=exps
    ent2 = wentropy(seq,Level=3,Entropy="Tsallis",Exponent=k);
    TsallisExponent(ctr) = k;
    TsallisEntropy(ctr,:) = ent2';
    ctr = ctr+1;
end
TsallisTable = table(TsallisExponent,TsallisEntropy)

TsallisTable=9×2 table
    TsallisExponent                 TsallisEntropy             
    _______________    ________________________________________

            3          0.71454    0.87888    0.97069    0.98285
         2.75          0.67651    0.84955    0.95685    0.97233
          2.5          0.63178    0.81187    0.93596     0.9552
         2.25          0.57852     0.7628    0.90407    0.92718
            2          0.51437    0.69812    0.85499    0.88149
         1.75          0.43679    0.61258    0.77985    0.80825
          1.5          0.34491    0.50213    0.66897    0.69658
         1.25          0.24402    0.37071    0.52076    0.54417
            1           0.1495    0.23839      0.356    0.37278

ShannonEntropy'

ans = 1×4

    0.1495    0.2384    0.3560    0.3728

Input Arguments
X — Input data
real-valued vector | real-valued matrix | cell array

Input data, specified as a real-valued row or column vector, a cell array of real-valued row or column
vectors, or a real-valued matrix with at least two rows.
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• If X is a row or column vector, X must have at least four samples, and the function assumes X
represents time data.

• If X is a cell array, the function assumes X to be a decimated wavelet or wavelet packet transform
of a real-valued row or column vector.

• If X is a matrix with at least two rows, the function assumes X to be the maximal overlap discrete
wavelet or wavelet packet transform of a real-valued row or column vector.

Example: ent = wentropy(randn(1,1024)) returns the normalized Shannon wavelet entropy.
wentropy computes the wavelet coefficients using the default options of modwt.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: ent = wentropy(X,Wavelet="coif4") uses the "coif4" wavelet to obtain the wavelet
transform.

Entropy — Entropy
"Shannon" (default) | "Renyi" | "Tsallis"

Entropy returned by wentropy, specified as one of "Shannon", "Renyi", and "Tsallis". For more
information, see “Wavelet Entropy” on page 1-1679.

Exponent — Exponent
2 (default) | real scalar

Exponent to use in the Renyi and Tsallis entropy, specified as a real scalar.

• For the Renyi entropy, the exponent must be nonnegative.
• For the Tsallis entropy, the exponent must be greater than or equal to –1/2.
• For the Renyi and Tsallis entropies, specifying Exponent=1 is a limiting case and produces the

Shannon entropy.

Specifying Exponent is valid only when Entropy is "Renyi" or "Tsallis".

Note When you specify a negative exponent for the Tsallis entropy, entropy computations may
become unstable with small changes in the wavelet coefficient energies, resulting in significant
changes in the entropy values.

Data Types: single | double

Transform — Transform
"modwt" (default) | "dwt" | "dwpt" | "modwpt"

Transform used to obtain the wavelet or wavelet packet coefficients for the real-valued row or column
vector X, specified as one of these:

• "dwt" — Discrete wavelet transform
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• "dwpt" — Discrete wavelet packet transform
• "modwt" — Maximal overlap discrete wavelet transform
• "modwpt" — Maximal overlap discrete wavelet packet transform

The default wavelet depends on the value of Transform.

• If Transform is "dwt" or "modwt", wentropy uses the "sym4" wavelet.
• If Transform is "dwpt" or "modwpt", wentropy uses the "fk18" wavelet.

Periodic extension is used for all transforms.

Level — Wavelet decomposition level
positive integer

Wavelet decomposition level if the input X is time data, specified as a positive integer. The wentropy
function obtains the wavelet transform down to the specified level. If unspecified, the default level
depends on the type of transform and the signal length N.

• If Transform is "dwt" or "modwt", Level defaults to floor(log2(N))-1.
• If Transform is "dwpt" or "modwpt", Level defaults to min(4,floor(log2(N))-1).

Specifying a level is invalid if the input data are wavelet or wavelet packet coefficients.
Data Types: single | double

Wavelet — Wavelet
character vector | string scalar

Wavelet used to obtain the wavelet or wavelet packet transform of a real-valued row or column
vector, specified as a character vector or string scalar. If Transform is "modwt" or "modwpt", the
wavelet must be orthogonal. For a list of supported orthogonal or biorthogonal wavelets, see
wfilters.

Specifying a wavelet name is invalid if the input data are wavelet or wavelet packet coefficients.
Data Types: char | string

Distribution — Normalization method
"scale" (default) | "global"

Normalization method to use to obtain the empirical probability distribution for the wavelet
transform coefficients, specified as "scale" or "global".

• "global" — The function normalizes the squared magnitudes of the coefficients by the total sum
of squared magnitudes of all coefficients. Each scale in the wavelet transform yields a scalar and
the vector of these values forms a probability vector. The function performs entropy calculations
on this vector and the overall entropy is a scalar.

• "scale" — The function normalizes the wavelet coefficients at each scale separately and
calculates the entropy by scale.

• If the input is time series data, the output ent is of size (Ns+1)-by-1, where Ns is the number
of scales.

• If the input is a cell array or matrix, ent is of size M-by-1, where M is the length of the cell
array or number of rows in the matrix.
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Scaled — Scale wavelet entropy
true or 1 (default) | false or 0

Scale wavelet entropy logical, specified as a numeric or logical 1 (true) or 0 (false). If specified as
true, the wentropy function scales the wavelet entropy by the factor corresponding to a uniform
distribution for the specified entropy.

• For the Shannon and Renyi entropies, the factor is 1/log(Nj), where Nj is the length of the data
in samples by scale if Distribution is "scale", or the number of scales if Distribution is
"global".

• For the Tsallis entropy, the factor is (Exponent-1)/(1-Nj^(1-Exponent)).

Setting Scaled=false does not scale the wavelet entropy.
Data Types: logical

EnergyThreshold — Energy threshold
1e-8 (default) | nonnegative scalar

Energy threshold, specified as a nonnegative scalar. The function replaces all coefficients with energy
by scale below EnergyThreshold with 0. A positive EnergyThreshold prevents the function from
treating wavelet or wavelet packet coefficients with nonsignificant energy as a sequence with high
entropy.
Data Types: single | double

Output Arguments
ent — Entropy
scalar | vector

Entropy of X, returned as a scalar or vector.

• If X is time data, ent is a real-valued (Ns+1)-by-1 vector of entropy estimates by scale, where Ns
is the number of scales.

• If X is a wavelet or wavelet packet transform input, ent is a real-valued column vector with length
equal to the length of X if X is a cell array or the row dimension of X if X is a matrix.

See Distribution to obtain global estimates of the wavelet entropy. The wentropy function uses
the natural logarithm to compute the entropy.
Data Types: single | double

re — Relative wavelet energy
vector | matrix

Relative wavelet energy, returned as a vector or matrix.

• If Distribution="scale", the function returns the relative wavelet energies by coefficient and
scale.

• If Distribution="global", the function returns the relative wavelet energies by scale.

Scales where the coefficient energy is below the value of EnergyThreshold are equal to 0.
Data Types: single | double
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More About
Wavelet Entropy

Wavelet entropy (WE) is often used to analyze nonstationary signals. WE combines a wavelet or
wavelet decomposition with a measure of order within the wavelet coefficients by scale. These
measures of order are referred to as entropy measures. WE treats the normalized wavelet coefficients
as an empirical probability distribution and calculates its entropy.

You can normalize the wavelet coefficients wt in one of two ways.

• The function normalizes all the coefficients by the total sum of their squared magnitudes:

E = ∑
i
∑
j

wti j

2
,where j corresponds to time, and i corresponds to scale. The probability mass

function is: ℙ wti j = wti j
2/E .

• The function normalizes the coefficients at each scale separately by the sum of their squared

magnitudes: Ei = ∑
j

wti j

2
. The probability mass function is: ℙ wti j = wti j

2/Ei .

The wentropy function supports three entropy measures.

• Shannon Entropy

For a discrete random variable X, the Shannon entropy is defined as:

H(X) = − ∑
i

ℙ(X = xi)ln(ℙ(X = xi)),

where the sum is taken over all values that the random variable can take. By convention, 0 ln(0) =
0.

• Renyi Entropy

The Renyi entropy is defined as:

Hr(X) = 1
1− α ln ∑

i
ℙ(X = xi) α , α ≥  0.

In the limit, the Renyi entropy becomes the Shannon entropy: lim
α 1

Hr(X) = H(X) .

• Tsallis Entropy

The Tsallis entropy is defined as:

Ht(X) = 1
q− 1 1− ∑

i
ℙ(X = xi) q , q ∈ ℝ, q ≠ 1.

Similar to the Renyi entropy, in the limit, the Tsallis entropy becomes the Shannon entropy:
lim

q 1
Ht(X) = H(X) .

 wentropy

1-1679



Version History
Introduced before R2006a

R2023a: wentropy supports C/C++ code generation and gpuArray objects

The wentropy function supports:

• C/C++ code generation. You must have MATLAB Coder to generate C/C++ code.
• gpuArray object inputs. You must have Parallel Computing Toolbox to use gpuArray objects.

R2022b: wentropy input syntax has changed
Behavior changed in R2022b

The syntax used in the old version of wentropy continues to work, but is no longer recommended.
The old version provides you minimal control over how to estimate the entropy. The wentropy
function automatically determines from the input syntax which version to use.

You can specify the Shannon entropy in both versions of wentropy. However, because the old version
makes no assumptions about the input data, reproducing the same results as the new version can
require extensive effort.

Old Version New Version
load wecg
n = numel(wecg);
lev = 3;
wt = modwt(wecg,lev);
energy = sum(abs(wt).^2,2);
wt2 = abs(wt)./sqrt(energy);
ent = zeros(lev+1,1);
for k=1:lev+1
    ent(k) = wentropy(wt2(k,:),'shannon')/log(n);
end
ent

ent =

    0.3925
    0.6512
    0.6985
    0.9329

load wecg
ent = wentropy(wecg,Level=3)

ent =

    0.3925
    0.6512
    0.6985
    0.9329

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The values of the Wavelet, Transform, and Distribution name-value arguments must be
constant at compile time. Use coder.Constant.

• Vector inputs must have one dimension fixed at 1 at compile time. For example, to allow for row
vector input with unbounded size, specify the first input argument at compile time as
{coder.typeof(0,[1 Inf],[0 1]])}. For more information, see coder.typeof.

• When you compile with variable-size dimensions for both row and column input, the generated
code expects matrix input. For example, if you specify the first input argument at compile time as
{coder.typeof(0,[1 Inf],[1 1])}, the generated code errors for row vector input.

• The syntax used in the old version of the wentropy function is not supported. For more
information, see “Version History” on page 1-1680.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• The "dwpt" transform is not supported.
• The syntax used in the old version of the wentropy function is not supported. For more

information, see “Version History” on page 1-1680

See Also
wavedec | dwpt | modwt | modwpt
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wextend
Extend vector or matrix

Syntax
YEXT= wextend(TYPE,MODE,X,LEN)
YEXT = wextend( ___ ,LOC)

Description
YEXT= wextend(TYPE,MODE,X,LEN) extends real-valued input vector or matrix X by length LEN,
using the TYPE method and MODE extension. The TYPE specifies the dimension of the extension. The
MODE specifies the rule to apply to fill in values in the extension.

YEXT = wextend( ___ ,LOC) also specifies the location of the extension.

Examples

Extending Vectors and Matrices

Extend Vector

Extend a vector using a number of different methods.

Create a vector and set the extension length to 2.

len = 2;
x = [1 2 3]

x = 1×3

     1     2     3

Perform a zero-pad extension. To verify that different forms of the input arguments are possible,
perform this extension twice. The result is the same both times.

xextzpd1 = wextend('1','zpd',x,len)

xextzpd1 = 1×7

     0     0     1     2     3     0     0

xextzpd2 = wextend('1D','zpd',x,len,'b')

xextzpd2 = 1×7

     0     0     1     2     3     0     0

Perform a half-point symmetric extension.
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xextsym = wextend('1D','sym',x,len)

xextsym = 1×7

     2     1     1     2     3     3     2

Perform a periodic extension. Since the input vector is of odd length, wextend appends an extra
example to the end before extending using the 'ppd' mode. This sample is equal to the last value on
the right.

xextper = wextend('1D','per',x,len)

xextper = 1×8

     3     3     1     2     3     3     1     2

Extend Matrix

Extend a small matrix using a number of different methods.

Create a matrix and set the extension length to 2.

len = 2;
X = [1 2 3; 4 5 6]

X = 2×3

     1     2     3
     4     5     6

Perform a zero-pad extension of the array.

Xextzpd = wextend(2,'zpd',X,len)

Xextzpd = 6×7

     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     1     2     3     0     0
     0     0     4     5     6     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

Perform a half-point symmetric extension of the array.

Xextsym = wextend('2D','sym',X,len)

Xextsym = 6×7

     5     4     4     5     6     6     5
     2     1     1     2     3     3     2
     2     1     1     2     3     3     2
     5     4     4     5     6     6     5
     5     4     4     5     6     6     5
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     2     1     1     2     3     3     2

Extend uint8 Data Beyond Range Limits

Observe the effects of symmetric, antisymmetric, and smooth extensions on a uint8 vector when
values are at or near the limits of the data type's range.

Symmetric Extensions

The smallest uint8 integer is 0, and the largest is 255. Create a vector of uint8 integers that
includes those limits.

dataVector = uint8([0 1 2 253 254 255])

dataVector = 1x6 uint8 row vector

     0     1     2   253   254   255

Obtain whole-point and half-point symmetric extensions of the vector. Extend the vector by two values
on the left and right.

wholePointSym = wextend('1','symw',dataVector,2)

wholePointSym = 1x10 uint8 row vector

     2     1     0     1     2   253   254   255   254   253

halfPointSym = wextend('1','symh',dataVector,2)

halfPointSym = 1x10 uint8 row vector

     1     0     0     1     2   253   254   255   255   254

Extending symmetrically never results in values outside the uint8 range.

Antisymmetric Extensions

Create a type double copy of the vector, and then obtain a whole-point antisymmetric extension of
the copy. The extension includes negative values and values greater than 255.

dataVectorDouble = double(dataVector);
wholePointAsymDouble = wextend('1','asymw',dataVectorDouble,2)

wholePointAsymDouble = 1×10

    -2    -1     0     1     2   253   254   255   256   257

Obtain a whole-point antisymmetric extension of the original uint8 vector. Values outside the uint8
range are mapped to the closest uint8 integer, which is 0 for negative values and 255 for values
greater than 255.

wholePointAsym = wextend('1','asymw',dataVector,2)
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wholePointAsym = 1x10 uint8 row vector

     0     0     0     1     2   253   254   255   255   255

Now obtain half-point antisymmetric extensions of the double copy and the original uint8 vector.

halfPointAsymDouble = wextend('1','asymh',dataVectorDouble,2)

halfPointAsymDouble = 1×10

    -1     0     0     1     2   253   254   255  -255  -254

halfPointAsym = wextend('1','asymh',dataVector,2)

halfPointAsym = 1x10 uint8 row vector

     0     0     0     1     2   253   254   255     0     0

As with the whole-point antisymmetric extension, negative values in the extended uint8 data are
mapped to 0.

Smooth Extensions

Obtain order-0 smooth extensions of the double copy and the original uint8 vector.

smooth0Double = wextend('1','sp0',dataVectorDouble,2)

smooth0Double = 1×10

     0     0     0     1     2   253   254   255   255   255

smooth0 = wextend('1','sp0',dataVector,2)

smooth0 = 1x10 uint8 row vector

     0     0     0     1     2   253   254   255   255   255

Results are identical. Next, obtain an order-1 smooth extension of each vector.

smooth1Double = wextend('1','sp1',dataVectorDouble,2)

smooth1Double = 1×10

    -2    -1     0     1     2   253   254   255   256   257

smooth1 = wextend('1','sp1',dataVector,2)

smooth1 = 1x10 uint8 row vector

     0     0     0     1     2   253   254   255   255   255
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The values in the double result that are outside the uint8 range are mapped to the closest uint8
values in the uint8 extension.

Extend int8 Data Beyond Range Limits

Observe the effects of symmetric, antisymmetric, and smooth extensions of int8 data when values
are at or near the limits of the data type's range.

Symmetric Extensions

The smallest int8 integer is −128, and the largest is 127. Create a vector of int8 integers that
includes those limits.

dataVector = int8([-128 -127 -126 125 126 127])

dataVector = 1x6 int8 row vector

   -128   -127   -126    125    126    127

Obtain whole-point and half-point symmetric extensions of the data. Extend the vector by two values
on the left and right.

wholePointSym = wextend('1','symw',dataVector,2)

wholePointSym = 1x10 int8 row vector

   -126   -127   -128   -127   -126    125    126    127    126    125

halfPointSym = wextend('1','symh',dataVector,2)

halfPointSym = 1x10 int8 row vector

   -127   -128   -128   -127   -126    125    126    127    127    126

Extending symmetrically never results in values outside the int8 range.

Antisymmetric Extensions

Create a type double copy of the vector, and then obtain a whole-point antisymmetric extension of
the copy. The extension includes negative values less than −128 and values greater than 127.

dataVectorDouble = double(dataVector);
wholePointsAsymDouble = wextend('1','asymw',dataVectorDouble,2)

wholePointsAsymDouble = 1×10

  -130  -129  -128  -127  -126   125   126   127   128   129

Obtain a whole-point antisymmetric extension of the original int8 vector. Values outside the int8
range are mapped to the closest int8 integer, which is −128 for values less than −128 and 127 for
values greater than 127.

wholePointAsym = wextend('1','asymw',dataVector,2)

1 Functions

1-1686



wholePointAsym = 1x10 int8 row vector

   -128   -128   -128   -127   -126    125    126    127    127    127

Now obtain half-point antisymmetric extensions of the double copy and the original int8 vector.

halfPointAsymDouble = wextend('1','asymh',dataVectorDouble,2)

halfPointAsymDouble = 1×10

   127   128  -128  -127  -126   125   126   127  -127  -126

halfPointAsym = wextend('1','asymh',dataVector,2)

halfPointAsym = 1x10 int8 row vector

    127    127   -128   -127   -126    125    126    127   -127   -126

In the double result, the first value is 127, which can be represented as an int8 integer. The second
value is 128, which cannot be represented as an int8 integer. Therefore, in the int8 result, it is
being mapped to 127. The remaining values in the type double result can all be represented as int8
integers.

Smooth Extensions

Obtain order-0 smooth extensions of the double copy and the original int8 vector.

smooth0Double = wextend('1','sp0',dataVectorDouble,2)

smooth0Double = 1×10

  -128  -128  -128  -127  -126   125   126   127   127   127

smooth0 = wextend('1','sp0',dataVector,2)

smooth0 = 1x10 int8 row vector

   -128   -128   -128   -127   -126    125    126    127    127    127

The results are identical. Now obtain an order-1 smooth extension of each vector.

smooth1Double = wextend('1','sp1',dataVectorDouble,2)

smooth1Double = 1×10

  -130  -129  -128  -127  -126   125   126   127   128   129

smooth1 = wextend('1','sp1',dataVector,2)

smooth1 = 1x10 int8 row vector

   -128   -128   -128   -127   -126    125    126    127    127    127
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The values in the double result outside the int8 range are mapped to the closest int8 values in the
int8 extension.

Input Arguments
TYPE — Extension method
1 | '1' | '1d' | '1D' | 2 | '2' | '2d' | '2D' | 'ar' | 'addrow' | 'ac' | 'addcol'

Extension method used on the input, specified as one of the values listed here.

TYPE Description
1, '1', '1d', or '1D' 1-D extension
2, '2', '2d', or '2D' 2-D extension
'ar' or 'addrow' Add rows
'ac' or 'addcol' Add columns

Data Types: double | char

MODE — Specific extension
'zpd' | 'sp0' | 'spd' | 'sp1' | 'sym' | 'symh' | 'symw' | 'asym' | 'asymh' | 'asymw' | 'ppd' |
'per'

Specific extension method to use to extend the input, specified as one of the values listed here. For
more information, see dwtmode.

MODE Description
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric padding (half point): boundary value symmetric

replication
'symw' Symmetric padding (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric padding (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric padding (whole point): boundary value

antisymmetric replication
'ppd' Periodized extension (1)
'per' Periodized extension (2)

If the signal length is odd, wextend appends on the right a copy
of the last value, and performs the extension using the 'ppd'
mode. Otherwise, 'per' reduces to 'ppd'. This rule also
applies to images.

For more information on symmetric extension modes, see [1].
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Note The extension modes 'sp0' and 'spd' (or 'sp1') cast the data internally to double precision
before performing the extension. For integer data types, wextend warns if one of the following
occurs.

• The conversion to double causes a loss of precision.
• The requested extension results in integers beyond the range where double precision numbers

can represent consecutive integers exactly.

Data Types: char

X — Input data
real-valued vector or matrix

Input data, specified as a real-valued vector or matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LEN — Length of extension
nonnegative integer | two-element vector of nonnegative integers

Length of extension, specified as a nonnegative integer or two-element vector of nonnegative
integers. You can extend a matrix by expressing LEN as [LROW,LCOL], where LROW is the number of
rows to add and LCOL is the number of columns to add. You can perform a 2-D extension of a matrix
by the same amount in both directions by specifying LEN as single integer.

An extension of length 0 is equivalent to the null extension.
Example: wextend('2D','sym',[1 2 3 4;5 6 7 8],[2 0]) extends only two rows up and two
rows down.

LOC — Location of extension
'l' | 'u' | 'r' | 'd' | 'b' | 'n' | two-character array

Location of extension, specified as one or a pair of the following:

• 'l' — Extension left
• 'u' — Extension up
• 'r' — Extension right
• 'd' — Extension down
• 'b' — Extension on both sides
• 'n' — Null extension

The valid and default values for LOC, and the behavior of LEN, depend on the specified TYPE.

TYPE LOC
1, '1', 1d' or '1D' 'l', 'u', 'r', 'd', 'b', or 'n'

Example: wextend('1D','zpd',X,3,'r') extends input vector X
three elements to the right.
Default: 'b'
LEN is the length of the extension.

 wextend

1-1689



TYPE LOC
2, '2', '2d' or '2D' [LOCROW,LOCCOL], where LOCROW and LOCCOL are 1-D extension

locations or 'n' (none).
Example: wextend('2D','zpd',X,[2 3],'ub') extends input
vector or matrix X two rows up and three columns on both sides.
Default: 'bb'
LEN, specified as [LROW,LCOL], is the number of rows and columns
to add.

'ar' or 'addrow' 'l', 'u', 'r', 'd', 'b', or 'n'
Example: wextend('addrow','zpd',X,4,'d') extends input
vector or matrix X four rows down.
Default: 'b'
LEN is the number of rows to add.

'ac' or 'addcol' 'l', 'u', 'r', 'd', 'b', or 'n'
Example: wextend('addcol','zpd',X,1,'l') extends input
vector or matrix X one column to the left.
Default: 'b'
LEN is the number of columns to add.

Tips
For most wavelet applications, either a periodic extension or symmetric extension works fine.

Algorithms
When a value is outside the input data type's range, wextend maps it to the closest value of the input
data type. For examples of data being extended beyond a data type's range, see “Extend uint8 Data
Beyond Range Limits” on page 1-1684 and “Extend int8 Data Beyond Range Limits” on page 1-1686.

Version History
Introduced before R2006a

References
[1] Strang, G., and T. Nguyen. Wavelets and Filter Banks. Wellesley, MA: Wellesley-Cambridge Press,

1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The generated code can return a column vector when MATLAB returns a row vector if all of the
following conditions are true:

• TYPE specifies a 1-D extension.
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• Input X is a variable-size vector.
• Input X is not a variable-length row vector (1-by-:).

Code generation does not produce a warning or error message about the shape mismatch. In the
output vector that the generated code returns, the values match the values in the output vector
that MATLAB returns.

In this case, to generate code that returns a row vector, pass X(:).' instead of X.
• Input X must be of type double.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

Usage notes and limitations:

• Only 'sym' and 'per' extension modes are supported.
• The only syntax supported is YEXT = wextend(TYPE,MODE,X,LEN).

• The LOC input argument is not supported.
• For one-dimensional extensions, the default location 'b' is used. For two-dimensional

extensions, the default location 'bb' is used.
• Only extensions in one dimension are supported.

• The LEN input argument must have length equal to one.
• For one-dimensional extensions, the only supported extension methods are: 1, '1', '1d', and

'1D'.
• For two-dimensional extensions, the only supported extension methods are: 'addrow', and

'addcol'.

See Also
dwtmode
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wfbm
Fractional Brownian motion synthesis

Syntax
fBm = wfbm(H,L)
fBm = wfbm(H,L,ns,w)

fBm = wfbm(H,L,'plot')

Description
fBm = wfbm(H,L) returns a fractional Brownian motion signal fBm of the Hurst parameter H (0 <
H < 1) and length L, following the algorithm proposed by Abry and Sellan [1]. By default, wfbm uses
six reconstruction steps and the orthogonal db10 wavelet.

fBm = wfbm(H,L,ns,w) returns the signal using ns reconstruction steps and the sufficiently
regular orthogonal wavelet w.

fBm = wfbm(H,L,w,ns) is equivalent to fBm = wfbm(H,L,ns,w).

fBm = wfbm(H,L,'plot') generates and plots the fBm signal. The following syntaxes also
generate and plot the signal.

• fBm = wfbm(H,L,'plot',w)
• fBm = wfbm(H,L,'plot',ns)
• fBm = wfbm(H,L,'plot',w,ns)
• fBm = wfbm(H,L,'plot',ns,w)

Examples

Generate Fractional Brownian Motion Signals

According to the value of the Hurst parameter H, the fBm exhibits for H > 0.5, long-range
dependence and for H < 0.5, short or intermediate dependence. This example shows each situation
using the wfbm function, which generates a sample path of this process.

For purposes of reproducibility, set the random seed to the default value. Generate a fractional
Brownian motion signal of length 1000 with the Hurst parameter of 0.3. Plot the signal.

rng default
h = 0.3;
l = 1000;
fBm03 = wfbm(h,l,'plot');
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Now generate a fractional Brownian motion signal of length 1000 with the Hurst parameter of 0.7.
The signal clearly exhibits a stronger low-frequency component and has, locally, less irregular
behavior than fBm03.

h = 0.7;
l = 1000;
fBm07 = wfbm(h,l,'plot');
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Input Arguments
H — Hurst parameter
positive scalar

Hurst parameter, specified as a positive scalar strictly less than 1.
Example: fBm = wfbm(0.4,1000) generates a fractional Brownian motion of length L = 1000 with
Hurst parameter H = 0.4.
Data Types: double

L — Signal length
positive integer

Signal length, specified as a positive integer strictly greater than 100.
Example: fBm = wfbm(0.1,500) generates a fractional Brownian motion of length L = 500 with
Hurst parameter H = 0.1.
Data Types: double

ns — Number of reconstruction steps
positive integer

Number of reconstruction steps, specified as a positive integer greater than 1.

1 Functions

1-1694



Data Types: double

w — Orthogonal wavelet
character vector | string scalar

Orthogonal wavelet recognized by wavemngr, specified as a character vector or string scalar.

Output Arguments
fBm — Fractional Brownian motion signal
vector

Fractional Brownian motion signal, returned as a vector of length L.

More About
Fractional Brownian Motion

A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending on the Hurst
parameter 0 < H < 1. It generalizes the ordinary Brownian motion corresponding to H = 0.5 and
whose derivative is the white noise. The fBm is self-similar in distribution and the variance of the
increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

Algorithms
Starting from the expression of the fBm process as a fractional integral of the white noise process,
the idea of the algorithm is to build a biorthogonal wavelet depending on a given orthogonal one and
adapted to the parameter H.

Then the generated sample path is obtained by the reconstruction using the new wavelet starting
from a wavelet decomposition at a given level designed as follows: details coefficients are
independent random Gaussian realizations and approximation coefficients come from a fractional
ARIMA process.

This method was first proposed by Meyer and Sellan and implementation issues were examined by
Abry and Sellan [1].

Nevertheless, the samples generated following this original scheme exhibit too many high-frequency
components. To circumvent this undesirable behavior Bardet et al. [2] propose downsampling the
obtained sample by a factor of 10.

Two internal parameters delta = 10 (the downsampling factor) and a threshold prec = 1E-4, to
evaluate series by truncated sums, can be modified by the user for extreme values of H.

A complete overview of long-range dependence process generators is available in Bardet et al [2].

Version History
Introduced before R2006a

 wfbm

1-1695



References
[1] Abry, Patrice, and Fabrice Sellan. “The Wavelet-Based Synthesis for Fractional Brownian Motion

Proposed by F. Sellan and Y. Meyer: Remarks and Fast Implementation.” Applied and
Computational Harmonic Analysis 3, no. 4 (October 1996): 377–83. https://doi.org/10.1006/
acha.1996.0030.

[2] Bardet, Jean-Marc, Gabriel Lang, Georges Oppenheim, Anne Philippe, Stilian Stoev, and Murad S.
Taqqu. “Generators of Long-Range Dependent Processes: A Survey.” In Theory and
Applications of Long-Range Dependence, edited by Paul Doukhan, Georges Oppenheim, and
Murad S. Taqqu, 579–623. Boston: Birkhauser, 2003.

See Also
wfbmesti

1 Functions

1-1696



wfbmesti
Parameter estimation of fractional Brownian motion

Syntax
hest = wfbmesti(X)

Description
hest = wfbmesti(X) returns estimates of the fractal index H of the input signal X.

Examples

Hurst Parameter Estimation

This example shows how to estimate the Hurst index of a fractional Brownian motion. The example
simulates 1,000 realizations of fractional Brownian motion with H=0.6. Each realization consists of
10,000 samples. At the end of the simulation, the three estimates of the Hurst index are compared.

Initialize the random number generator for repeatable results. Set the Hurst index equal to 0.6 and
the length of the realizations to be 10,000.

rng default
H = 0.6;
len = 10000;

Generate 1,000 realizations of fractional Brownian motion and compute the estimates of the Hurst
parameter.

n = 1000; 
Hest = zeros(n,3);
for ii = 1:n
    fBm06 = wfbm(H,len);
    Hest(ii,:) = wfbmesti(fBm06);
end

Compare the estimates.

subplot(3,1,1)
histogram(Hest(:,1))
title("Discrete Second Derivative Estimator (DSOD)")
subplot(3,1,2)
histogram(Hest(:,2))
title("Wavelet Version of DSOD") 
subplot(3,1,3)
histogram(Hest(:,3))
title("Wavelet Details Regression Estimator")
xlabel("True value of the parameter H = 0.6")
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Input Arguments
X — Input signal
vector

Input signal, specified as a vector. The signal X is assumed to be a realization of fractional Brownian
motion with Hurst index H.
Data Types: double

Output Arguments
hest — Fractal index estimates
1-by-3 vector

Fractal index estimates, returned as a 1-by-3 vector. hest contains three estimates of the fractal
index H.

• The first two elements of hest are estimates based on the second derivative with the second
computed in the wavelet domain.

• The third estimate is based on the linear regression in loglog plot, of the variance of detail versus
level.
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More About
Fractional Brownian Motion

A fractional Brownian motion (fBm) is a continuous-time Gaussian process depending on the Hurst
parameter 0 < H < 1. It generalizes the ordinary Brownian motion corresponding to H = 0.5 and
whose derivative is the white noise. The fBm is self-similar in distribution and the variance of the
increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H),

where v is a positive constant.

This special form of the variance of the increments suggests various ways to estimate the parameter
H. One can find in Bardet et al [2] a survey of such methods. The wfbmesti function provides three
different estimates. The first one, due to Istas and Lang [4], is based on the discrete second-order
derivative. The second one is a wavelet-based adaptation and has similar properties. The third one,
proposed by Flandrin [3], estimates H using the slope of the loglog plot of the detail variance versus
the level. A more recent extension can be found in Abry et al [1].

Version History
Introduced before R2006a
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wfilters
Wavelet filters

Syntax
[LoD,HiD,LoR,HiR] = wfilters(wname)
[F1,F2] = wfilters(wname,type)

Description
[LoD,HiD,LoR,HiR] = wfilters(wname) returns the four lowpass and highpass, decomposition
and reconstruction filters associated with the orthogonal or biorthogonal wavelet wname.

[F1,F2] = wfilters(wname,type) returns the pair of type filters associated with the orthogonal
or biorthogonal wavelet wname. For example, wfilters("db6","h") returns the pair of highpass
filters HiD and HiR associated with the db6 wavelet.

Examples

Compute Four Filters

Set the wavelet name.

wname = "db5";

Compute the four filters associated with wavelet name specified by wname and plot the results.

[LoD,HiD,LoR,HiR] = wfilters(wname); 
subplot(2,2,1)
stem(LoD)
title("Decomposition Lowpass Filter")
subplot(2,2,2)
stem(HiD)
title("Decomposition Highpass Filter")
subplot(2,2,3)
stem(LoR)
title("Reconstruction Lowpass Filter")
subplot(2,2,4)
stem(HiR)
title("Reconstruction Highpass Filter")
xlabel("The four filters for "+wname)
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Input Arguments
wname — Name of orthogonal or biorthogonal wavelet
"haar" | "db1" | "db2" | "coif1" | "coif2" | ...

Name of orthogonal or biorthogonal wavelet, specified as one of the values listed here.

Wavelet Family Type Wavelets
Daubechies Orthogonal "db1" or "haar", "db2", ..., "db10", ...,

"db45"
Coiflets Orthogonal "coif1", ..., "coif5"
Symlets Orthogonal "sym2", ..., "sym8", ...,"sym45"
Fejér-Korovkin
filters

Orthogonal "fk4", "fk6", "fk8", "fk14", "fk22"

Best-localized
Daubechies

Orthogonal "bl7", "bl9", "bl10"

Morris minimum-
bandwidth

Orthogonal "mb4.2", "mb8.2", "mb8.3", "mb8.4"
"mb10.3", "mb12.3", "mb14.3", "mb16.3"
"mb18.3", "mb24.3", "mb32.3"

Beylkin Orthogonal "beyl"
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Wavelet Family Type Wavelets
Vaidyanathan Orthogonal "vaid"
Han linear-phase
moments

Orthogonal "han2.3", "han3.3", "han4.5", "han5.5"

Discrete Meyer Orthogonal "dmey"
BiorSplines Biorthogonal "bior1.1", "bior1.3", "bior1.5"

"bior2.2", "bior2.4", "bior2.6",
"bior2.8"
"bior3.1", "bior3.3", "bior3.5",
"bior3.7"
"bior3.9", "bior4.4", "bior5.5",
"bior6.8"

ReverseBior Biorthogonal "rbio1.1", "rbio1.3", "rbio1.5"
"rbio2.2", "rbio2.4", "rbio2.6",
"rbio2.8"
"rbio3.1", "rbio3.3", "rbio3.5",
"rbio3.7"
"rbio3.9", "rbio4.4", "rbio5.5",
"rbio6.8"

type — Type of filter pair
"d" | "r" | "l" | "h"

Type of filter pair to return, specified as one of the values listed here.

type Description
"d" Decomposition filters (LoD and HiD)
"r" Reconstruction filters (LoR and HiR)
"l" Lowpass filters (LoD and LoR)
"h" Highpass filters (HiD and HiR)

Output Arguments
LoD — Decomposition lowpass filter
real-valued vector

Decomposition lowpass filter, returned as a real-valued vector, associated with the wavelet wname.

HiD — Decomposition highpass filter
real-valued vector

Decomposition highpass filter, returned as a real-valued vector, associated with the wavelet wname.

LoR — Reconstruction lowpass filter
real-valued vector

Reconstruction lowpass filter, returned as a real-valued vector, associated with the wavelet wname.

HiR — Reconstruction highpass filter
real-valued vector
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Reconstruction highpass filter, returned as a real-valued vector, associated with the wavelet wname.

F1, F2 — Filter pair
real-valued vectors

Filter pair of requested type, returned, specified as one of the pairs of filters listed here.

type Description Filter Pair
"d" Decomposition filters LoD and HiD
"r" Reconstruction filters LoR and HiR
"l" Lowpass filters LoD and LoR
"h" Highpass filters HiD and HiR

Version History
Introduced before R2006a

References
[1] Daubechies, Ingrid. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied
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See Also
biorfilt | orthfilt | waveinfo | wavemngr

Topics
“Choose a Wavelet”
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wfusimg
Fusion of two images

Syntax
xfus = wfusimg(x1,x2,wname,level,afusmeth,dfusmeth)
[xfus,txfus,tx1,tx2] = wfusimg(x1,x2,wname,level,afusmeth,dfusmeth)

[ ___ ] = wfusimg( ___ ,'plot')

Description
The principle of image fusion using wavelets is to merge the wavelet decompositions of the two
original images using fusion methods applied to approximations coefficients and details coefficients.

xfus = wfusimg(x1,x2,wname,level,afusmeth,dfusmeth) returns the fused image xfus
obtained by fusion of the two original images x1 and x2.

[xfus,txfus,tx1,tx2] = wfusimg(x1,x2,wname,level,afusmeth,dfusmeth) also returns
three wavelet decomposition tree objects associated with xfus, x1, and x2, respectively.

[ ___ ] = wfusimg( ___ ,'plot') plots the objects txfus, tx1, and tx2. This syntax can be used
with any of the previous syntaxes.

Examples

Fuse Two Images

This example shows how to fuse two images to create a new image.

Load the mask and bust images.

load mask
x1 = X;
load bust
x2 = X;

Merge the two images from level 5 wavelet decompositions using the db2 wavelet. Perform the fusion
by taking the mean for both approximations and details.

wv = 'db2';
lv = 5;
xfusmean = wfusimg(x1,x2,wv,lv,'mean','mean');

Merge the two images again, but this time perform the fusion by taking the maximum of the
approximations and the minimum for the details.

xfusmaxmin = wfusimg(x1,x2,wv,lv,'max','min');

Plot the original and fused images.
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subplot(2,2,1)
image(x1)
axis square
title('Mask')
subplot(2,2,2)
image(x2)
axis square
title('Bust')
subplot(2,2,3)
image(xfusmean)
axis square 
title('Synthesized Image: mean-mean')
subplot(2,2,4)
image(xfusmaxmin)
axis square
title('Synthesized Image: max-min')
colormap(map)

Restore Image From Two Fuzzy Versions

This example shows how to restore an image from two fuzzy versions of an original image.

Load two fuzzy versions of an original image.
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load cathe_1
x1 = X;
load cathe_2
x2 = X;

Merge the two images from level 5 wavelet decompositions using the smy4 wavelet. Perform the
fusion by taking the maximum of the absolute value of the coefficients for both approximations and
details.

wv = 'sym4';
lv = 5;
xfus = wfusimg(x1,x2,wv,lv,'max','max');

Plot the original and fused images.

subplot(2,2,1)
image(x1)
axis square
title('Catherine 1')
subplot(2,2,2)
image(x2)
axis square
title('Catherine 2')
subplot(2,2,3)
image(xfus)
axis square 
title('Synthesized Image')
colormap(map)
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Fuse Two Images With User-Defined Fusion Method

This example shows how to fuse two images using a user-defined fusion method.

Load two images of the same size.

load mask
a = X;
load bust
b = X;

Define the fusion method and call the fusion function helperUserFusion. The source code for
helperUserFusion is listed in the appendix.

fus_method = struct('name','userDEF','param','helperUserFusion');

Merge the images twice with the user-defined method. First use wfusmat, which fuses the images
themselves and not their wavelet decompositions. Then use wfusimg, which fuses the wavelet
decompositions.

c = wfusmat(a,b,fus_method);
d = wfusimg(a,b,'db4',5,fus_method,fus_method);

Plot the original and fused images.

subplot(2,2,1)
image(a)
title('Original Image 1')
axis square
subplot(2,2,2)
image(b)
title('Original Image 2')
axis square
subplot(2,2,3)
image(c)
title('Fused Images')
axis square
subplot(2,2,4)
image(d)
title('Fused Decompositions')
axis square
colormap(pink(220))
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Visualize the differences between the merged images.

figure
image(c-d)
axis square
colormap(pink(220))
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Appendix

helperUserFusion

If you want to try a different user-defined fusion method, edit the file helpUserFusion.m, which is
located in the same folder as this example.

function c = helperUserFusion(A,B)
% This function is in support of the wavelet fusion examples only. It may
% change or be removed in a future release.

% create an upper triangular logical array the same size as A.
d = logical(triu(ones(size(A))));
% set a threshold
t = 0.3;

c = A;
% set the upper triangular portion of the output to a blend of A and B
c(d) = t*A(d)+(1-t)*B(d);
% set the lower triangular portion of the output to a different blend of A
% and B
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c(~d) = t*B(~d)+(1-t)*A(~d);
end

Input Arguments
x1,x2 — Images to merge
real-valued 2-D matrix | real-valued 3-D array

Images to merge, specified as real-valued 2-D matrices or real-valued 3-D arrays. If specified as 3-D
arrays, x1 and x2 are assumed to be color images in the RGB color space and the third dimension of
the arrays must be 3.

The images x1 and x2 must be the same size. To resize the images, use wextend or imresize.

wname — Wavelet
character vector | string scalar

Wavelet used to create the wavelet decomposition, specified as a character vector or string scalar.
The wavelet must be orthogonal or biorthogonal and recognized by wfilters.

level — Wavelet decomposition level
positive integer

Wavelet decomposition level, specified as a positive integer.

afusmeth,dfusmeth — Fusion methods for approximations and details
'max' | 'min' | 'mean' | 'img1' | 'img2' | 'rand' | structure array

Fusion methods for approximations and details, respectively, each specified either as a structure
array or as one of the values listed here. The approximation and details are merged element-wise.

afusmeth Description
'max' Maximum
'min' Minimum
'mean' Mean
'img1' First element
'img2' Second element
'rand' Random element

When specified as a structure array, the structure has the form
struct('name',nameMETH,'param',paramMETH) where nameMETH can be one of the values
listed here.

nameMETH Description
'linear'  
'UD_fusion' Up-down fusion
'DU_fusion' Down-up fusion
'RL_fusion' Right-left fusion (column-wise fusion)
'LR_fusion' Left-right fusion (column-wise fusion)
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nameMETH Description
'UserDEF' User-defined fusion

For the description of these options and the paramMETH parameter, see wfusmat.
Example: afusmeth = struct('name','linear','param',0.3)
Data Types: double | struct

Output Arguments
xfus — Fused image
real-valued 2-D matrix | real-valued 3-D array

Fused image, returned as a real-valued 2-D matrix or a real-valued 3-D array. The fused image xfus
has the same size as x1 and x2.

txfus,tx1,tx2 — Wavelet decomposition trees
wdectree object

Wavelet decomposition trees associated with xfus, x1, and x2, respectively, returned as wdectree
objects.
Example: plot(txfus) plots the object in a GUI tool that you can use to inspect the tree.

Version History
Introduced before R2006a

References
[1] de Zeeuw, P. M. "Wavelet and image fusion." CWI, Amsterdam, March 1998. https://
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See Also
wfusmat | wextend
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wfusmat
Fusion of two matrices or arrays

Syntax
C = wfusmat(A,B,method)
[C,D] = wfusmat(A,B,method)

Description
C = wfusmat(A,B,method) returns the fused array C obtained from the arrays A and B using the
fusion method specified by method.

[C,D] = wfusmat(A,B,method) returns the Boolean matrix D when defined, or an empty matrix
otherwise.

Examples

Matrix Fusion

Create two matrices.

m1 = reshape(1:2:32,4,4)

m1 = 4×4

     1     9    17    25
     3    11    19    27
     5    13    21    29
     7    15    23    31

m2 = reshape(2:2:33,4,4)

m2 = 4×4

     2    10    18    26
     4    12    20    28
     6    14    22    30
     8    16    24    32

Fuse m1 and m2 using the mean fusion method.

c1 = wfusmat(m1,m2,'mean')

c1 = 4×4

    1.5000    9.5000   17.5000   25.5000
    3.5000   11.5000   19.5000   27.5000
    5.5000   13.5000   21.5000   29.5000
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    7.5000   15.5000   23.5000   31.5000

Fuse m1 and m2 using the rand fusion method. Obtain the Boolean matrix. The nonzero entries of the
Boolean matrix correspond to the values of m1 in the fused output. For reproducibility, set the random
seed to the default value.

rng default
[c2,d2] = wfusmat(m1,m2,'rand')

c2 = 4×4

     2    10    18    26
     4    11    20    27
     5    13    21    30
     8    16    24    31

d2 = 4x4 logical array

   0   0   0   0
   0   1   0   1
   1   1   1   0
   0   0   0   1

Fuse m1 and m2 using the UD_fusion method. Confirm the first row of c3 equals the first row in m1,
and the last row in c3 equals the last row in m2.

mtd = struct('name','UD_fusion','param',0.4);
c3 = wfusmat(m1,m2,mtd)

c3 = 4×4

    1.0000    9.0000   17.0000   25.0000
    3.6444   11.6444   19.6444   27.6444
    5.8503   13.8503   21.8503   29.8503
    8.0000   16.0000   24.0000   32.0000

Input Arguments
A,B — Input data
array

Input data to merge, specified as two arrays. The inputs A and B must be the same size.

If A and B represent indexed images, then they are M-by-N matrices. If A and B represent truecolor
images, then they are M-by-N-by-3 arrays.

method — Fusion method
'max' | 'min' | 'mean' | 'img1' | 'img2' | 'rand' | structure array

Fusion method, specified either as a structure array or as one of the values listed here. For some
fusion methods, the wfusmat function creates a Boolean matrix D.
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meth Description
'max' D = (abs(A) ≥ abs(B)); C = A(D) + B(~D)
'min' D = (abs(A) ≤ abs(B)); C = A(D) + B(~D)
'mean' C = (A+B)/2; D = ones(size(A))
'img1' C = A
'img2' C = B
'rand' C = A(D) + B(~D); D is a Boolean random matrix

When specified as a structure array, the structure has the form
struct('name',nameMETH,'param',paramMETH), where nameMETH can be one of the values
listed here.

nameMETH Description
'linear' C = A*paramMETH + B*(1-paramMETH), where 0 ≤

paramMETH ≤ 1
'UD_fusion' Up-down fusion, with paramMETH ≥ 0

x = linspace(0,1,size(A,1));
P = x.^paramMETH;

Then each row of C is computed with

C(i,:) = A(i,:)*(1-P(i)) + B(i,:)*P(i); 

so C(1,:) = A(1,:), and C(end,:) = B(end,:)
'DU_fusion' Down-up fusion
'LR_fusion' Left-right fusion (column-wise fusion)
'RL_fusion' Right-left fusion (column-wise fusion)
'UserDEF' User-defined fusion, paramMETH is a character vector or string

scalar 'userFUNCTION' containing a function name such that C
= userFUNCTION(A,B).

Output Arguments
C — Fused output
array

Fused output of A and B, returned as an array.

D — Boolean matrix
matrix

Boolean matrix. For some fusion methods, the wfusmat function creates the Boolean matrix.
Otherwise, D is an empty matrix. For more information, see method.

Version History
Introduced before R2006a
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See Also
wfusimg

 wfusmat
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wkeep
Keep part of vector or matrix

Syntax
Y = wkeep(X,L,opt)
Y = wkeep(X,L,first)
Y = wkeep(X,S)
Y = wkeep(X,S,[firstr,firstc])

Description
Y = wkeep(X,L,opt) extracts the vector Y from the vector X. The length of Y is L.

If opt is 'c', 'l', or 'r', Y is the central, left, or right part, respectively, of X.

The syntax Y = wkeep(X,L) is equivalent to Y = wkeep(X,L,'c').

Y = wkeep(X,L,first) extracts the vector X(first:first+L-1).

Y = wkeep(X,S) extracts the central part of the matrix X. The size of Y is S.

Y = wkeep(X,S,[firstr,firstc]) extracts the submatrix of the matrix X, of size S and starting
from X(firstr,firstc).

Examples

Extract from Vector and Matrix

Create a vector.

x = 1:10;

Extract a vector of length 6 from the central part of x. Confirm both possible syntaxes return the
same vector.

y = wkeep(x,6,'c')

y = 1×6

     3     4     5     6     7     8

y = wkeep(x,6)

y = 1×6

     3     4     5     6     7     8

Extract a vector of length 7 from the central part of x.
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y = wkeep(x,7,'c')

y = 1×7

     2     3     4     5     6     7     8

Extract two vectors of length 6, one from the left part of x, and the other from the right part of x.

y = wkeep(x,6,'l')

y = 1×6

     1     2     3     4     5     6

y = wkeep(x,6,'r')

y = 1×6

     5     6     7     8     9    10

Create a 5-by-5 matrix.

x = magic(5)

x = 5×5

    17    24     1     8    15
    23     5     7    14    16
     4     6    13    20    22
    10    12    19    21     3
    11    18    25     2     9

Extract from the center of x a 3-by-2 matrix.

y = wkeep(x,[3 2])

y = 3×2

     5     7
     6    13
    12    19

Extract from x the 2-by-4 submatrix starting at x(3,1).

y = wkeep(x,[2 4],[3 1])

y = 2×4

     4     6    13    20
    10    12    19    21
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Input Arguments
X — Input
vector | matrix

Input, specified as a vector or matrix.
Data Types: single | double

L — Length of vector to extract
integer | Inf

Length of vector to extract from the input vector X, specified as an integer or Inf. If L is specified as
Inf, wkeep returns the input vector X.
Data Types: single | double

opt — Location of extraction
'c' | 'l' | 'r'

Location of extraction from the input vector X, specified as:

• 'c' — central part of the vector
• 'l' — left part of the vector
• 'r' — right part of the vector

Example: wkeep(1:10,4,'r') returns the extraction [7 8 9 10].

first — Starting index
positive integer

Starting index of the input vector X, specified as a positive integer. The first element in the extraction
is X(first).
Data Types: single | double

S — Dimensions of submatrix
two-element vector

Dimensions of submatrix to extract from the input matrix X, specified as a two-element vector. Each
element of S is a positive integer or Inf.
Example: If X is a 27-by-5 matrix, wkeep(X,[Inf 3]) extracts the 27-by-3 submatrix from the
central part of X.
Data Types: single | double

firstr,firstc — Starting row, column indices
two positive integers

Starting row, column indices of the input matrix X, specified as two positive integers. The value of the
extraction Y(1,1) is X(firstr,firstc).
Example: wkeep(X,[3 2],[1 4]) extracts a 3-by-2 submatrix from the matrix X starting from
X(1,4).
Data Types: single | double
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Version History
Introduced before R2006a

Extended Capabilities
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
wextend
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wmaxlev
Maximum wavelet decomposition level

Syntax
L = wmaxlev(S,wname)

Description
L = wmaxlev(S,wname) returns the maximum level L possible for a wavelet decomposition of a
signal or image of size S using the wavelet specified by wname (see wfilters for more information).
The maximum level is the last level for which at least one coefficient is correct.

wmaxlev returns the maximum allowed level decomposition, but in a general, a smaller value is
taken.

Examples

Maximum Levels of Decomposition for a Signal and Image

Return the maximum level of decomposition of a 1-D signal with 1024 samples using the Haar
wavelet.

s = 1024;
wv = 'haar';
l = wmaxlev(s,wv)

l = 10

Return the maximum level using the db7 wavelet.

wv = 'db7';
l = wmaxlev(s,wv)

l = 6

Return the maximum level of decomposition for a 2-D signal of dimension 512-by-128 using the Haar
wavelet.

s = [512 128];
wv = 'haar';
l = wmaxlev(s,wv)

l = 7

Observe the maximum level is the same when taking the minimum of the two dimensions.

l = wmaxlev(min(s),wv)

l = 7

Return the maximum level using the db7 wavelet.
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wv = 'db7';
l = wmaxlev(s,wv)

l = 3

Input Arguments
S — Size of signal or image
positive integer | two-element vector of positive integers

Size of signal or image, specified as a positive integer for a signal, or two-element vector of positive
integers for an image.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet used to determine maximum level of wavelet decomposition. The wavelet is from one of the
following wavelet families: Best-localized Daubechies, Beylkin, Coiflets, Daubechies, Fejér-Korovkin,
Haar, Han linear-phase moments, Morris minimum-bandwidth, Symlets, Vaidyanathan, Discrete
Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for the wavelets available in each
family.

Version History
Introduced before R2006a

See Also
wavedec | wavedec2 | wpdec | wpdec2
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wmpalg
(Not recommended) Matching pursuit

Note The wmpalg function no longer supports plotting and is no longer recommended. See
“Compatibility Considerations”.

Syntax
YFIT = wmpalg(MPALG,Y,MPDICT)
[YFIT,R] = wmpalg( ___ )
[YFIT,R,COEFF] = wmpalg( ___ )
[YFIT,R,COEFF,IOPT] = wmpalg( ___ )
[YFIT,R,COEFF,IOPT,QUAL] = wmpalg( ___ )
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg( ___ )
[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg( ___ ,Name=Value)

Description
YFIT = wmpalg(MPALG,Y,MPDICT) returns an adaptive greedy approximation, YFIT, of the input
signal, Y, in the dictionary, MPDICT. The adaptive greedy approximation uses the matching pursuit
algorithm, MPALG. The dictionary, MPDICT, is typically an overcomplete set of vectors.

[YFIT,R] = wmpalg( ___ ) returns the residual, R, which is the difference vector between Y and
YFIT at the termination of the matching pursuit.

[YFIT,R,COEFF] = wmpalg( ___ ) returns the expansion coefficients, COEFF. The number of
expansion coefficients depends on the number of iterations in the matching pursuit.

[YFIT,R,COEFF,IOPT] = wmpalg( ___ ) returns the column indices of the retained atoms, IOPT.
The length of IOPT equals the length of COEFF and is determined by the number of iterations in the
matching pursuit.

[YFIT,R,COEFF,IOPT,QUAL] = wmpalg( ___ ) returns the proportion of retained signal energy,
QUAL, for each iteration of the matching pursuit. QUAL is the ratio of the ℓ2 squared norm of the
expansion coefficient vector, COEFF, to the ℓ2 squared norm of the input signal, Y.

[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg( ___ ) returns the normalized dictionary, X. X contains
the unit vectors in the ℓ2 norm corresponding to the columns of MPDICT.

[YFIT,R,COEFF,IOPT,QUAL,X] = wmpalg( ___ ,Name=Value) returns an adaptive greedy
approximation with additional options specified by one or more Name=Value arguments.

Examples

Adaptive Approximation using Orthogonal Matching Pursuit

Approximate the cuspamax signal with the dictionary using orthogonal matching pursuit.
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Use a dictionary consisting of sym4 wavelet packets and the DCT-II basis.

load cuspamax
yfit = wmpalg('OMP',cuspamax,'lstcpt',{{'wpsym4',2},'dct'});
plot(cuspamax,'k')
hold on
plot(yfit,'linewidth',2)
hold off
legend('Original Signal','Matching Pursuit')

Return Residual, Expansion Coefficients, Selected Atoms, and Approximation Quality

Obtain the expansion coefficients in the dictionary, the column indices of the selected dictionary
atoms, and the proportion of retained signal energy.

Specify a dictionary consisting of sym4 wavelet packets and the DCT-II basis. Approximate the
cuspamax signal with the dictionary using orthogonal matching pursuit.

load cuspamax;
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,...
    'lstcpt',{{'wpsym4',2},'dct'});

Specify the Maximum Number of Iterations

This example shows how to set the maximum number of iterations of the orthogonal matching pursuit
to 50.

load cuspamax
[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,...
    'lstcpt',{{'wpsym4',1},{'wpsym4',2},'dct'},...
    'itermax',50);

 wmpalg

1-1723



Change Optimality Factor for Weak Orthogonal Matching Pursuit

This example shows how to allow for a suboptimal choice in the update of the orthogonal matching
pursuit.

Load a signal.

load cuspamax

Approximate the signal using weak orthogonal matching pursuit. Relax the requirement to be 0.8
times the optimal assignment.

[yfit,r,coeff,iopt,qual] = wmpalg('WMP',cuspamax,...
    'lstcpt',{{'wpsym4',1},{'wpsym4',2},'dct'},...
    'wmpcfs',0.8);

Plot the signal, approximation, residual, and the proportion of retained signal energy for each
iteration in the matching pursuit result.

subplot(3,1,1)
plot(cuspamax)
hold on
plot(yfit)
hold off
legend('Signal','Approx.')
title('Signal and Approximation')
axis tight
subplot(3,1,2)
plot(r)
title('Residual')
axis tight
subplot(3,1,3)
plot(qual,'s-')
title('Quality / Iteration')
ylabel('Quality')
xlabel('Iteration')
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Matching Pursuit of Electricity Consumption Data

Obtain a matching pursuit of electricity consumption measured every minute over a 24-hour period.

Load and plot data. The data shows electricity consumption sampled every minute over a 24-hour
period. Because the data is centered, the actual usage values are not interpretable.

load elec35_nor;
y = signals(32,:);
plot(y)
xlabel('Minutes')
ylabel('Usage')
set(gca,'xlim',[1 1440])
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Specify a dictionary for matching pursuit consisting of the Daubechies' extremal-phase wavelet with 2
vanishing moments at level 2, the Daubechies' least-asymmetric wavelet with 4 vanishing moments at
levels 1 and 4, the discrete cosine transform-II basis, and the sine basis.

dictionary = {{'db4',2},'dct','sin',{'sym4',1},{'sym4',4}};

Implement orthogonal matching pursuit to obtain a signal approximation in the dictionary. Use 35
iterations. Plot the result.

[yfit,r,coef,iopt,qual] = wmpalg('OMP',y,...
    'lstcpt',dictionary,'itermax',35);
plot(y)
hold on
plot(yfit,'r')
xlabel('Minutes')
ylabel('Usage');
legend('Original Signal','OMP','Location','NorthEast')
set(gca,'xlim',[1 1440])
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Input Arguments
MPALG — Matching pursuit algorithm
'BMP' (default) | 'OMP' | 'WMP'

Matching pursuit algorithm, specified as one of the following:

• 'BMP' — Basic matching pursuit
• 'OMP' — Orthogonal matching pursuit
• 'WMP' — Weak orthogonal matching pursuit

See “Matching Pursuit Algorithms”.

MPDICT — Matching pursuit dictionary
matrix

Matching pursuit dictionary, specified as a matrix. MPDICT is a N-by-P matrix, where N is equal to the
length of the input signal, Y. In matching pursuit, MPDICT is commonly a frame, or overcomplete set
of vectors. You may use the name-value argument 'lstcpt' to specify a dictionary instead of using
MPDICT.
Data Types: double

Y — Signal
vector
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Signal for matching pursuit, specified as a vector. The row dimension of MPDICT must match the
length of Y.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: yfit = wmpalg('OMP',y,lstcpt={'dct'}) specifies the DCT-II dictionary.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: yfit = wmpalg('OMP',y,'lstcpt',{'dct'})

itermax — Maximum number of iterations
25 (default) | positive integer

Positive integer fixing the maximum number of iterations of the matching pursuit algorithm. If you do
not specify a 'maxerr' value, the number of expansion coefficients, COEFF, the number of dictionary
vector indices, IOPT, and the length of the QUAL vector equal the value of 'itermax'.
Data Types: double

lstcpt — Valid subdictionaries
cell array

A cell array of cell arrays with valid subdictionaries. Each cell array describes one subdictionary.
Valid subdictionaries are:

• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name with the number of
vanishing moments and an optional decomposition level and extension mode. For example,
{'sym4',5} denotes the Daubechies least-asymmetric wavelet with 4 vanishing moments at level
5 and the default extension mode 'per'. If you do not specify the optional level and extension
mode, the decomposition level defaults to 5 and the extension mode to 'per'.

• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name preceded by wp
with the number of vanishing moments and an optional decomposition level and extension mode.
For example, {'wpsym4',5} denotes the Daubechies least-asymmetric wavelet packet with 4
vanishing moments at level 5. If you do not specify the optional level and extension mode, the
decomposition level defaults to 5 and the extension mode to 'per'.

• 'dct' Discrete cosine transform-II basis. The DCT-II orthonormal basis is:

ϕk(n) =

1
N k = 0

2
Ncos π

N n + 1
2 k k = 1, 2, …, N − 1.

• 'sin' Sine subdictionary. The sine subdictionary is

ϕk(t) = sin(2πkt) k = 1, 2, … N
2 0 ≤ t ≤ 1

where t is a linearly-spaced N-point vector.
• 'cos' Cosine subdictionary. The cosine subdictionary is

ϕk(t) = cos(2πkt) k = 1, 2, … N
2 0 ≤ t ≤ 1
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where t is a linearly-spaced N-point vector.
• 'poly' Polynomial subdictionary. The polynomial subdictionary is:

pn(t) = tn− 1 n = 1, 2, …20 0 ≤ t ≤ 1

where t is a linearly-spaced N-point vector.
• 'RnIdent' The shifted Kronecker delta subdictionary. The shifted Kronecker delta subdictionary

is:

ϕk(n) = δ(n− k) k = 0, 1, …N

Data Types: double

maxerr — Maximum relative error
cell array

Cell array containing the name of the norm and the maximum relative error in the norm expressed as
a percentage. Valid norms are 'L1', 'L2', and 'Linf'. The relative error expressed as a percentage
is

100 R
Y

where R is the residual at each iteration and Y is the input signal. For example, {'L1',10} sets
maximum acceptable ratio of the L1 norms of the residual to the input signal to 0.10.

If you specify 'maxerr', the matching pursuit terminates when the first of the following conditions is
satisfied:

• The number of iterations reaches the minimum of the length of the input signal, Y, or 500:
min(length(Y),500)

• The relative error falls below the percentage you specify with the 'maxerr' name-value pair.

Data Types: double

wmpcfs — Optimality factor
0.6 (default) | scalar

Optimality factor for weak orthogonal matching pursuit. The optimality factor is a real number in the
interval (0,1]. This name-value argument is only valid when MPALG is 'WMP'.
Data Types: double

Output Arguments
YFIT — Adaptive greedy approximation
vector

Adaptive greedy approximation of the input signal, Y, in the dictionary
Data Types: double

R — Residual
vector
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Residual after matching pursuit terminates
Data Types: double

COEFF — Expansion coefficients
vector

Expansion coefficients in the dictionary. The selected dictionary atoms weighted by the expansion
coefficients yield the approximated signal, YFIT.
Data Types: double

IOPT — Column indices
vector

Column indices of the selected dictionary atoms. Using the column indices in IOPT with the
expansion coefficients in COEFF, you can form the approximated signal, YFIT.
Data Types: double

QUAL — Proportion of retained signal energy
vector

Proportion of retained signal energy for each iteration in the matching pursuit. QUAL is a vector with
each element equal to

αk 2
2

Y 2
2

where αk is the vector of expansion coefficients after the k-th iteration.
Data Types: double

X — Normalized matching pursuit dictionary
matrix

The normalized matching pursuit dictionary. X is an N-by-P matrix where N is the length of the input
signal, Y. The columns of X have unit norm.
Data Types: double

Version History
Introduced in R2012a

R2022a: wmpalg no longer supports plotting
Errors starting in R2022a

The wmpalg function no longer supports the name-value arguments stepplot and typeplot.
Remove all instances from your code. Instead, use MATLAB plotting commands. See the example
“Change Optimality Factor for Weak Orthogonal Matching Pursuit” on page 1-1724.

R2022a: wmpalg is no longer recommended
Not recommended starting in R2022a
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The wmpalg function is no longer recommended. Use sensingDictionary with matchingPursuit
and basisPursuit.
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wmpdictionary
(To be removed) Dictionary for matching pursuit

Note wmpdictionary will be removed in a future release. Use sensingDictionary instead. For
more information, see “Compatibility Considerations”.

Syntax
MPDICT = wmpdictionary(N)
[MPDICT,NBVECT] = wmpdictionary(N)
[MPDICT,NBVECT]= wmpdictionary(N,Name,Value)
[MPDICT,NBVECT,LST] = wmpdictionary(N,Name,Value)
[MPDICT,NBVECT,LST,LONGS] = wmpdictionary(N,Name,Value)

Description
MPDICT = wmpdictionary(N) returns the N-by-P dictionary, MPDICT, for the default
subdictionaries {{'sym4',5},{'wpsym4',5},'dct','sin'}. The column dimension of MPDICT
depends on N.

[MPDICT,NBVECT] = wmpdictionary(N) returns the row vector, NBVECT, which contains the
number of vectors in each subdictionary. The order of the elements in NBVECT corresponds to the
order of the subdictionaries and any prepended or appended subdictionaries. The sum of the
elements in NBVECT is the column dimension of MPDICT.

[MPDICT,NBVECT]= wmpdictionary(N,Name,Value) returns the dictionary, MPDICT, using
additional options specified by one or more Name,Value pair arguments.

[MPDICT,NBVECT,LST] = wmpdictionary(N,Name,Value) returns the cell array, LST, with
descriptions of the subdictionaries.

[MPDICT,NBVECT,LST,LONGS] = wmpdictionary(N,Name,Value) returns the cell array,
LONGS, containing the number of vectors in each subdictionary. LONGS is only useful for wavelet
subdictionaries. In wavelet subdictionaries, the corresponding element in LONGS gives the number of
scaling functions at the coarsest level and wavelet functions by level.

Examples

Discrete Cosine Transform and Kronecker Delta Dictionary

Create a DCT and shifted Kronecker delta dictionary to represent a signal of length 100.
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mpdict = wmpdictionary(100,'lstcpt',{'dct','RnIdent'});

Input Arguments
N — Input signal length
positive integer

Length of your input signal, specified as a positive integer. The dictionary atoms are constructed to
have N elements. N equals the row dimension of the dictionary, MPDICT.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: MPDICT = wmpdictionary(100,lstcpt={'dct','RnIdent'})

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: MPDICT = wmpdictionary(100,'lstcpt',{'dct','RnIdent'})

addbeg — Prepended subdictionary
matrix

Prepended subdictionary, specified as an N-by-M matrix, where N is the length of the input signal.
wmpdictionary does not check that the M column vectors of the prepended dictionary form a basis.
If you do not specify a value for lstcpt, the subdictionary is prepended to the default dictionary. The
column vectors in the prepended subdictionary do not have to be unit-norm.
Data Types: double

addend — Appended subdictionary
matrix

Appended subdictionary, specified as an N-by-M matrix, where N is the length of the input signal.
wmpdictionary does not check that the M column vectors of the prepended dictionary form a basis.
If you do not specify a value for lstcpt, the subdictionary is appended to the default dictionary. The
column vectors in the appended subdictionary do not have to be unit-norm.
Data Types: double

lstcpt — Valid subdictionaries
cell array

A cell array of cell arrays with valid subdictionaries. Each cell array describes one subdictionary.
Valid subdictionaries are:

• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name with the number of
vanishing moments and an optional decomposition level and extension mode. For example,
{'sym4',5} denotes the Daubechies least-asymmetric wavelet with 4 vanishing moments at level
5 and the default extension mode 'per'. If you do not specify the optional level and extension
mode, the decomposition level defaults to 5 and the extension mode to 'per'.
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• A valid Wavelet Toolbox orthogonal or biorthogonal wavelet family short name preceded by wp
with the number of vanishing moments and an optional decomposition level and extension mode.
For example, {'wpsym4',5} denotes the Daubechies least-asymmetric wavelet packet with 4
vanishing moments at level 5. If you do not specify the optional level and extension mode, the
decomposition level defaults to 5 and the extension mode to 'per'.

• 'dct' Discrete cosine transform-II basis. The DCT-II orthonormal basis is:

ϕk(n) =

1
N k = 0

2
Ncos π

N n + 1
2 k k = 1, 2, …, N − 1.

• 'sin' Sine subdictionary. The sine subdictionary is

ϕk(t) = sin(2πkt) k = 1, 2, … N
2 0 ≤ t ≤ 1

where t is a linearly-spaced N-point vector.
• 'cos' Cosine subdictionary. The cosine subdictionary is

ϕk(t) = cos(2πkt) k = 1, 2, … N
2 0 ≤ t ≤ 1

where t is a linearly-spaced N-point vector.
• 'poly' Polynomial subdictionary. The polynomial subdictionary is:

pn(t) = tn− 1 n = 1, 2, …20 0 ≤ t ≤ 1

where t is a linearly-spaced N-point vector.
• 'RnIdent' The shifted Kronecker delta subdictionary. The shifted Kronecker delta subdictionary

is:

ϕk(n) = δ(n− k) k = 0, 1, …N

Data Types: double

Output Arguments
MPDICT — Matching pursuit dictionary
matrix

Matching pursuit dictionary, returned as a matrix. MPDICT is an N-by-P matrix with the row
dimension, N, equal to the length of the input signal. The column dimension of the matrix depends on
the size of the concatenated subdictionaries.

NBVECT — Number of vectors in subdictionaries
vector

Number of vectors in subdictionaries, returned as a vector. NBVECT is a row vector containing the
number of elements in each subdictionary. The order of the elements in NBVECT corresponds to the
order of the subdictionaries and any prepended or appended subdictionaries.

LST — Dictionary description
cell array
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Dictionary description, returned as a cell array. LST is a 1-by-L cell array, where L is the number of
subdictionaries. Each element of the cell array contains a description of a subdictionary. If you specify
a prepended or appended subdictionary, the first element of LST is 'AddBeg' or 'AddEnd'. If you
specify a level for the wavelet or wavelet packet, the corresponding element of LST is a 1-by-2 cell
array containing the wavelet or wavelet packet name in the first element and the level in the second
element.

LONGS — Number of elements for each subdictionary
cell array

Number of elements for each subdictionary, returned as a cell array. LONGS is useful only for wavelet
subdictionaries. If you specify a wavelet subdictionary, the corresponding element of LONGS provides
the number of scaling functions at the coarsest level and the number of wavelets at each level.

More About
Matching Pursuit

Matching pursuit refers to a number of greedy or weak-greedy algorithms for computing an adaptive
nonlinear expansion of a signal in a dictionary. In the majority of matching pursuit applications, a
dictionary is an overcomplete set of vectors. The elements of the dictionary are referred to as atoms
and are typically constructed to have certain time/frequency or time/scale properties. Matching
pursuit takes the NP-hard problem of finding the best nonlinear expansion in a dictionary and
implements it in an energy-preserving formulation that guarantees convergence. See “Matching
Pursuit Algorithms” for more details.

Version History
Introduced in R2012a

R2022a: wmpdictionary will be removed
Not recommended starting in R2022a

The wmpdictionary function will be removed in a future release. Use sensingDictionary
instead.
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Functionality Result Use Instead Compatibility
Considerations

MPDICT =
wmpdictionary(N)

Still runs Execute these steps:

1 Create a
sensingDictiona
ry using pre-built
support for wavelet
and DCT frames:

A1 = sensingDictionary('Size',N,...
'Type',{'dwt','dct'},...
'Name',{'sym4'},...
'Level',[5]);

2 Create a custom
sensingDictiona
ry:

T = linspace(0,1,N)';
K = 1:ceil(N/2);
T1 = repmat(T,1,numel(K));
K1 = repmat(K,numel(T),1);
Amat = sin(2*pi*(K1.*T1));
A2 = sensingDictionary('CustomDictionary',Amat);

3 Concatenate the
results:

MPDICT = [A1 A2];

• sensingDictionar
y provides pre-built
support for a variety
of frames, including
Fourier, Gaussian
and Bernoulli
random
distributions, and
Walsh code.

• sensingDictionar
y does not currently
support wavelet
packet bases.
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Functionality Result Use Instead Compatibility
Considerations

MPDICT =
wmpdictionary(N,'l
stcpt',dtypes),
where dtypes is a cell
array of cell arrays with
valid subdictionaries

Still runs Each cell array in
dtypes describes one
subdictionary. To specify
a subdictionary in
sensingDictionary,
use the Type, Name,
and Level name-value
arguments.

For example:

• Replace

mpdict = wmpdictionary(100,'lstcpt',{'dct','RnIdent'});

with

D = sensingDictionary('Size',100,'Type',{'dct','eye'})
• Replace

mpdict = wmpdictionary(100,...
'lstcpt',{{'db4',3},'dct'});

with

x = sensingDictionary('Size',100,...
'Type',{'dwt','dct'},...
'Name',{'db4'},...
'Level',[3 0])

For the wavelet option,
sensingDictionary
and wmpdictionary
behave differently.

• wmpdictionary
returns the wavelets
at all levels and the
scaling functions at
the final level.

• sensingDictionar
y returns the
wavelets at only the
final level.

For example,

mpdict =
wmpdictionary(100,
'lstcpt',
{{'db1',2}});

returns the scaling
functions for level 2, the
wavelets for level 2, and
the wavelets for level 1,
whereas

A =
sensingDictionary(
'Size',100,'Type',
{'dwt'},'Name',
{'db1'},'Level',2)
;

only returns the
wavelets at level 2.
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Functionality Result Use Instead Compatibility
Considerations

[~,NBVECT] =
wmpdictionary(N) or
[~,NBVECT] =
wmpdictionary(N,'l
stcpt')

Still runs NBVECT is the number
of vectors in each
subdictionary. The
number of vectors in a
subdictionary of a
sensingDictionary
object depends on the
associated basis type.

• For a non-random
basis type, the
number of vectors is
N.

• For a random basis
type, the number of
vectors is the
column size you
specified when you
created the
sensingDictionar
y object.

• For a custom
sensingDictionar
y, the number of
vectors is the
column size you
specified when you
created the
sensingDictionar
y object.

You can also use the
subdict method of
sensingDictionary
to extract the vectors.
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See Also
sensingDictionary | matchingPursuit | basisPursuit

Topics
“Matching Pursuit”
“Matching Pursuit Algorithms”
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wmspca
Multiscale principal component analysis

Syntax
[xsim,qual,npc_out,decsim,pca_params] = wmspca(x,level,wname,npc_in)
[ ___ ] = wmspca(x,level,wname,'mode',extmode,npc_in)
[ ___ ] = wmspca(dec,npc_in)

Description
[xsim,qual,npc_out,decsim,pca_params] = wmspca(x,level,wname,npc_in) returns a
simplified version xsim of the input matrix x obtained from the wavelet-based multiscale principal
component analysis (PCA). The wavelet decomposition is performed using the decomposition level
level and the wavelet wname.

[ ___ ] = wmspca(x,level,wname,'mode',extmode,npc_in) uses the specified discrete
wavelet transform (DWT) extension mode extmode.

[ ___ ] = wmspca(dec,npc_in) uses the wavelet decomposition structure dec. dec is expected to
be the output of mdwtdec.

Examples

Wavelet Principal Component Analysis of Noisy Multivariate Signal

Use wavelet multiscale principal component analysis to denoise a multivariate signal.

Load the dataset consisting of four signals of length 1024. Plot the original signals and the signals
with additive noise.

load ex4mwden
for i = 0:3
    subplot(4,2,2*i+1)
    plot(x_orig(:,i+1))
    axis tight
    title(['Original signal ',num2str(i+1)])
    subplot(4,2,2*i+2)
    plot(x(:,i+1))
    axis tight
    title(['Noisy signal ',num2str(i+1)])
end
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Perform the first multiscale wavelet PCA using the Daubechies least-asymmetric wavelet with four
vanishing moments, sym4. Obtain the multiresolution decomposition down to level 5. Use the
heuristic rule to decide how many principal components to retain.

level = 5;
wname = 'sym4';
npc = 'heur';
[x_sim,qual,npcA] = wmspca(x,level,wname,npc);

Plot the result and examine the quality of the approximation.

for i = 0:3
    subplot(4,2,2*i+1)
    plot(x(:,i+1))
    axis tight
    title(['Noisy signal ',num2str(i+1)])
    subplot(4,2,2*i+2)
    plot(x_sim(:,i+1))
    axis tight
    title(['First PCA ',num2str(i+1)])
end
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qual

qual = 1×4

   97.4372   94.5520   97.7362   99.5219

The quality results are all close to 100%. The npc vector gives the number of principal components
retained at each level.

Suppress the noise by removing the principal components at levels 1-3. Perform the multiscale PCA
again.

npcA(1:3) = zeros(1,3);
[x_sim,qual,npcB] = wmspca(x,level,wname,npcA);

Plot the result.

for i = 0:3
    subplot(4,2,2*i+1)
    plot(x(:,i+1))
    axis tight
    title(['Noisy signal ',num2str(i+1)])
    subplot(4,2,2*i+2)
    plot(x_sim(:,i+1))
    axis tight
    title(['Second PCA ',num2str(i+1)])
end
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Input Arguments
x — Multisignal
real-valued matrix

Multisignal, specified as a real-valued matrix. The matrix x contains P signals of length N stored
column-wise (N > P).
Data Types: double

level — Level of decomposition
positive integer

Level of decomposition, specified as a positive integer. wmspca does not enforce a maximum level
restriction. Use wmaxlev to ensure that the wavelet coefficients are free from boundary effects. If
boundary effects are not a concern, a good rule is to set level less than or equal to
fix(log2(length(N))), where N is the signal length.
Data Types: double

wname — Analyzing wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. The wavelet must be orthogonal or
biorthogonal. Orthogonal and biorthogonal wavelets are designated as type 1 and type 2 wavelets
respectively in the wavelet manager, wavemngr.

 wmspca
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• Valid built-in orthogonal wavelet families are: Best-localized Daubechies ("bl"), Beylkin
("beyl"), Coiflets ("coif"), Daubechies ("db"), Fejér-Korovkin ("fk"), Haar ("haar"), Han
linear-phase moments ("han"), Morris minimum-bandwidth ("mb"), Symlets ("sym"), and
Vaidyanathan ("vaid").

• Valid built-in biorthogonal wavelet families are: Biorthogonal Spline ("bior"), and Reverse
Biorthogonal Spline ("rbio").

For a list of wavelets in each family, see wfilters. You can also use waveinfo with the wavelet
family short name. For example, waveinfo("db"). Use wavemngr("type",wn) to determine if the
wavelet wn is orthogonal (returns 1) or biorthogonal (returns 2). For example,
wavemngr("type","db6") returns 1.

npc_in — Principal components parameter
vector | "kais" | "heur" | "nodet"

Principal components parameter, specified as a vector, character vector, or string scalar.

• If npc_in is a vector, then it must be of length level+2. The vector npc_in contains the number
of retained principal components for each PCA performed:

• npc_in(d) is the number of retained noncentered principal components for details at level d,
for 1 ≤ d ≤ level.

• npc_in(level+1) is the number of retained non-centered principal components for
approximations at level level.

• npc_in(level+2) is the number of retained principal components for final PCA after wavelet
reconstruction.

npc_in must be such that 0 ≤ npc_in(d) ≤ P, where P is the number of signals, for 1 ≤ d ≤
level+2.

• If npc_in is "kais", then the number of retained principal components is selected automatically
using Kaiser's rule. Kaiser's rule keeps the components associated with eigenvalues exceeding the
mean of all eigenvalues.

• If npc_in is "heur", then the number of retained principal components is selected automatically
using the heuristic rule. The heuristic rule keeps the components associated with eigenvalues
greater than 0.05 times the sum of all eigenvalues.

• If npc_in is "nodet", then the details are "killed" and all the approximations are retained.

Data Types: double | string | char

extmode — Extension mode
'zpd' | 'sp0' | 'spd' | ...

Extension mode used when performing the wavelet decomposition, specified as:

mode DWT Extension Mode
'zpd' Zero extension
'sp0' Smooth extension of order 0
'spd' (or 'sp1') Smooth extension of order 1
'sym' or 'symh' Symmetric extension (half point): boundary value symmetric

replication
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mode DWT Extension Mode
'symw' Symmetric extension (whole point): boundary value symmetric

replication
'asym' or 'asymh' Antisymmetric extension (half point): boundary value

antisymmetric replication
'asymw' Antisymmetric extension (whole point): boundary value

antisymmetric replication
'ppd', 'per' Periodized extension

If the signal length is odd and mode is 'per', an extra sample
equal to the last value is added to the right and the extension is
performed in 'ppd' mode. If the signal length is even, 'per' is
equivalent to 'ppd'. This rule also applies to images.

The global variable managed by dwtmode specifies the default extension mode. Use dwtmode to
determine the extension modes.

dec — Wavelet decomposition structure
structure

Wavelet decomposition structure of a multisignal, specified as a structure. dec is expected to be the
output of mdwtdec. The multisignal input of mdwtdec is a matrix A, where the signals are arranged
column-wise. If A is N-by-P, then N must be greater than P.
Data Types: double

Output Arguments
xsim — Simplified multivariate multisignal
matrix

Simplified multivariate multisignal, returned as a matrix. The dimensions of xsim equal the
dimensions of x.
Data Types: double

qual — Quality of column reconstructions
vector

Quality of column reconstructions, returned as a vector of length P, where P is equal to size(x,2).
qual contains the quality of column reconstructions given by the relative mean square errors in
percent.
Data Types: double

npc_out — Number of retained principal components
vector

Number of retained principal components, returned as a vector. If npc_in is a vector, then npc_out
equals npc_in.
Data Types: double
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decsim — Wavelet decomposition
structure

Wavelet decomposition of the simplified multisignal xsim, returned as a structure with the following
fields:

• dirDec — 'c' (column), indicator of decomposition direction
• level — Level of wavelet decomposition
• wname — Wavelet name
• dwtFilters — Structure with four fields:

• LoD — Lowpass decomposition filter
• HiD — Highpass decomposition filter
• LoR — Lowpass reconstruction filter
• HiR — Highpass reconstruction filter

• dwtEXTM — DWT extension mode
• dwtShift — DWT shift parameter (0 or 1)
• dataSize — Size of x
• ca — Approximation coefficients at level level
• cd — Cell array of detail coefficients, from level 1 to level level

ca and cd{k}, for k from 1 to level, are matrices, where the coefficients are stored as columns.

pca_params — PCA parameters
structure array

PCA parameters, returned as a structure array of length level+2, where:

• pca_params(d).pc is a P-by-P matrix of principal components. The columns are stored in
descending order of the variances.

• pca_params(d).variances is the principal component variances vector.
• pca_params(d).npc = npc_out

Algorithms
The multiscale principal components generalizes the usual PCA of a multivariate signal seen as a
matrix by performing simultaneously a PCA on the matrices of details of different levels. In addition, a
PCA is performed also on the coarser approximation coefficients matrix in the wavelet domain as well
as on the final reconstructed matrix. By selecting conveniently the numbers of retained principal
components, interesting simplified signals can be reconstructed.

Version History
Introduced in R2006b
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wmulden
Wavelet multivariate denoising

Syntax
[x_den,npc,nestcov,dec_den,pca_params,den_params] = wmulden(x,level,wname,
npc_app,npc_fin,tptr,sorh)
[ ___ ] = wmulden(x,level,wname,"mode",extmode,npc_app,npc_fin,tptr,sorh)
[ ___ ] = wmulden(dec,npc_app)
[dec,pca_params] = wmulden("estimate",dec,npc_app,npc_fin)

Description
[x_den,npc,nestcov,dec_den,pca_params,den_params] = wmulden(x,level,wname,
npc_app,npc_fin,tptr,sorh) returns a denoised version x_den of the input matrix x. The
strategy combines univariate wavelet denoising in the basis where the estimated noise covariance
matrix is diagonal with noncentered Principal Component Analysis (PCA) on approximations in the
wavelet domain or with final PCA.

[ ___ ] = wmulden(x,level,wname,"mode",extmode,npc_app,npc_fin,tptr,sorh) uses
the extension mode extmode for the discrete wavelet transform (DWT).

[ ___ ] = wmulden(dec,npc_app) uses the wavelet decomposition structure dec.

[dec,pca_params] = wmulden("estimate",dec,npc_app,npc_fin) returns the wavelet
decomposition dec and the principal components estimates pca_params.

Examples

Denoise Multivariate Signal

Load a multivariate signal x together with the original signals (x_orig) and true covariance matrix
(covar).

load ex4mwden

Set the denoising method parameters.

level = 5;
wname = "sym4";
tptr = "sqtwolog";
sorh = "s";

Set the PCA parameters to select the number of retained principal components automatically by
Kaiser's rule.

npc_app = "kais";
npc_fin = "kais";

Perform multivariate denoising.
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[x_den,npc,nestcov] = wmulden(x,level,wname, ...
    npc_app,npc_fin,tptr,sorh);

Display the original, observed, and denoised signals. The first function, which is irregular, is correctly
recovered while the second function, more regular, is well denoised.

kp = 0;
for i = 1:4 
    subplot(4,3,kp+1)
    plot(x_orig(:,i))
    ylim([-9 12])
    title(["Original Signal ",num2str(i)])
    subplot(4,3,kp+2)
    plot(x(:,i))
    ylim([-9 12])
    title(["Observed Signal ",num2str(i)])
    subplot(4,3,kp+3)
    plot(x_den(:,i)) 
    ylim([-9 12])
    title(["Denoised Signal ",num2str(i)])
    kp = kp+3;
end

The second output argument gives the number of retained principal components for PCA for
approximations and for final PCA.

npc
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npc = 1×2

     2     2

The third output argument contains the estimated noise covariance matrix using the MCD bases on
the matrix of finest details.

nestcov

nestcov = 4×4

    1.0784    0.8333    0.6878    0.8141
    0.8333    1.0025    0.5275    0.6814
    0.6878    0.5275    1.0501    0.7734
    0.8141    0.6814    0.7734    1.0967

Compare the estimated noise covariance with the true values. The estimation is satisfactory since the
values are close to the true values given by covar.

covar

covar = 4×4

    1.0000    0.8000    0.6000    0.7000
    0.8000    1.0000    0.5000    0.6000
    0.6000    0.5000    1.0000    0.7000
    0.7000    0.6000    0.7000    1.0000

Input Arguments
x — Input data
matrix

Input data, specified as a matrix. The input matrix x contains P signals of length N stored column-
wise, where N > P.

Wavelet Decomposition Parameters

level — Level of wavelet decomposition
positive integer

Level of wavelet decomposition, specified as a positive integer.

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. wname can specify an orthogonal or
biorthogonal wavelet. For a list of supported wavelets, see wfilters.
Data Types: char | string

dec — Wavelet decomposition
structure
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Wavelet decomposition structure of signals to be denoised, specified as a structure. dec is assumed to
be the output of mdwtdec. dec can be replaced with x, wname, and level.
Example: dec = mdwtdec("c",x,level,wname)

extmode — Extension mode
"zpd" | "sp0" | "spd" | ...

Extension mode used when performing the DWT, specified as one of the following:

mode DWT Extension Mode
'zpd" Zero extension
"sp0" Smooth extension of order 0
"spd" (or "sp1") Smooth extension of order 1
"sym" or "symh" Symmetric extension (half point): boundary value symmetric

replication
"symw" Symmetric extension (whole point): boundary value symmetric

replication
"asym" or "asymh" Antisymmetric extension (half point): boundary value

antisymmetric replication
"asymw" Antisymmetric extension (whole point): boundary value

antisymmetric replication
"ppd" Periodized extension (1)
"per" Periodized extension (2)

If the signal length is odd, wextend adds to the right an extra
sample that is equal to the last value, and performs the extension
using the "ppd" mode. Otherwise, "per" reduces to "ppd".

The global variable managed by dwtmode specifies the default extension mode.

Principal Components Parameters

npc_app — Principal components selection method for approximations
integer | "kais" | "heur" | "none"

Principal components selection method for approximations at level level, specified as one of these.

• If npc_app is an integer, npc_app sets the number of retained principal components for
approximations at level level in the wavelet domain. npc_app must satisfy 0 ≤ npc_app ≤ P,
where P is the number of columns in x.

• If npc_app is "kais" or "heur", the wmulden function selects the number of retained principal
components using Kaiser's rule or the heuristic rule automatically.

• Kaiser's rule keeps the components associated with eigenvalues greater than the mean of all
eigenvalues.

• The heuristic rule keeps the components associated with eigenvalues greater than 0.05 times
the sum of all eigenvalues.

• Setting npc_app is "none" is equivalent to setting npc_app equal to P, where P is the number of
columns in x.
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npc_fin — Final PCA selection method
integer | "kais" | "heur" | "none"

Final PCA selection method after wavelet reconstruction, specified as one of these.

• If npc_fin is an integer, npc_fin sets the number of retained principal components for final PCA
after wavelet reconstruction. npc_fin must satisfy 0 ≤ npc_fin ≤ P, where P is the number of
columns in x.

• If npc_fin is "kais" or "heur", the wmulden function selects the number for final PCA using
Kaiser's rule or the heuristic rule automatically.

• Kaiser's rule keeps the components associated with eigenvalues greater than the mean of all
eigenvalues.

• The heuristic rule keeps the components associated with eigenvalues greater than 0.05 times
the sum of all eigenvalues.

• Setting npc_fin is "none" is equivalent to setting npc_fin equal to P, where P is the number of
columns in x.

Denoising Parameters

tptr — Threshold selection rule
"sqtwolog" (default) | "rigsure" | "heursure" | "minimax" | "penalhi" | "penalme" |
"penallo"

Threshold selection rule to apply to the wavelet decomposition of x.

• "rigsure" — Use the principle of Stein's Unbiased Risk.
• "heursure" — Use a heuristic variant of Stein's Unbiased Risk.
• "sqtwolog" — Use the universal threshold 2ln(length(x)) .
• "minimaxi" — Use minimax thresholding. (See thselect for more information.)
• "penalhi", "penalme", "penallo" — Use Birgé-Massart strategy. For more information, see

wthrmngr.

sorh — Type of thresholding
"s" (default) | "h"

Type of thresholding to perform:

• "s" — Soft thresholding
• "h" — Hard thresholding

Output Arguments
x_den — Denoised data
matrix

Denoised data, returned as a matrix.

npc — Selected numbers of retained principal components
vector

Selected numbers of retained principal components, returned as a vector.
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nestcov — Estimated noise covariance matrix
matrix

Estimated noise covariance matrix obtained using the minimum covariance determinant (MCD)
estimator.

dec_den — Wavelet decomposition
structure

Wavelet decomposition of the denoised data, returned as a structure with the following fields:

• dirDec — Direction indicator: 'r' (row) or 'c' (column)
• level — Level of wavelet decomposition
• wname — Wavelet name
• dwtFilters — Structure with four fields: LoD, HiD, LoR, and HiR
• dwtEXTM — DWT extension mode
• dwtShift — DWT shift parameter (0 or 1)
• dataSize — Size of x
• ca — Approximation coefficients at level level
• cd — Cell array of detail coefficients, from level 1 to level level

The coefficients ca and cd{k}, for k from 1 to level, are matrices and are stored in rows if dirdec
= 'r' or in columns if dirdec = 'c'.

pca_params — Principal components estimates
structure

Principal components estimates, returned as a structure such that:

pca_params.NEST = {pc_NEST,var_NEST,NESTCOV}
pca_params.APP  = {pc_APP,var_APP,npc_APP}
pca_params.FIN  = {pc_FIN,var_FIN,npc_FIN}

where

• pc_XXX is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.
• var_XXX is the principal component variances vector.
• NESTCOV is the covariance matrix estimate for detail at level 1.

den_params — Denoising parameters
structure

Denoising parameters, returned as a structure.

• den_params.thrVAL is a vector of length level which contains the threshold values for each
level.

• den_params.thrMETH is a character vector containing the name of the denoising method (tptr).
• den_params.thrTYPE is a character variable containing the type of the thresholding (sorh).
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Algorithms
The multivariate denoising procedure is a generalization of the one-dimensional strategy. It combines
univariate wavelet denoising in the basis where the estimated noise covariance matrix is diagonal and
non-centered Principal Component Analysis (PCA) on approximations in the wavelet domain or with
final PCA.

The robust estimate of the noise covariance matrix given by the minimum covariance determinant
estimator based on the matrix of finest details.

Version History
Introduced in R2006b

References
[1] Aminghafari, Mina, Nathalie Cheze, and Jean-Michel Poggi. “Multivariate Denoising Using

Wavelets and Principal Component Analysis.” Computational Statistics & Data Analysis 50,
no. 9 (May 2006): 2381–98. https://doi.org/10.1016/j.csda.2004.12.010.

[2] Rousseeuw, Peter J., and Katrien Van Driessen. “A Fast Algorithm for the Minimum Covariance
Determinant Estimator.” Technometrics 41, no. 3 (August 1999): 212–23. https://doi.org/
10.1080/00401706.1999.10485670.

See Also
Functions
wmspca | wdenoise

Apps
Wavelet Signal Denoiser
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wnoise
Noisy wavelet test data

Syntax
x = wnoise(fun,n)
[x,xn] = wnoise(fun,n,sqrtsnr)
[x,xn] = wnoise( ___ ,init)

Description
x = wnoise(fun,n) returns values x of the test signal fun evaluated at 2n linearly spaced points
from 0 to 1.

[x,xn] = wnoise(fun,n,sqrtsnr) returns x rescaled such that the standard deviation of x is
sqrtsnr. xn is x corrupted by additive Gaussian white noise N(0,1) and has a signal-to-noise ratio
(SNR) of sqrtsnr2.

[x,xn] = wnoise( ___ ,init) sets the generator seed to init before generating additive
Gaussian white noise N(0,1) .

Examples

Plot Wavelet Test Signals

There are six test signals. Generate and plot 210 samples of the third test signal, heavy sine.

loc = linspace(0,1,2^10);
x = wnoise(3,10);
plot(loc,x)
title('Heavy Sine')
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Generate and plot 210 samples of the doppler test signal and a noisy version of doppler with a
square root of the signal-to-noise ratio equal to 7.

[x,noisyx] = wnoise('doppler',10,7);
subplot(2,1,1)
plot(loc,x)
title('Clean Doppler')
ylim([-15 15])
subplot(2,1,2)
plot(loc,noisyx)
title('Noisy Doppler')
ylim([-15 15])
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Plot all the test functions.

testFunctions = {'Blocks','Bumps','Heavy Sine','Doppler','Quadchirp','Mishmash'};
for i=1:6
    x = wnoise(lower(testFunctions{i}),10);
    subplot(3,2,i)
    plot(loc,x)
    title(testFunctions{i})
end
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Input Arguments
fun — Wavelet test function
positive integer | character array

Wavelet test function, specified as one of the values listed here. The six test functions are due to
Donoho and Johnstone [1], [2].

• 1 or 'blocks'
• 2 or 'bumps'
• 3 or 'heavy sine'
• 4 or 'doppler'
• 5 or 'quadchirp'
• 6 or 'mishmash'

n — Exponent
positive integer

Exponent used to determine the number of linearly spaced points from 0 to 1 to evaluate the test
function, specified as a positive integer. The number of linearly spaced points is 2n.

sqrtsnr — Square root of SNR
positive real number
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Square root of SNR, specified by a positive real number. The test values x are rescaled such that the
standard deviation of x is sqrtsnr. xn is equal to x corrupted by additive Gaussian white noise
N(0,1) and has an SNR of sqrtsnr2.

init — Seed
nonnegative integer

Seed used to initialize the random number generator, specified as a nonnegative integer. init is used
to generate additive Gaussian white noise.
Example: [a,b] = wnoise(4,10,7,2055415866); returns a noisy version of the fourth test
signal using the seed init = 2055415866.

Output Arguments
x — Test signal
real-valued vector

Test signal, returned as a real-valued vector of length 2n. x are the values of the test function
specified by fun evaluated at the 2n evenly spaced points from 0 to 1. If sqrtsnr is set, the standard
deviation of x is sqrtsnr.

xn — Noisy test signal
real-valued vector

Noisy test signal, returned as a real-valued vector of length 2n. xn is x corrupted by additive Gaussian
white noise N(0,1) and has an SNR of sqrtsnr2.

Version History
Introduced before R2006a

References
[1] Donoho, D. L., and I. M. Johnstone. “Ideal spatial adaptation by wavelet shrinkage.” Biometrika.

Vol. 81, Issue 3, 1994, pp. 425–455.

[2] Donoho, D. L., and I. M. Johnstone. “Adapting to unknown smoothness via wavelet shrinkage.”
Journal of the American Statistical Association. Vol. 90, 1995, pp. 1200–1224.

See Also
wdenoise | wden
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wnoisest
Estimate noise of 1-D wavelet coefficients

Syntax
stdc = wnoisest(c,l,s)
stdc = wnoisest(c)

Description
stdc = wnoisest(c,l,s) returns estimates of the detail coefficients' standard deviation for levels
specified in s. [c,l] is a multilevel wavelet decomposition structure and is the output of wavedec.

The estimator used is Median Absolute Deviation / 0.6745, well suited for zero-mean Gaussian white
noise in the denoising one-dimensional model (see thselect for more information).

stdc = wnoisest(c) returns estimates of the standard deviations of c, where c is a one-
dimensional cell array or a numeric array.

Examples

Estimate Noise Standard Deviation in The Presence of Outliers

Estimate of the noise standard deviation in an N(0,1) white Gaussian noise vector with outliers.

Create an N(0,1) noise vector with 10 randomly-placed outliers.

rng default;
x = randn(1000,1);
P = randperm(length(x));
indices = P(1:10);
x(indices(1:5)) = 10;
x(indices(6:end)) = -10;

Obtain the discrete wavelet transform down to level 2 using the Daubechies’ extremal phase wavelet
with 3 vanishing moments.

[c,l] = wavedec(x,2,'db3');
stdc = wnoisest(c,l,1:2)

stdc = 1×2

    0.9650    1.0279

In spite of the outliers, wnoisest provides a robust estimate of the standard deviation.
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Input Arguments
c — Input
vector | matrix | cell array

Input, specified as a vector, matrix, or 1-D cell array.

• When used in the syntax stdc = wnoisest(c,l,s), c is the wavelet decomposition output of
wavedec: [c,l] = wavedec(x,N,wname). The bookkeeping vector l contains the number of
coefficients by level.

• When used in the syntax stdc = wnoisest(c), c is either a numeric matrix or 1-D cell array.

Data Types: double

l — Bookkeeping vector
vector

Bookkeeping vector, specified as a vector of positive integers. l is the output of wavedec: [c,l] =
wavedec(x,N,wname). The bookkeeping vector is used to parse the coefficients in the wavelet
decomposition c by level.
Data Types: double

s — Detail coefficient levels
vector

Detail coefficient levels, specified as a vector of positive integers less than or equal to N, where N is
the level of the wavelet decomposition used to obtain [c,l]. Specifically, N = length(l)-2.
Data Types: double

Output Arguments
stdc — Standard deviation estimates
vector | cell array

Standard deviation estimates, returned as a vector or cell array.

• If c is the output of wavedec, stdc are estimates of the detail coefficients' standard deviation for
the levels specified in s.

• If c is a one-dimensional cell array, stdc{k} is an estimate of the standard deviation of c{k},
where k = 1,…,length(c).

• If c is a numeric array, stdc(k) is an estimate of the standard deviation of c(k,:), where k =
1,…,size(c,1).

Version History
Introduced before R2006a

References
[1] Donoho, David L, and Iain M Johnstone. “Ideal Spatial Adaptation by Wavelet Shrinkage.”

Biometrika 81, no. 3 (September 1, 1994): 425–55. https://doi.org/10.1093/biomet/81.3.425.
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[2] Donoho, David L., and Iain M. Johnstone. “Adapting to Unknown Smoothness via Wavelet
Shrinkage.” Journal of the American Statistical Association 90, no. 432 (December 1995):
1200–1224. https://doi.org/10.1080/01621459.1995.10476626.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
thselect | wavedec | wdenoise

Apps
Wavelet Signal Denoiser
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wp2wtree
Extract wavelet tree from wavelet packet tree

Syntax
T = wp2wtree(T)

Description
wp2wtree is a one- or two-dimensional wavelet packet analysis function.

T = wp2wtree(T) computes the modified wavelet packet tree T corresponding to the wavelet
decomposition tree.

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load signal. 
    load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets 
% using shannon entropy. 
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)

% Compute wavelet tree. 
wt = wp2wtree(wpt);

% Plot wavelet tree wt. 
plot(wt)
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Version History
Introduced before R2006a

See Also
wpdec | wpdec2
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wpbmpen
Penalized threshold for wavelet packet denoising

Syntax
THR = wpbmpen(T,SIGMA,ALPHA)
wpbmpen(T,SIGMA,ALPHA,ARG)

Description
THR = wpbmpen(T,SIGMA,ALPHA) returns a global threshold THR for denoising. THR is obtained by
a wavelet packet coefficients selection rule using a penalization method provided by Birgé-Massart.

T is a wavelet packet tree corresponding to the wavelet packet decomposition of the signal or image
to be denoised.

SIGMA is the standard deviation of the zero mean Gaussian white noise in the denoising model (see
wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real number greater than 1. The
sparsity of the wavelet packet representation of the denoised signal or image grows with ALPHA.
Typically ALPHA = 2.

THR minimizes the penalized criterion given by

let t* be the minimizer of

crit(t) = -sum(c(k)^2,k≤t) + 2*SIGMA^2*t*(ALPHA + log(n/t)) 

where c(k) are the wavelet packet coefficients sorted in decreasing order of their absolute value and
n is the number of coefficients, then THR=|c(t*)|.

wpbmpen(T,SIGMA,ALPHA,ARG) computes the global threshold and, in addition, plots three curves:

• 2*SIGMA^2*t*(ALPHA + log(n/t))
• sum(c(k)^2,k£t)
• crit(t)

Examples
% Example 1: Signal denoising.
% Load noisy chirp signal.
load noischir; x = noischir;

% Perform a wavelet packet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
tree = wpdec(x,lev,wname);

% Estimate the noise standard deviation from the
% detail coefficients at level 1,
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% corresponding to the node index 2.
det1 = wpcoef(tree,2);
sigma = median(abs(det1))/0.6745;

% Use wpbmpen for selecting global threshold  
% for signal denoising, using the recommended parameter.
alpha = 2;
thr = wpbmpen(tree,sigma,alpha)

thr =

    4.5740

% Use wpdencmp for denoising the signal using the above
% threshold with soft thresholding and keeping the 
% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);

% Plot original and denoised signals.
figure(1)
subplot(211), plot(x),
title('Original signal')
subplot(212), plot(xd)
title('De-noised signal')

% Example 2: Image denoising.
% Load original image.
load noiswom; 
nbc = size(map,1);

% Perform a wavelet packet decomposition of the image
% at level 3 using coif2.
wname = 'coif2'; lev = 3;
tree = wpdec2(X,lev,wname);
      
% Estimate the noise standard deviation from the
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% detail coefficients at level 1.
det1 = [wpcoef(tree,2) wpcoef(tree,3) wpcoef(tree,4)];
sigma = median(abs(det1(:)))/0.6745;

% Use wpbmpen for selecting global threshold  
% for image denoising.
alpha = 1.1;
thr = wpbmpen(tree,sigma,alpha)

thr =

   38.5125

% Use wpdencmp for denoising the image using the above
% thresholds with soft thresholding and keeping the
% approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);

% Plot original and denoised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')

Version History
Introduced before R2006a

See Also
wdenoise | wbmpen | wden | wdencmp | wpdencmp
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wpcoef
Wavelet packet coefficients

Syntax
x = wpcoef(wpt,n)
x = wpcoef(wpt)

Description
wpcoef is a one- or two-dimensional wavelet packet analysis function.

x = wpcoef(wpt,n) returns the coefficients associated with the node n of the wavelet packet tree
wpt. If node n does not exist, x = [].

x = wpcoef(wpt) is equivalent to x = wpcoef(wpt,0).

Examples

Obtain Wavelet Packet Coefficients

Load a 1-D signal. Save the current extension mode.

load noisdopp
x = noisdopp;
origMode = dwtmode('status','nodisp');

Use dwtmode to change the extension mode to zero-padding. Obtain the wavelet packet tree object
corresponding to the 3-level wavelet packet decomposition of the signal using the db1 wavelet. Plot
the tree.

dwtmode('zpd','nodisp')
wpt = wpdec(x,3,"db1");
plot(wpt)
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Obtain the coefficients at the node (3,0). Plot the signal and coefficients.

cfs = wpcoef(wpt,[3 0]);
subplot(2,1,1)
plot(x)
title('Signal')
axis tight
subplot(2,1,2)
plot(cfs)
title('Packet (3,0) Coefficients')
axis tight
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Load an image. Obtain the wavelet packet tree that corresponds to a one-level wavelet packet
decomposition of the image using the sym4 wavelet.

load woman2
t = wpdec2(X,1,'sym4');

Plot the tree.

plot(t)
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Obtain the coefficients at the node (1,0). Plot the coefficients.

cfs = wpcoef(t,[1 0]);
figure
imagesc(cfs)
title('Packet (1,0) Coefficients')
colormap(pink)
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Restore the extension mode to the original setting.

dwtmode(origMode,'nodisp')

Input Arguments
wpt — Wavelet packet tree
wptree object

Wavelet packet tree, specified as a wptree object.

n — Node
0 (default) | nonnegative integer | 1-by-2 vector

Node in a wavelet packet tree, specified as a nonnegative integer, or pair of nonnegative integers.
See depo2ind and ind2depo.
Example: If wpt = wpdec(1:256,2,"sym4"), then wpcoef(wpt,3) and wpcoef(wpt,[2 0])
specify the same node.
Data Types: double
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Output Arguments
x — Node coefficients
vector | matrix

Node coefficients, returned as a vector or matrix.
Data Types: double

Version History
Introduced before R2006a

See Also
wpdec | wpdec2 | wprcoef | plot

Topics
“Reconstructing a Signal Approximation from a Node”
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wpcutree
Cut wavelet packet tree

Syntax
T = wpcutree(T,L)
[T,RN] = wpcutree(T,L)

Description
wpcutree is a one- or two-dimensional wavelet packet analysis function.

T = wpcutree(T,L) cuts the tree T at level L.

[T,RN] = wpcutree(T,L) returns the same arguments as above and, in addition, the vector RN
contains the indices of the reconstructed nodes.

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)

% Cut wavelet packet tree at level 2. 
nwpt = wpcutree(wpt,2);

% Plot new wavelet packet tree nwpt. 
plot(nwpt)
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Version History
Introduced before R2006a

See Also
wpdec | wpdec2
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wpdec
Wavelet packet decomposition 1-D

Syntax
tobj = wpdec(x,n,wname)
tobj = wpdec(x,n,wname,etype,p)

Description
tobj = wpdec(x,n,wname) returns a wavelet packet tree object tobj corresponding to the
wavelet packet decomposition of the vector x at level n, using Shannon entropy and the wavelet
specified by wname (see wfilters for more information).

tobj = wpdec(x,n,wname,etype,p) uses the entropy type specified by etype. p is an optional
parameter depending on the value of etype. See wentropy for more information.

Note tobj = wpdec(x,n,wname) is equivalent to tobj = wpdec(x,n,wname,'shannon').

Examples

Visualize Wavelet Packet Tree

Load a signal.

load noisdopp

Decompose the signal at level 3 with db1 wavelet packets using Shannon entropy.

wpt = wpdec(noisdopp,3,'db1','shannon');

Plot the wavelet packet tree.

plot(wpt)
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Input Arguments
x — Input data
real-valued numeric vector

Input data, specified as a real-valued numeric vector.
Data Types: double

n — Decomposition level
positive integer

Decomposition level, specified as a positive integer.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet used in the wavelet packet decomposition, specified as a character vector or string scalar.
The wavelet is from one of the following wavelet families: Best-localized Daubechies, Beylkin,

 wpdec

1-1777



Coiflets, Daubechies, Fejér-Korovkin, Haar, Han linear-phase moments, Morris minimum-bandwidth,
Symlets, Vaidyanathan, Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for
the wavelets available in each family.

etype — Entropy type
'shannon' | 'log energy' | 'threshold' | 'sure' | 'norm' | 'user' | 'FunName'

Entropy type, specified as one of the following:

Entropy Type (T) Threshold Parameter
(p)

Comments

'shannon'  p is not used.
'log energy'  p is not used.
'threshold' 0 ≤ p p is the threshold.
'sure' 0 ≤ p p is the threshold.
'norm' 1 ≤ p p is the power.
'user' Character vector p is a character vector containing the file name

of your own entropy function, with a single
input x.

'FunName' No constraints on p FunName is any character vector other than the
previous entropy types listed.

FunName contains the file name of your own
entropy function, with x as input and p as an
additional parameter to your entropy function.

etype and the threshold parameter p together define the entropy criterion. See wentropy for more
information.

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last
option described in the table above. The FunName option does the same as the 'user' option and in
addition gives the possibility to pass a parameter to your own entropy function.

p — Threshold parameter
real number | character vector | string scalar

Threshold parameter, specified by a real number, character vector, or string scalar. p and the entropy
type etype together define the entropy criterion.

More About
Wavelet Packet Decomposition

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal
analysis. Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters:
position and scale as in wavelet decomposition, and frequency.
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For a given orthogonal wavelet function, a library of wavelet packets bases is generated. Each of
these bases offers a particular way of coding signals, preserving global energy and reconstructing
exact features. The wavelet packets can then be used for numerous expansions of a given signal.

Simple and efficient algorithms exist for both wavelet packets decomposition and optimal
decomposition selection. Adaptive filtering algorithms with direct applications in optimal signal
coding and data compression can then be produced.

In the orthogonal wavelet decomposition procedure, the generic step splits the approximation
coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a
vector of detail coefficients, both at a coarser scale. The information lost between two successive
approximations is captured in the detail coefficients. The next step consists in splitting the new
approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient vector is also decomposed into
two parts using the same approach as in approximation vector splitting. This offers the richest
analysis: the complete binary tree is produced in the one-dimensional case or a quaternary tree in the
two-dimensional case.

Tips
• To obtain the wavelet packet transform of a 1-D multisignal, use dwpt.

Algorithms
The algorithm used for the wavelet packets decomposition follows the same line as the wavelet
decomposition process (see dwt and wavedec for more information).

Version History
Introduced before R2006a

References
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See Also
wavedec | waveinfo | wenergy | wprec | dwpt | idwpt

Topics
“Build Wavelet Tree Objects”
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“Examples Using Wavelet Packet Tree Objects”
“Objects in the Wavelet Toolbox Software”
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wpdec2
Wavelet packet decomposition 2-D

Syntax
T = wpdec2(X,N,wname)
T = wpdec2(X,N,wname,E,P)

Description
T = wpdec2(X,N,wname) returns a wavelet packet tree T corresponding to the wavelet packet
decomposition of the matrix X, at level N, with the specified wavelet wname using Shannon entropy.

Note T = wpdec2(X,N,wname) is equivalent to T = wpdec2(X,N,wname,'shannon').

T = wpdec2(X,N,wname,E,P) uses the entropy type specified by E. P is an optional parameter
depending on the value of E. See wentropy for more information.

Examples

Obtain 2-D Wavelet Packet Decomposition

Load an image.

load tire
image(X)
colormap(map)
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Obtain the 2-level wavelet packet decomposition of the image. Use the Haar wavelet. The default
entropy is shannon.

t = wpdec2(X,2,"haar");

Plot the wavelet packet tree.

plot(t)
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Input Arguments
X — Input data
matrix

Input data, specified as a matrix.
Data Types: double

N — Decomposition level
positive integer

Decomposition level, specified as a positive integer.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet used in the wavelet packet decomposition, specified as a character vector or string scalar.
The wavelet is from one of the following wavelet families: Best-localized Daubechies, Beylkin,
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Coiflets, Daubechies, Fejér-Korovkin, Haar, Han linear-phase moments, Morris minimum-bandwidth,
Symlets, Vaidyanathan, Discrete Meyer, Biorthogonal, and Reverse Biorthogonal. See wfilters for
the wavelets available in each family.

E — Entropy type
'shannon' | 'log energy' | 'threshold' | 'sure' | 'norm' | 'user' | 'FunName'

Entropy type, specified as one of the following:

Entropy Type (T) Threshold Parameter
(P)

Comments

'shannon'  P is not used.
'log energy'  P is not used.
'threshold' 0 ≤ P P is the threshold.
'sure' 0 ≤ P P is the threshold.
'norm' 1 ≤ P P is the power.
'user' Character vector P is a character vector containing the file name

of your own entropy function, with a single
input X.

'FunName' No constraints on P FunName is any character vector other than the
previous entropy types listed.

FunName contains the file name of your own
entropy function, with X as input and P as an
additional parameter to your entropy function.

T and the threshold parameter P together define the entropy criterion. See wentropy for more
information.

Note The 'user' option is historical and still kept for compatibility, but it is obsoleted by the last
option described in the table above. The FunName option does the same as the 'user' option and in
addition gives the possibility to pass a parameter to your own entropy function.

P — Threshold parameter
real number | character vector | string scalar

Threshold parameter, specified by a real number, character vector, or string scalar. P and the entropy
type E together define the entropy criterion.

More About
Wavelet Packet Decomposition

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal
analysis. Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters:
position and scale as in wavelet decomposition, and frequency.
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For a given orthogonal wavelet function, a library of wavelet packets bases is generated. Each of
these bases offers a particular way of coding signals, preserving global energy and reconstructing
exact features. The wavelet packets can then be used for numerous expansions of a given signal.

Simple and efficient algorithms exist for both wavelet packets decomposition and optimal
decomposition selection. Adaptive filtering algorithms with direct applications in optimal signal
coding and data compression can then be produced.

In the orthogonal wavelet decomposition procedure, the generic step splits the approximation
coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a
vector of detail coefficients, both at a coarser scale. The information lost between two successive
approximations is captured in the detail coefficients. The next step consists in splitting the new
approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient vector is also decomposed into
two parts using the same approach as in approximation vector splitting. This offers the richest
analysis: the complete binary tree is produced in the one-dimensional case or a quaternary tree in the
two-dimensional case.

Tips
• When X represents an indexed image, X is an m-by-n matrix. When X represents a truecolor image,

it is an m-by-n-by-3 array, where each m-by-n matrix represents a red, green, or blue color plane
concatenated along the third dimension.

For more information on image formats, see image and imfinfo.

Algorithms
The algorithm used for the wavelet packets decomposition follows the same line as the wavelet
decomposition process (see dwt2 and wavedec2 for more information).

Version History
Introduced before R2006a
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See Also
wavedec2 | waveinfo | wenergy | wpdec | wprec2 | dwpt | idwpt

Topics
“Build Wavelet Tree Objects”
“Examples Using Wavelet Packet Tree Objects”
“Objects in the Wavelet Toolbox Software”
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wpdencmp
Denoising or compression using wavelet packets

Syntax
[xd,treed,perf0,perfl2] = wpdencmp(x,sorh,n,wname,crit,par,keepapp)
[ ___ ] = wpdencmp(tree,sorh,crit,par,keepapp)

Description
wpdencmp performs a denoising or compression process of a signal or image using wavelet packets.
The ideas and procedures for denoising and compression using either wavelet or wavelet packet
decompositions are the same. See wdenoise or wdencmp for more information.

[xd,treed,perf0,perfl2] = wpdencmp(x,sorh,n,wname,crit,par,keepapp) returns a
denoised or compressed version xd of the input data x obtained by wavelet packet coefficient
thresholding. wpdencmp also returns the wavelet packet best tree decomposition treed of xd (see
besttree for more information), and the L2 energy recovery and compression scores in percentages
as perfl2 and perf0, respectively.

[ ___ ] = wpdencmp(tree,sorh,crit,par,keepapp) uses the wavelet packet decomposition
tree of the data to be denoised or compressed.

Examples

1-D Denoising Using Wavelet Packets

This example shows how to denoise using wavelet packets.

Use wnoise to generate the heavy sine signal and a noisy version.

init = 1000;
[xref,x] = wnoise(5,11,7,init);
figure
subplot(2,1,1)
plot(xref)
axis tight
title('Heavy Sine')
subplot(2,1,2)
plot(x)
axis tight
title('Noisy Heavy Sine')
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Denoise the noisy signal using a four-level wavelet packet decomposition. Use the order 4 Daubechies
least asymmetric wavelet.

n = length(x);
thr = sqrt(2*log(n*log(n)/log(2)));
xwpd = wpdencmp(x,'s',4,'sym4','sure',thr,1);

Compare with a wavelet-based denoising result. Use wdenoise with comparable input arguments.
Plot the differences between the two denoised signals and original signal.

xwd = wdenoise(x,4,'Wavelet','sym4','DenoisingMethod','UniversalThreshold','ThresholdRule','Hard');
figure
subplot(2,1,1)
plot(x-xwpd)
axis tight
ylim([-12 12])
title('Difference Between Wavelet Packet Denoised and Original')
subplot(2,1,2)
plot(x-xwd)
axis tight
ylim([-12 12])
title('Difference Between Wavelet Denoised and Original')
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2-D Denoising Using Wavelet Packets

This example shows how to denoise an image using wavelet packets.

Load an image and generate a noisy copy. For reproducibility set the random seed.

rng default
load sinsin
x = X/18 + randn(size(X));
imagesc(X)
colormap(gray)
title('Original Image')
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figure
imagesc(x)
colormap(gray)
title('Noisy Image')
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Denoise the noisy image using wavelet packet decomposition. Use ddencmp to determine denoising
parameters. Do a three-level decomposition with the order 4 Daubechies least asymmetric wavelet.

[thr,sorh,keepapp,crit] = ddencmp('den','wp',x);
xd = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);
figure
imagesc(xd)
colormap(gray)
title('Denoised Image')
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1-D Compression Using Wavelet Packets

This example shows how to compress a 1-D signal using wavelet packets.

Load a signal. Use ddencmp to determine compression values for that signal.

load sumlichr
x = sumlichr;
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr = 0.5193

sorh = 
'h'

keepapp = 1

crit = 
'threshold'

Compress the signal using global thresholding with threshold best basis. Use the order 4 Daubechies
least asymmetric wavelet and do a three-level wavelet packet decomposition.

[xc,wpt,perf0,perfl2] = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);

Compare the original signal with the compressed version.

1 Functions

1-1792



subplot(2,1,1)
plot(x)
title('Original Signal')
axis tight
subplot(2,1,2)
plot(xc)
xlabel(['L^2 rec.: ',num2str(perfl2),'%   zero cfs.: ',num2str(perf0),'%'])
title('Compressed Signal Using Wavelet Packets')
axis tight

Compress the signal again, but this do a three-level wavelet decomposition. Keep all the other
parameters the same.

[thr,sorh,keepapp] = ddencmp('cmp','wv',x);
[xcwv,~,~,perf0wv,perfl2wv] = wdencmp('gbl',x,'sym4',3,thr,sorh,keepapp);
figure
subplot(2,1,1)
plot(x)
title('Original Signal')
axis tight
subplot(2,1,2)
plot(xc)
xlabel(['L^2 rec.: ',num2str(perfl2wv),'%   zero cfs.: ',num2str(perf0wv),'%'])
title('Compressed Signal Using Wavelets')
axis tight
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A larger fraction of coefficients are set equal to 0 when compressing using a wavelet packet
decomposition.

Input Arguments
x — Input data
real-valued vector or matrix

Input data to denoise or compress, specified by a real-valued vector or matrix.
Data Types: double

tree — Wavelet packet decomposition
wavelet packet decomposition

Wavelet packet decomposition of the data to be denoised or compressed, specified as a wavelet
packet tree. See wpdec and wpdec2 for more information.

sorh — Type of thresholding
's' | 'h'

Type of thresholding to perform:

• 's' — Soft thresholding
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• 'h' — Hard thresholding

See wthresh for more information.

n — Wavelet packet decomposition level
positive integer

Wavelet packet decomposition level, specified as a positive integer.

wname — Name of wavelet
character vector | string scalar

Name of wavelet, specified as a character vector or string scalar, to use for denoising. See wavemngr
for more information.

crit — Entropy type
'shannon' | 'log energy' | 'threshold' | 'sure' | 'norm' | 'user' | ...

Entropy type, specified as one of the following:

Entropy Type (crit) Threshold Parameter
(par)

Comments

'shannon'  par is not used.
'log energy'  par is not used.
'threshold' 0 ≤ par par is the threshold.
'sure' 0 ≤ par par is the threshold.
'norm' 1 ≤ par par is the power.
'user' Character vector par is a character vector containing the file

name of your own entropy function, with a
single input x.

'FunName' No constraints on par FunName is any character vector other than the
previous entropy types listed.

FunName contains the file name of your own
entropy function, with x as input and par as an
additional parameter to your entropy function.

crit and threshold parameter par together define the entropy criterion used to determine the best
decomposition. See wentropy for more information.

If crit = 'nobest', no optimization is done, and the current decomposition is thresholded.

par — Threshold parameter
real number | character vector | string scalar

Threshold parameter, specified by a real number, character vector, or string scalar. par and the
entropy type crit together define the entropy criterion used to determine the best decomposition.
See wentropy for more information.
Data Types: double

keepapp — Threshold approximation setting
0 | 1
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Threshold approximation setting, specified as either 0 or 1. If keepapp = 1, the approximation
coefficients cannot be thresholded. If keepapp = 0, the approximation coefficients can be
thresholded.
Data Types: double

Output Arguments
xd — Denoised or compressed data
real-valued vector or matrix

Denoised or compressed data, returned as a real-valued vector or matrix. xd and x have the same
dimensions.

treed — Wavelet packet best tree decomposition
wavelet packet tree

Wavelet packet best tree decomposition of xd, returned as a wavelet packet tree.

perf0 — Compression score
real number

Compression score, returned as a real number. perf0 is the percentage of thresholded coefficients
that are equal to 0.

perfl2 — L2 energy recovery
real number

L2 energy recovery, returned as a real number. perfl2 is equal to

100 × vector‐norm of wavelet packet coefficients of xd
vector‐norm of wavelet packet coefficients of x

2
. If x is a one-dimensional signal and wname

an orthogonal wavelet, perfl2 simplifies to 100 xd 2

x 2 .

Version History
Introduced before R2006a
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wpfun
Wavelet packet functions

Syntax
[WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)
[WPWS,X] = wpfun('wname',NUM,7)

Description
wpfun is a wavelet packet analysis function.

[WPWS,X] = wpfun('wname',NUM,PREC) computes the wavelet packets for a wavelet 'wname'
(see wfilters for more information), on dyadic intervals of length 2-PREC.

PREC must be a positive integer. Output matrix WPWS contains the W functions of index from 0 to NUM,
stored row-wise as [W0; W1; ... ; WNUM]. Output vector X is the corresponding common X-grid vector.

[WPWS,X] = wpfun('wname',NUM) is equivalent to
[WPWS,X] = wpfun('wname',NUM,7).

The computation scheme for wavelet packets generation is easy when using an orthogonal wavelet.
We start with the two filters of length 2N, denoted h(n) and g(n), corresponding to the wavelet.

Now by induction let us define the following sequence of functions (Wn(x) , n = 0,1,2,...) by

W2n(x) = 2 ∑
k = 0, …, 2N − 1

h(k)Wn(2x− k)

W2n + 1(x) = 2 ∑
k = 0, …, 2N − 1

g(k)Wn(2x− k)

where W0(x) = ϕ (x) is the scaling function and W1(x) = ψ(x) is the wavelet function.

For example for the Haar wavelet we have

N = 1, h(0) = h(1) = 1
2

and

g(0) = − g(1) = 1
2

The equations become

W2n(x) = Wn(2x) + Wn(2x− 1)

and

(W2n + 1(x) = Wn(2x)−Wn(2x− 1))
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W0(x) = ϕ(x) is the haar scaling function and W1(x) = ψ(x) is the haar wavelet, both supported in
[0,1].

Then we can obtain W2 n by adding two 1/2-scaled versions of Wn with distinct supports [0,1/2] and
[1/2,1], and obtain W2n+1 by subtracting the same versions of Wn.

Starting from more regular original wavelets, using a similar construction, we obtain smoothed
versions of this system of W-functions, all with support in the interval [0, 2N-1].

Examples
% Compute the db2 Wn functions for n = 0 to 7, generating 
% the db2 wavelet packets. 
[wp,x] = wpfun('db2',7);

% Using some plotting commands,
% the following figure is generated.

Version History
Introduced before R2006a

References
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wpjoin
Recompose wavelet packet

Syntax
T = wpjoin(T,N)
[T,X] = wpjoin(T,N)
T = wpjoin(T)
T = wpjoin(T,0)
[T,X] = wpjoin(T)
[T,X] = wpjoin(T,0)

Description
wpjoin is a one- or two-dimensional wavelet packet analysis function.

wpjoin updates the wavelet packet tree after the recomposition of a node.

The nodes are numbered from left to right and from top to bottom. The root index is 0.

T = wpjoin(T,N) returns the modified wavelet packet tree T corresponding to a recomposition of
the node N.

[T,X] = wpjoin(T,N) also returns the coefficients of the node.

T = wpjoin(T) is equivalent to T = wpjoin(T,0).

[T,X] = wpjoin(T) is equivalent to [T,X] = wpjoin(T,0).

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets. 
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)
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% Recompose packet (1,1) or 2 
wpt = wpjoin(wpt,[1 1]);

% Plot wavelet packet tree wpt. 
plot(wpt)

Version History
Introduced before R2006a

See Also
wpdec | wpdec2 | wpsplt
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wprcoef
Reconstruct wavelet packet coefficients

Syntax
X = wprcoef(T)
X = wprcoef(T,N)

Description
X = wprcoef(T) reconstructs coefficients of the node 0 of the wavelet packet tree T.

wprcoef is a one- or two-dimensional wavelet packet analysis function.

X = wprcoef(T,N) reconstructs coefficients of the node N of the wavelet packet tree T.

Examples

Reconstruct Wavelet Packet Coefficients

Load and plot original signal. The function uses zero padding as an extension mode for dealing with
the problem of border distortion in signal or image analysis. For more information, see dwtmode.

load noisdopp; 
s = noisdopp; 
plot(s); 
title('Original signal');
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Decompose the original signals at depth 3 with db1 wavelet packets using Shannon entropy.

T = wpdec(s,3,'db1','shannon');

Plot the wavelet packet tree.

plot(T)
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Reconstruct the packet at node (2,1).

X = wprcoef(T,[2 1]);

Plot the reconstructed packet.

plot(X); 
title('Reconstructed packet (2,1)');
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Input Arguments
T — Wavelet packet tree
wptree object

Wavelet packet tree, specified as a wptree object.

N — Node in wavelet packet tree
0 (default) | nonnegative integer | 1-by-2 vector

Node in the wavelet packet tree T, specified as a nonnegative integer or as a pair of nonnegative
integers.

Output Arguments
X — Reconstructed coefficients
row vector

Reconstructed coefficients of the wavelet packet, returned as a row vector.

Version History
Introduced before R2006a

1 Functions

1-1806



See Also
wpdec | wpdec2 | wprec | wprec2

Topics
“Reconstructing a Signal Approximation from a Node”
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wprec
Wavelet packet reconstruction 1-D

Syntax
x = wprec(tobj)

Description
x = wprec(tobj) returns the reconstructed vector x corresponding to the wavelet packet tree
object tobj.

Examples

Reconstruct Signal from Wavelet Packet Tree Object

Load a signal.

load noisdopp
x = noisdopp;

Decompose the signal at level 3 with sym4 wavelet packets using log energy entropy.

wpt = wpdec(x,3,'sym4','log energy');

Reconstruct the signal from the wavelet packet tree object.

xrec = wprec(wpt);

Compare the original signal with the reconstruction.

max(abs(xrec-x))

ans = 8.2778e-12

Input Arguments
tobj — Wavelet packet tree
wavelet packet tree object

Wavelet packet tree, specified as a wavelet packet tree object. The wprec function assumes that you
obtained tobj using wpdec.

Version History
Introduced before R2006a
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See Also
wpdec | wpdec2 | wpjoin | wprec2 | wpsplt | dwpt | idwpt

Topics
“Build Wavelet Tree Objects”
“Examples Using Wavelet Packet Tree Objects”
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wprec2
Wavelet packet reconstruction 2-D

Syntax
X = wprec2(T)

Description
wprec2 is a two-dimensional wavelet packet analysis function.

X = wprec2(T) returns the reconstructed matrix X corresponding to a wavelet packet tree T.

wprec2 is the inverse function of wpdec2 in the sense that the abstract statement
wprec2(wpdec2(X,'wname')) would give back X.

Tips
If T is obtained from an indexed image analysis or a truecolor image analysis, X is an m-by-n matrix or
an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference pages.

Version History
Introduced before R2006a

See Also
wpdec | wpdec2 | wpjoin | wprec | wpsplt | dwpt | idwpt
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wpspectrum
Wavelet packet spectrum

Syntax
[spec,times,freq] = wpspectrum(wpt,fs)
[ ___ ] = wpspectrum(wpt,fs,'plot')
[ ___ ,tinfo] = wpspectrum( ___ )

Description
[spec,times,freq] = wpspectrum(wpt,fs) returns a matrix of wavelet packet spectrum
estimates, spec, for the binary wavelet packet tree object, wpt. fs is the sampling frequency in
hertz. times is a vector of times and freq is a vector of frequencies.

[ ___ ] = wpspectrum(wpt,fs,'plot') displays the wavelet packet spectrum.

[ ___ ,tinfo] = wpspectrum( ___ ) returns the terminal nodes of the wavelet packet tree in
frequency order.

Examples

Wavelet Packet Spectrum for Sinusoids

Create a signal consisting of two sinusoids with disjoint support. The sinusoids have frequencies of 16
Hz and 64 Hz. Sample the signal at 500 Hz for 4 seconds.

fs = 500;
frA = 16;
frB = 64;
t = 0:1/fs:4;
sig = sin(frA*2*pi*t).*(t<2) + sin(frB*2*pi*t).*(t>=2);
plot(t,sig)
axis tight
title('Analyzed Signal')
xlabel('Time (s)')
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Obtain the wavelet packet tree object corresponding to the level 6 wavelet packet decomposition of
the signal using the sym6 wavelet.

level = 6;
wname = 'sym6';
wpt = wpdec(sig,level,wname);

Obtain and plot the wavelet packet spectrum.

[S,T,F] = wpspectrum(wpt,fs,'plot');
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Wavelet Packet Spectrum of Chirp Signal

Generate a chirp signal sampled at 1000 Hz for 2 seconds.

fs = 1000;
t = 0:1/fs:2;       
sig = sin(256*pi*t.^2);
plot(t,sig)
axis tight
title('Analyzed Signal')
xlabel('Time (s)')
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Obtain the wavelet packet tree object corresponding to the level 6 wavelet packet decomposition of
the signal using the sym8 wavelet. Plot the wavelet packet spectrum.

level = 6;
wpt = wpdec(sig,level,'sym8');
[S,T,F] = wpspectrum(wpt,fs,'plot');
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Input Arguments
wpt — Binary wavelet packet tree
wptree object

Binary wavelet packet tree, specified as a wavelet packet tree object.

fs — Sampling frequency
1 (default) | positive scalar

Sampling frequency in hertz, specified as a positive scalar.
Data Types: double

Output Arguments
spec — Wavelet packet spectrum estimates
matrix

Wavelet packet spectrum estimates, returned as a matrix. spec is a 2J-by-N matrix, where J is the
level of the wavelet packet transform, and N is the length of the time series. N is equal to the length
of node 0 in the wavelet packet tree object.

The frequency spacing between the rows of spec is fs/2J+1.
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Data Types: double

times — Times
vector

Times, returned as a 1-by-N vector, where N is the length of the time series. The time spacing
between elements is 1/fs.
Data Types: double

freq — Frequencies
vector

Frequencies, returned as a 1-by-2J vector, where J is the level of the wavelet packet transform. The
frequency spacing in freq is fs/2J+1.
Data Types: double

tinfo — Terminal nodes
vector

Terminal nodes of the wavelet packet tree object in frequency order.
Data Types: double

More About
Wavelet Packet Spectrum

The wavelet packet spectrum contains the absolute values of the coefficients from the frequency-
ordered terminal nodes of the input binary wavelet packet tree. The terminal nodes provide the finest
level of frequency resolution in the wavelet packet transform.

If J denotes the level of the wavelet packet transform and Fs is the sampling frequency, the terminal
nodes approximate bandpass filters of the form:

[ nFs
2 J + 1 , (n + 1)Fs

2 J + 1 ) n = 0, 1, 2, 3, …2 J − 1

At the terminal level of the wavelet packet tree, the transform divides the interval from 0 to the
Nyquist frequency into bands of approximate width Fs/2 J + 1 .

Algorithms
wpspectrum computes the wavelet packet spectrum as follows:

• Extract the wavelet packet coefficients corresponding to the terminal nodes. Take the absolute
value of the coefficients.

• Order the wavelet packet coefficients by frequency ordering.
• Determine the time extent on the original time axis corresponding to each wavelet packet
coefficient. Repeat each wavelet packet coefficient to fill in the time gaps between neighboring
wavelet packet coefficients and create a vector equal in length to node 0 of the wavelet packet
tree object.
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Version History
Introduced in R2010b

References
[1] Wickerhauser, M.V. Lectures on Wavelet Packet Algorithms, Technical Report, Washington

University, Department of Mathematics, 1992.

See Also
otnodes | wpdec | dwpt | modwpt

Topics
“Wavelet Packet Spectrum”

 wpspectrum
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wpsplt
Split (decompose) wavelet packet

Syntax
T = wpsplt(T,N)
[T,cA,cD] = wpsplt(T,N)
[T,cA,cH,cV,cD] = wpsplt(T,N)

Description
wpsplt is a one- or two-dimensional wavelet packet analysis function.

wpsplt updates the wavelet packet tree after the decomposition of a node.

T = wpsplt(T,N) returns the modified wavelet packet tree T corresponding to the decomposition
of the node N.

For a one-dimensional decomposition,

[T,cA,cD] = wpsplt(T,N) with cA = approximation and cD = detail of node N.

For a two-dimensional decomposition,

[T,cA,cH,cV,cD] = wpsplt(T,N) with cA = approximation and cH,cV,c = horizontal, vertical,
and diagonal details of node N.

Examples
% The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; 
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets. 
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)
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% Decompose packet (3,0).
wpt = wpsplt(wpt,[3 0]); 
% or equivalently wpsplt(wpt,7).

% Plot wavelet packet tree wpt. 
plot(wpt)

Version History
Introduced before R2006a

See Also
wavedec | wavedec2 | wpdec | wpdec2 | wpjoin
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wpthcoef
Wavelet packet coefficients thresholding

Syntax
NT = wpthcoef(T,KEEPAPP,SORH,THR)

Description
wpthcoef is a one- or two-dimensional de-noising and compression utility.

NT = wpthcoef(T,KEEPAPP,SORH,THR) returns a new wavelet packet tree NT obtained from the
wavelet packet tree T by coefficients thresholding.

If KEEPAPP = 1, approximation coefficients are not thresholded; otherwise, they can be thresholded.

If SORH = 's', soft thresholding is applied; if SORH = 'h', hard thresholding is applied (see
wthresh for more information).

THR is the threshold value.

Version History
Introduced before R2006a

See Also
wpdec | wpdec2 | wpdencmp | wthresh
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wptree
WPTREE constructor

Syntax
T = wptree(order,depth,x,wname)
T = wptree(order,depth,x,wname,enttype,entpar)
T = wptree(order,depth,x,wname,enttype,entpar,userdata)

Description
T = wptree(order,depth,x,wname) returns a complete wavelet packet tree T of order order
corresponding to a wavelet packet decomposition of x at level depth, using Shannon entropy and the
wavelet specified by wname.

T = wptree(order,depth,x,wname) is equivalent to T =
wptree(order,depth,x,wname,'shannon').

T = wptree(order,depth,x,wname,enttype,entpar) uses the entropy type specified by
enttype. entpar is an optional parameter depending on the value of enttype.

T = wptree(order,depth,x,wname,enttype,entpar,userdata) sets the userdata field of T.

Examples

Create Wavelet Packet Tree

Create a 1-D signal.

x = rand(1,512);

Create the wavelet packet decomposition tree associated with the wavelet packet decomposition of
the signal at level 3 using the db3 wavelet.

t = wptree(2,3,x,"db3");

Recompose the fourth and fifth nodes of the tree. Plot the result.

t = wpjoin(t,[4;5]);
plot(t)

 wptree
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Click the node (3,0) to get this figure:
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Input Arguments
order — Order of the tree
2 | 4

Order of the tree, specified as 2 or 4. The order of the tree is the number of children of each
nonterminal node. If x is a vector (1-D signal), specify an order of 2. If x is a matrix (image), specify
an order of 4.
Data Types: double

depth — Level of wavelet packet decomposition
positive integer

Level of wavelet packet decomposition, specified as a positive integer.
Data Types: double

x — Input data
vector | matrix

 wptree

1-1823



Input data, specified as a vector (signal) or matrix (image).
Data Types: double

wname — Wavelet name
character vector | string scalar

Wavelet name, specified as a character vector or string scalar. For more information, see wfilters.
Data Types: string | char

enttype — Entropy type
character vector | string scalar

Entropy type, specified as a character vector or string scalar. For more information, see wentropy,
wpdec, or wpdec2
Data Types: string | char

entpar — Optional parameter
real number | character vector | string scalar

Optional parameter used for entropy computation. For more information, see wentropy, wpdec, or
wpdec2.
Data Types: double | string | char

userdata — User data
array | cell array | structure array

User data to set in the userdata field of T, specified as an array, cell array, or structure array.
Example: t = wptree(2,3,x,'db3','sure',0.5,{1,"aa",rand(3,3)})

Output Arguments
T — Wavelet packet tree
WPTREE object

Wavelet packet tree, returned as a WPTREE object.

• If order = 2, T is a WPTREE object corresponding to a wavelet packet decomposition of the
vector (signal) x, at level depth with a particular wavelet wname.

• If order = 4, T is a WPTREE object corresponding to a wavelet packet decomposition of the
matrix (image) x, at level depth with a particular wavelet wname.

The WPTREE object has these fields:

'dtree' DTREE parent object
'wavInfo' Structure (wavelet information)
'entInfo' Structure (entropy information)

For more information on object fields, see the get function or type

help wptree/get
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The wavelet information structure, 'wavInfo', contains

'wavName' Wavelet name
'Lo_D' Low Decomposition filter
'Hi_D' High Decomposition filter
'Lo_R' Low Reconstruction filter
'Hi_R' High Reconstruction filter

The entropy information structure, 'entInfo', contains

'entName' Entropy name
'entPar' Entropy parameter

Fields from the DTREE parent object:

'allNI' All nodes information

'allNI' is an array of size nbnode by 5, which contains

ind Index
size Size of data
ent Entropy
ento Optimal entropy

Each line is built based on this scheme:

Version History
Introduced before R2006a

See Also
dtree | ntree
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wpviewcf
Plot wavelet packets colored coefficients

Syntax
wpviewcf(T,cmode)
wpviewcf(T,cmode,nbcol)

Description
wpviewcf(T,cmode) plots the colored coefficients for the terminal nodes of the wavelet packet tree
T using the color mode cmode.

wpviewcf(T,cmode,nbcol) uses nbcol colors.

Examples

View Wavelet Packet Coefficients

Create a wavelet packet tree using the Haar wavelet.

Fs = 200;
x = 0:1/Fs:1;
y = sin(8*pi*x);
t = wpdec(y,3,"haar");

Use plot, the plot tree GUI, to plot the tree.

plot(t)
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Click the node (3,0) to get this figure:

 wpviewcf
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Plot the colored wavelet packet coefficients.

wpviewcf(t,1)
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Input Arguments
T — Wavelet packet tree
wptree object

Wavelet packet tree, specified as a wptree object.

cmode — Color mode
1 | 2 | 3 | 4 | ...

Color mode to use to plot the coefficients, specified by one of the values listed here.

Color Mode Description
1 Frequency order – Global coloration – Absolute values
2 Frequency order – By level – Absolute values
3 Frequency order – Global coloration – Values
4 Frequency order – By level coloration – Values
5 Natural order – Global coloration – Absolute values
6 Natural order – By level – Absolute values
7 Natural order – Global coloration – Values

 wpviewcf
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Color Mode Description
8 Natural order – By level coloration – Values

nbcol — Number of colors
positive integer

Number of colors to use to plot the coefficients, specified as a positive integer.

Version History
Introduced before R2006a

See Also
wpdec
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wrcoef
Reconstruct single branch from 1-D wavelet coefficients

Syntax
x = wrcoef(type,c,l,wname)
x = wrcoef(type,c,l,LoR,HiR)
x = wrcoef( ___ ,n)

Description
x = wrcoef(type,c,l,wname) reconstructs the coefficients vector of type type based on the
wavelet decomposition structure [c,l] of a 1-D signal (see wavedec for more information) using the
wavelet specified by wname. The coefficients at the maximum decomposition level are reconstructed.
The length of x is equal to the length of the original 1-D signal.

x = wrcoef(type,c,l,LoR,HiR) uses the reconstruction filters LoR and HiR.

x = wrcoef( ___ ,n) reconstructs the coefficients at level n using any of the previous syntaxes.

Examples

Reconstruct Wavelet Coefficients

Load a 1-D signal.

load sumsin
s = sumsin;

Perform a level 5 wavelet decomposition of the signal using the sym4 wavelet.

[c,l] = wavedec(s,5,'sym4');

Reconstruct the approximation coefficients at level 5 from the wavelet decomposition structure
[c,l].

a5 = wrcoef('a',c,l,'sym4');

Reconstruct the detail coefficients at level 2.

d2 = wrcoef('d',c,l,'sym4',2);

Plot the original signal and reconstructed coefficients.

subplot(3,1,1)
plot(s)
title('Original Signal')
subplot(3,1,2)
plot(a5)
title('Reconstructed Approximation At Level 5')
subplot(3,1,3)
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plot(d2)
title('Reconstructed Details At Level 2')

Input Arguments
type — Coefficients to reconstruct
'a' | 'd'

Coefficients to reconstruct, specified as 'a' or 'd', for approximation or detail coefficients,
respectively.

c — Wavelet decomposition
real-valued vector

Wavelet decomposition of a 1-D signal, specified as a real-valued vector. The vector contains the
wavelet coefficients. The bookkeeping vector l contains the coefficients by level. See wavedec.
Data Types: double | single

l — Bookkeeping vector
vector of positive integers

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition c by level. See wavedec.
Data Types: double | single
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1-1832



wname — Analyzing wavelet
character vector | string scalar

Analyzing wavelet used to create the wavelet decomposition structure [c,l], specified as a
character vector or string scalar. wrcoef supports only orthogonal or biorthogonal wavelets. See
wfilters.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.

n — Coefficients level
length(l)-2 | nonnegative integer

Coefficients level, specified as a nonnegative integer. When type is 'a', n is allowed to be 0.
Otherwise, n is a strictly positive integer such that n ≤ length(l)-2. The default value of n is
length(l)-2.

Version History
Introduced before R2006a

See Also
appcoef | detcoef | wavedec
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wrcoef2
Reconstruct single branch from 2-D wavelet coefficients

Syntax
x = wrcoef2(type,c,s,wname)
x = wrcoef2(type,c,s,LoR,HiR)
x = wrcoef2( ___ ,n)

Description
wrcoef2 is a two-dimensional wavelet analysis function. wrcoef2 reconstructs the coefficients of an
image.

x = wrcoef2(type,c,s,wname) returns the matrix of reconstructed coefficients of type type
based on the wavelet decomposition structure [c,s] of an image (see wavedec2 for more
information) using the wavelet specified by wname. The coefficients at the maximum decomposition
level are reconstructed. The size of x is equal to the size of the original image.

x = wrcoef2(type,c,s,LoR,HiR) uses the lowpass and highpass reconstruction filters LoR and
HiR, respectively.

x = wrcoef2( ___ ,n) reconstructs the coefficients at level n using any of the previous syntaxes.

Examples

Reconstruct 2-D Wavelet Coefficients

Save the current extension mode. Load an image.

origMode = dwtmode("status","nodisp");
load woman
imagesc(X)
title("Original")
colormap gray
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Use dwtmode to change the extension mode to zero-padding. Obtain the 2-level wavelet
decomposition of the image using the sym5 wavelet.

dwtmode("zpd","nodisp")
[c,s] = wavedec2(X,2,"sym5");

Reconstruct the approximation coefficients at levels 1 and 2. Display the results.

a1 = wrcoef2("a",c,s,"sym5",1);
a2 = wrcoef2("a",c,s,"sym5",2);
subplot(1,2,1)
imagesc(a1)
title("Level 1")
subplot(1,2,2)
imagesc(a2)
title("Level 2")
colormap gray
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Reconstruct the horizontal, vertical, and diagonal detail coefficients at level 2.

h2 = wrcoef2("h",c,s,"sym5",2);
v2 = wrcoef2("v",c,s,"sym5",2);
d2 = wrcoef2("d",c,s,"sym5",2);

Confirm all the reconstructions are the same size as the original image.

sX = size(X);
sa1 = size(a1);
sa2 = size(a2);
sh2 = size(h2);
sv2 = size(v2);
sd2 = size(d2);
[sX;sa1;sa2;sh2;sv2;sd2]

ans = 6×2

   256   256
   256   256
   256   256
   256   256
   256   256
   256   256

Restore the extension mode to the original setting.
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dwtmode(origMode,"nodisp")

Input Arguments
type — Coefficients to reconstruct
"a" | "h" | "v" | "d"

Coefficients to reconstruct, specified as follows:

• "a" — Approximation coefficients
• "h" — Horizontal detail coefficients
• "v" — Vertical detail coefficients
• "d" — Diagonal detail coefficients

Data Types: string | char

c — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector, specified as a real-valued vector. The vector c contains the
approximation and detail coefficients organized by level. The bookkeeping matrix s is used to parse c.
See wavedec2.
Data Types: double

s — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix, specified as an integer-valued matrix. The matrix s contains the dimensions of
the wavelet coefficients by level and is used to parse the wavelet decomposition vector c. See
wavedec2.
Data Types: double

wname — Wavelet
character vector | string scalar

Wavelet, specified as a character vector or string scalar. wrcoef2 supports only Type 1 (orthogonal)
or Type 2 (biorthogonal) wavelets. See wfilters for a list of orthogonal and biorthogonal wavelets.

LoR,HiR — Wavelet reconstruction filters
even-length real-valued vectors

Wavelet reconstruction filters, specified as a pair of even-length real-valued vectors. LoR is the
lowpass reconstruction filter, and HiR is the highpass reconstruction filter. The lengths of LoR and
HiR must be equal. See wfilters for additional information.
Data Types: double

n — Coefficients level
size(s,1)-2 (default) | integer

Coefficients level, specified as an integer.

 wrcoef2
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• When type is "a", n must be an integer such that 0 ≤ n ≤ size(s,1)-2.
• When type is "h", "v", or "d", n must be an integer such that 1 ≤ n ≤ size(s,1)-2.

Data Types: double

Output Arguments
x — Reconstructed coefficients
matrix

Reconstructed coefficients, returned as a matrix. The size of x is equal to the size of the original
image
Data Types: double

Version History
Introduced before R2006a

See Also
appcoef2 | detcoef2 | wavedec2
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wrev
Flip vector

Syntax
y = wrev(x)

Description
y = wrev(x) reverses the vector x.

Examples

Flip Vector

Create a vector.

v = [1 2 3 4 5];

Flip the vector.

wrev(v)

ans = 1×5

     5     4     3     2     1

Flip the transpose of the vector.

wrev(v')

ans = 5×1

     5
     4
     3
     2
     1

Input Arguments
x — Input
vector

Input, specified as a vector.
Data Types: single | double
Complex Number Support: Yes

 wrev
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Version History
Introduced before R2006a

See Also
fliplr | flipud
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write
Write values in WPTREE fields

Syntax
T = write(T,'cfs',NODE,COEFS)
T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...)

Description
T = write(T,'cfs',NODE,COEFS) writes coefficients for the terminal node NODE.

T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...) writes coefficients CFS1, CFS2, ... for
the terminal nodes N1, N2, ....

Caution  The coefficients values must have the suitable size. You can use S =
read(T,'sizes',NODE) or S = read(T,'sizes',[N1;N2; ...]) in order to get those sizes.

Examples
% Create a wavelet packet tree.
load noisdopp; x = noisdopp;
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);

% Plot tree t and click the node (0,0) (see the plot function).
plot(t);

% Write values.
sNod = read(t,'sizes',[4,5,7]);  
cfs4 = zeros(sNod(1,:));
cfs5 = zeros(sNod(2,:));
cfs7 = zeros(sNod(3,:));
t = write(t,'cfs',4,cfs4,'cfs',5,cfs5,'cfs',7,cfs7);

 write
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% Plot tree t and click the node (0,0) (see the plot function).
plot(t)

Version History
Introduced before R2006a

See Also
disp | get | read | set
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wscalogram
(Not recommended) Scalogram for continuous wavelet transform

Note This function is no longer recommended. To obtain the scalogram, use cwt instead. See Version
History.

Syntax
SC = wscalogram(TYPEPLOT,COEFS)
SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...)

Description
SC = wscalogram(TYPEPLOT,COEFS) computes the scalogram SC which represents the
percentage of energy for each coefficient. COEFS is the matrix of the continuous wavelet coefficients
(see cwt).

The scalogram is obtained by computing:

S = abs(coefs.*coefs); SC = 100*S./sum(S(:))

When TYPEPLOT is equal to 'image', a scaled image of scalogram is displayed. When TYPEPLOT is
equal to 'contour', a contour representation of scalogram is displayed. Otherwise, the scalogram is
returned without plot representation.

SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...) allows you to modify some
properties. The valid choices for PropName are:

'scales' Scales used for the CWT.
'ydata' Signal used for the CWT.
'xdata' x values corresponding to the signal values.
'power' Positive real value. Default value is zero.

If power > 0, coefficients are first normalized

coefs(k,:) = coefs(k,:)/(scales(k)^power)

and then the scalogram is computed as explained above.

Examples
% Compute signal s
t = linspace(-1,1,512);
s = 1-abs(t);

% Plot signal s
figure;
plot(s), axis tight

 wscalogram
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% Compute coefficients COEFS using cwt
COEFS = cwt(s,1:32,'cgau4');

% Compute and plot the scalogram (image option)
figure;
SC = wscalogram('image',COEFS);
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% Compute and plot the scalogram (contour option)
figure;
SC = wscalogram('contour',COEFS);

 wscalogram
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Version History
Introduced in R2008a

R2016b: wscalogram is no longer recommended
Not recommended starting in R2016b

The wscalogram function is no longer recommended. Use the updated cwt function to obtain the
scalogram.

See Also
cwt
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wsst
Wavelet synchrosqueezed transform

Syntax
sst = wsst(x)
[sst,f] = wsst(x)
[ ___ ] = wsst(x,fs)
[ ___ ] = wsst(x,ts)
[ ___ ] = wsst( ___ ,wav)
wsst( ___ )
[ ___ ] = wsst( ___ ,Name,Value)

Description
sst = wsst(x) returns the wavelet synchrosqueezed transform, sst, which you use to examine
data in the time-frequency plane. The synchrosqueezed transform has reduced energy smearing when
compared to the continuous wavelet transform (CWT). The input, x, must be a 1-D real-valued signal
with at least four samples. wsst computes the synchrosqueezed transform using the analytic Morlet
wavelet.

The wsst function normalizes the analyzing wavelets to preserve the L1 norm. For more information,
see “Algorithms” on page 1-1853.

[sst,f] = wsst(x) returns a vector of frequencies, f, in cycles per sample. The frequencies
correspond to the rows of sst.

[ ___ ] = wsst(x,fs) computes the synchrosqueezed transform using the specified sampling
frequency, fs, in Hz, to compute the synchrosqueezed transform. If you specify an f output, wsst
returns the frequencies in Hz. You can use any previous combination of output values.

[ ___ ] = wsst(x,ts) uses a duration ts with a positive, scalar input, as the sampling interval.
The duration can be in years, days, hours, minutes, or seconds. If you specify ts and the f output,
wsst returns the frequencies in f in cycles per unit time, where the time unit is derived from
specified duration.

[ ___ ] = wsst( ___ ,wav) uses the analytic wavelet specified by wav to compute the
synchrosqueezed transform. Valid values are 'amor' and 'bump', which specify the analytic Morlet
and bump wavelet, respectively.

wsst( ___ ) with no output arguments plots the synchrosqueezed transform as a function of time
and frequency. If you do not specify a sampling frequency, fs, or interval, ts, the synchrosqueezed
transform is plotted in cycles per sample. If you specify a sampling frequency, the synchrosqueezed
transform is plotted in Hz. If you specify a sampling interval using a duration, the plot is in cycles per
unit time. The time units are derived from the duration.

[ ___ ] = wsst( ___ ,Name,Value) returns the synchrosqueezed transform with additional
options specified by one or more Name,Value pair arguments.

 wsst
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Examples

Synchrosqueezed Transform of Speech Signal

Obtain the wavelet synchrosqueezed transform of a speech sample using default values.

load mtlb;
sst = wsst(mtlb);

Synchrosqueezed Transform and Reconstruction of Speech Signal

Obtain the wavelet synchrosqueezed transform of a speech signal and compare the original and
reconstructed signals.

Load the speech signal and obtain its synchrosqueezed transform.

load mtlb
soundsc(mtlb,Fs)
dt = 1/Fs;
t = 0:dt:numel(mtlb)*dt-dt;
[sst,f] = wsst(mtlb,Fs);

Plot the synchrosqueezed transform.

pcolor(t,f,abs(sst))
shading interp
xlabel('Seconds')
ylabel('Frequency (Hz)')
title('Synchrosqueezed Transform')
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Obtain the inverse synchrosqueezed transform and play the reconstructed speech signal.

xrec = iwsst(sst);
soundsc(xrec,Fs)

Synchrosqueezed Transform of Quadratic Chirp

Obtain and plot the wavelet synchrosqueezed transform of a quadratic chirp. The chirp is sampled at
1000 Hz.

load quadchirp;
[sst,f] = wsst(quadchirp,1000);
hp = pcolor(tquad,f,abs(sst));
hp.EdgeColor = 'none';
title('Wavelet Synchrosqueezed Transform');
xlabel('Time'); ylabel('Hz');

 wsst
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Synchrosqueezed Transform of Sunspot Data

Obtain the wavelet synchrosqueezed transform of sunspot data using the default Morlet wavelet.
Specify the sampling interval to be one year.

load sunspot
wsst(sunspot(:,2),years(1))
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Synchrosqueezed Transform of Sunspot Data Using Bump Wavelet

Obtain and plot the wavelet synchrosqueezed transform of sunspot data using the bump wavelet.
Specify the sampling interval to be 1 for one sample per year.

load sunspot
wsst(sunspot(:,2),years(1),'bump')

 wsst
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Input Arguments
x — Input signal
row or column vector of real values

Input signal, specified as a row or column vector. x must be a 1-D, real-valued signal with at least four
samples.

fs — Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar.

ts — Sampling interval
duration with positive scalar input

Sampling interval, also known as the sampling period, specified as a duration with positive scalar
input. Valid durations are years, days, hours, seconds, and minutes. You cannot use calendar
durations (caldays, calweeks, calmonths, calquarters, or calyears). You cannot specify both
ts and fs.
Example: sst = wsst(x,hours(12))

wav — Analytic wavelet
'amor' (default) | 'bump'
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Analytic wavelet used to compute the synchrosqueezed transform, specified as one of the following:

• 'amor' — Analytic Morlet wavelet
• 'bump' — Bump wavelet

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VoicesPerOctave',26

VoicesPerOctave — Number of voices per octave
32 (default) | even integer from 10 to 48

Number of voices per octave to use in the synchrosqueezed transform, specified as the comma-
separated pair consisting of 'VoicesPerOctave' and an even integer from 10 to 48. The product of
the number of voices per octave and the number of octaves is the number of scales. The number of
octaves depends on the size of the input x and is floor(log2(numel(x)))-1.

ExtendSignal — Extend input signal symmetrically
false (default) | true

Option to extend the input signal symmetrically, specified as the comma-separated pair consisting of
'ExtendSignal' and either false or true. Extending the signal symmetrically can mitigate
boundary effects. If you specify false, then the signal is not extended. If you specify true, then the
signal is extended.

Output Arguments
sst — Synchrosqueezed transform
matrix

Synchrosqueezed transform, returned as a matrix. By default, the synchrosqueezed transform uses
floor(log2(numel(x)))-1 octaves, 32 voices per octave, and the analytic Morlet wavelet. sst is
an Na-by-N matrix where Na is the number of scales, and N is the number of samples in x. The
default number of scales is 32*(floor(log2(numel(x)))-1).

f — Frequencies
vector

Frequencies of the synchrosqueezed transform, returned as a vector. The frequencies correspond to
the rows of the sst. If you do not specify fs or ts, the frequencies are in cycles per sample. If you
specify fs, the frequencies are in Hz. If you specify ts, the frequencies are in cycles per unit time.
The length of the frequency vector is the same as the number of sst rows. If you specify ts as the
sampling interval, ts is used to compute the scale-to-frequency conversion for f.

Algorithms
The wsst function normalizes the analyzing wavelets to preserve the L1 norm. An equivalent way to
state this is that wsst does not multiply the Fourier transforms of the wavelet bandpass filters by the
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square root of the scale. Multiplying by the square root of the scale would unequally weight different
bandpass contributions.

With L1 normalization, if you have equal amplitude oscillatory components in your data at different
scales, they will have equal magnitude in the CWT. The cwt function also uses L1 normalization. For
more information, see “L1 Norm for CWT” on page 1-170.

Version History
Introduced in R2016a

References
[1] Daubechies, Ingrid, Jianfeng Lu, and Hau-Tieng Wu. “Synchrosqueezed Wavelet Transforms: An

Empirical Mode Decomposition-like Tool.” Applied and Computational Harmonic Analysis 30,
no. 2 (March 2011): 243–61. https://doi.org/10.1016/j.acha.2010.08.002.

[2] Thakur, Gaurav, Eugene Brevdo, Neven S. Fučkar, and Hau-Tieng Wu. “The Synchrosqueezing
Algorithm for Time-Varying Spectral Analysis: Robustness Properties and New Paleoclimate
Applications.” Signal Processing 93, no. 5 (May 2013): 1079–94. https://doi.org/10.1016/
j.sigpro.2012.11.029.

See Also
iwsst | wsstridge | years | days | hours | minutes | seconds | duration

Topics
“Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing”
“Wavelet Synchrosqueezing”
“Time-Frequency Gallery”
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wsstridge
Time-frequency ridges from wavelet synchrosqueezing

Syntax
fridge = wsstridge(sst)
[fridge,iridge] = wsstridge(sst)
[ ___ ] = wsstridge(sst,penalty)
[ ___ ] = wsstridge( ___ ,f)
[ ___ ]= wsstridge( ___ ,Name,Value)

Description
fridge = wsstridge(sst) extracts the maximum energy time-frequency ridge in cycles per
sample from the wavelet synchrosqueezed transform, sst. The sst input is the output of wsst. Each
ridge is a separate signal mode.

[fridge,iridge] = wsstridge(sst) returns in iridge the row indices of sst. The row indices
are the maximum time-frequency ridge at each sample. Use iridge to reconstruct the signal mode
along a time-frequency ridge using iwsst.

[ ___ ] = wsstridge(sst,penalty) multiplies the squared distance between frequency bins by
the penalty value. You can include any of the output arguments from previous syntaxes.

[ ___ ] = wsstridge( ___ ,f) returns the maximum energy time-frequency ridge in cycles per
unit time based on the f input frequency vector. f is the frequency output of wsst. The f input and
fridge output have the same units.

[ ___ ]= wsstridge( ___ ,Name,Value) returns the time-frequency ridge with additional options
specified by one or more Name,Value pair arguments.

Examples

Extract Time-Frequency Ridge from Chirp Signal

Obtain the wavelet synchrosqueezed transform of a quadratic chirp and extract the maximum time-
frequency ridge, in fridge, and the associated row indices, in iridge.

Load the chirp signal and obtain its synchrosqueezed transform.

load quadchirp;
[sst,f] = wsst(quadchirp);

Extract the maximum time-frequency ridge.

[fridge,iridge] = wsstridge(sst);

Plot the synchrosqueezed transform.
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pcolor(tquad,f,abs(sst))
shading interp
title('Synchrosqueezed Transform')

Overlay the plot of the maximum energy frequency ridge.

hold on
plot(tquad,fridge)
title('Synchrosqueezed Transform with Overlaid Ridge')
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Extract Time-Frequency Ridge from Multicomponent Signal

Extract the two highest energy modes from a multicomponent signal.

Obtain and plot the wavelet synchrosqueezed transform.

load multicompsig;
sig = sig1+sig2;
[sst,F] = wsst(sig,sampfreq);
contour(t,F,abs(sst));
xlabel('Time'); ylabel('Hz');
grid on;
title('Synchrosqueezed Transform of Two-Component Signal');
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Using a penalty of 10, extract the two highest energy modes and plot the result.

[fridge,iridge] = wsstridge(sst,10,F,'NumRidges',2);
hold on;
plot(t,fridge,'k','linewidth',2);
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Input Arguments
sst — Synchrosqueezed transform
matrix

Synchrosqueezed transform, specified as a matrix. sst is a time-frequency matrix and is the output of
wsst.

penalty — Frequency bins scaling penalty
0 (default) | nonnegative scalar

Frequency bins scaling penalty, specified as a nonnegative scalar. This input penalizes changes in
frequency by multiplying the penalty value by the squared distance between frequency bins. Use a
penalty term when you extract multiple ridges, or when you have a single modulated component in
additive noise. The penalty term prevents jumps in frequency that occur when the region of highest
energy in the time-frequency plane changes abruptly.

f — Synchrosqueezed transform frequencies
vector

Synchrosqueezed transform frequencies corresponding to the rows of the synchrosqueezed
transform, which is the vector output of wsst. The number of elements in the frequency vector is
equal to the number of rows in the sst input.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumRidges',3

NumRidges — Number of highest energy time-frequency ridges
1 (default) | positive integer

Number of highest energy time-frequency ridges to extract, specified as the comma-separated pair
consisting of 'NumRidges' and a positive integer. If this integer is greater than 1, wsstridge
iteratively determines the maximum energy time-frequency ridge by removing the previously
computed ridges and the default or specified 'NumFrequencyBins' on either side of each ridge bin.

NumFrequencyBins — Number of frequency bins to remove
4 (default) | positive integer

Number of frequency bins to remove from synchrosqueezed transform sst when extracting multiple
ridges, specified as the comma-separated pair consisting of 'NumFrequencyBins' and a positive
integer. This integer must be less than or equal to round(size(sst,1)/4). You can specify the
number of frequency bins to remove only if you extract more than one ridge. After extracting the
highest energy time-frequency ridge, wsstridge removes the sst values corresponding to the
iridge indices at each time step. The energy is removed along the time-frequency ridge extended on
both sides of the iridge index by the specified number of frequency bins. If the index of the
extended time-frequency ridge exceeds the number of frequency bins at any time step, wsstridge
truncates the removal region at the first or last frequency bin. To specify 'NumFrequencyBins', you
must specify 'NumRidges'.

Output Arguments
fridge — Time-frequency ridge frequencies
vector or matrix

Time-frequency ridge frequencies, returned as a vector or matrix. The frequencies correspond to the
time-frequency ridge at each time step. fridge is an N-by-nr matrix where N is the number of time
samples (columns) in sst and nr is the number of ridges. The first column of the matrix contains the
frequencies for the maximum energy time-frequency ridge in sst. Subsequent columns contain the
frequencies for the time-frequency ridges in decreasing energy order. By default, fridge contains
frequencies in cycles per sample.

iridge — Time-frequency ridge indices
vector or matrix

Time-frequency ridge row indices of sst, returned as a vector or matrix. The row indices in iridge
correspond to the row index of the maximum time-frequency ridge for each sst column. iridge is
an N-by-nr matrix where N is the number of time samples (columns) in sst, and nr is the number of
ridges. The first column of the matrix contains the indices for the maximum energy time-frequency
ridge in sst. Subsequent columns contain the indices for the time-frequency ridges in decreasing
energy order.
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Algorithms
The function uses a penalized forward-backward greedy algorithm to extract the maximum-energy
ridges from a time-frequency matrix. The algorithm finds the maximum time-frequency ridge by
minimizing –ln A at each time point, where A is the absolute value of the matrix. Minimizing –ln A is
equivalent to maximizing the value of A. The algorithm optionally constrains jumps in frequency with
a penalty that is proportional to the distance between frequency bins.

The following example illustrates the time-frequency ridge algorithm using a penalty that is two times
the distance between frequency bins. Specifically, the distance between the elements (j,k) and
(m,n) is defined as (j-m)2. The time-frequency matrix has three frequency bins and three time
steps. The matrix columns correspond to time steps, and the matrix rows correspond to frequency
bins. The values in the second row represent a sine wave.

1 Suppose you have the matrix:

1   4   4
2   2   2
5   5   4

2 Update the value for the (1,2) element as follows.

a Leave the values at the first time point unaltered. Begin the algorithm with the (1,2) element
of the matrix, which presents the first frequency bin at the second time point. The bin value
is 4. Penalize the values in the first column based on their distance from the (1,2) element.
Applying the penalty to the first column produces

original value + penalty × distance

1 + 2 × 0 =  1
2 + 2 × 1 =  4
5 + 2 × 4 = 13

 1   4
 4   2
13   5

The minimum value of the first column is 1, which is in bin 1.
b Add the minimum value in column 1 to the current bin value, 4. The updated value for (1,2)

becomes 5, which came from bin 1.
3 Update the values for the remaining elements in column 2 as follows.

Recompute the original column 1 values with the penalty factor using the same process as in
Step 2a. Obtain the remaining second column values using the same process as in Step 2b. For
example, when updating the (2,2) element, which has bin value 2, applying the penalty to the
column yields

original value + penalty × distance

1 + 2 × 1 =  3
2 + 2 × 0 =  2
5 + 2 × 1 =  7

Add the minimum value, 2, to the current bin value. The updated value for (2,2) becomes 4. After
updating the (3,2) element, the matrix is
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1   5(1)  4
2   4(2)  2
5   9(2)  4

Only the second column has been updated. The subscripts indicate the index of the bin in the
previous column from which a value came.

4 Repeat Step 2 for the third column. But now the penalty is applied to the updated second column.
For example, when updating the (1,3) element, the penalty is

5 + 2 × 0 =  5
4 + 2 × 1 =  6
9 + 2 × 4 = 17

The minimum value, 5, which is in the first bin, is added to the (1,3) bin value. After updating all
the values in the third column, the final matrix is

1   5(1)   9(1)
2   4(2)   6(2)
5   9(2)  10(2)

5 Starting at the last column of the matrix, find the minimum value. Walk back in time through the
matrix by going from the current bin to the origin of that bin at the previous time point. Keep
track of the bin indices, which form the path composing the ridge. The algorithm smooths the
transition by using the origin bin instead of the bin with the minimum value. For this example,
the ridge indices are 2, 2, 2, which matches the energy path of the sine wave in row 2 of the
matrix shown in Step 1.

If you are extracting multiple ridges, the algorithm removes the first ridge from the time-frequency
matrix and repeats the process.

Version History
Introduced in R2016a

References
[1] Daubechies, I., J. Lu, and H.-T. Wu. "Synchrosqueezed wavelet transforms: an empirical mode

decomposition-like tool." Applied and Computational Harmonic Analysis. Vol. 30, Number 2,
2011, pp. 243–261.

[2] Thakur, G., E. Brevdo, N. S. Fučkar, and H.-T. Wu. "The Synchrosqueezing algorithm for time-
varying spectral analysis: Robustness properties and new paleoclimate applications." Signal
Processing. Vol. 93, Number 4, 2013, pp. 1079–1094.

See Also
wsst | iwsst

Topics
“Time-Frequency Reassignment and Mode Extraction with Synchrosqueezing”
“Wavelet Synchrosqueezing”
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wt
Continuous wavelet transform with filter bank

Syntax
cfs = wt(fb,x)
[cfs,f] = wt(fb,x)
[cfs,f,coi] = wt(fb,x)
[cfs,f,coi,scalcfs] = wt(fb,x)
[cfs,p] = wt(fb,x)
[cfs,p,coi] = wt(fb,x)
[cfs,p,coi,scalcfs] = wt(fb,x)

Description
cfs = wt(fb,x) returns the continuous wavelet transform (CWT) coefficients of the signal x, using
fb, a CWT filter bank. x is a real- or complex-valued vector. x must have at least 4 samples. If x is
real-valued, cfs is a 2-D matrix, where each row corresponds to one scale. The column size of cfs is
equal to the length of x. If x is complex-valued, cfs is a 3-D array, where the first page is the CWT for
the positive scales (analytic part or counterclockwise component), and the second page is the cwt for
the negative scales (anti-analytic part or clockwise component).

[cfs,f] = wt(fb,x) returns the frequencies f corresponding to the scales (rows) of cfs if the
SamplingPeriod property is not specified in the CWT filter bank fb. If you do not specify a
sampling frequency, f is in cycles/sample.

[cfs,f,coi] = wt(fb,x) returns the cone of influence coi for the CWT. coi is in the same units
as f. If the input x is complex, the coi applies to both pages of cfs.

[cfs,f,coi,scalcfs] = wt(fb,x) returns the scaling coefficients scalcfs for the wavelet
transform.

[cfs,p] = wt(fb,x) returns the periods p corresponding to the scales (rows) of cfs if you specify
a sampling period in the CWT filter bank. p has the same units and format as the duration scalar
sampling period.

[cfs,p,coi] = wt(fb,x) returns the cone of influence coi in periods for the CWT. coi is an
array of durations with the same format property as the sampling period. If the input x is complex,
the coi applies to both pages of cfs.

[cfs,p,coi,scalcfs] = wt(fb,x) returns the scaling coefficients scalcfs for the wavelet
transform.

Examples

Continuous Wavelet Transform Using Filter Bank

Load the noisy Doppler signal. Create a CWT filter bank that can be applied to the signal.
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load noisdopp
fb = cwtfilterbank('SignalLength',numel(noisdopp));

Use the filter bank to obtain the continuous wavelet transform of the signal.

[cfs,f,coi] = wt(fb,noisdopp);

Plot the CWT scalogram, including the cone of influence.

t = 0:numel(noisdopp)-1;
pcolor(t,f,abs(cfs))
shading flat
set(gca,'YScale','log')
hold on
plot(t,coi,'w-','LineWidth',3)
xlabel('Time (Samples)')
ylabel('Normalized Frequency (cycles/sample)')
title('Scalogram')

Inverse Continuous Wavelet Transform Using Scaling Coefficients

Create and plot a signal sampled at 1000 Hz. Create a CWT filter bank that can be used on the signal.
Since the signal is periodic, set the boundary extension property of the filter bank to 'periodic'.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
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sig = 3*sin(2*pi*20*t) + cos(2*pi*2*t);
fb = cwtfilterbank('SignalLength',length(sig),...
    'SamplingFrequency',Fs,...
    'Boundary','periodic');
plot(t,sig)
xlabel('Time (sec)')
title('Signal')

Take the CWT of the signal. Return the wavelet and scaling coefficients.

[cfs,~,~,scalcfs] = wt(fb,sig);

Reconstruct the signal two ways. First use the mean of the signal, then use the scaling coefficients.
Plot the difference between the original signal and both reconstructions.

xrec0 = icwt(cfs,'SignalMean',mean(sig));
xrec1 = icwt(cfs,'ScalingCoefficients',scalcfs);
plot(t,sig-xrec0)
hold on
plot(t,sig-xrec1)
grid on
legend('Using mean(sig)','Using scalcfs')
title('Difference Between Reconstructions')
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The scaling coefficients results in a significantly more accurate reconstruction. To investigate the
source of the dramatic improvement, create a second signal consisting of the 2 Hz component of the
original signal. Compare the scaling coefficients with the 2 Hz signal. The scaling coefficients and 2
Hz signal are virtually identical. Using the scaling coefficients helps with the reconstruction because
the 2 Hz component is not representable by a wavelet with this sampling frequency and length.

figure
sig2hz = cos(2*pi*2*t);
plot(t,sig2hz)
hold on
plot(t,scalcfs)
grid on
title('Comparing Scaling Coefficients with 2 Hz Component')
xlabel('Time (sec)')
legend('2 Hz Component', 'Scaling Coefficients')
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Using CWT Filter Bank on Multiple Time Series

This example shows how using a CWT filter bank can improve computational efficiency when taking
the CWT of multiple time series.

Create a 100-by-1024 matrix x. Create a CWT filter bank appropriate for signals with 1024 samples.

x = randn(100,1024);
fb = cwtfilterbank;

Use cwt with default settings to obtain the CWT of a signal with 1024 samples. Create a 3-D array
that can contain the CWT coefficients of 100 signals, each of which has 1024 samples.

cfs = cwt(x(1,:));
res = zeros(100,size(cfs,1),size(cfs,2));

Use the cwt function and take the CWT of each row of the matrix x. Display the elapsed time.

tic
for k=1:100
    res(k,:,:) = cwt(x(k,:));
end
toc

Elapsed time is 0.928160 seconds.
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Now use the wt object function of the filter bank to take the CWT of each row of x. Display the
elapsed time.

tic
for k=1:100
    res(k,:,:) = wt(fb,x(k,:));
end
toc

Elapsed time is 0.393524 seconds.

Input Arguments
fb — Continuous wavelet transform filter bank
cwtfilterbank object

Continuous wavelet transform (CWT) filter bank, specified as a cwtfilterbank object.

x — Input signal
real- or complex-valued vector | gpuArray

Input signal, specified as a real- or complex-valued vector. x must have at least four samples.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
cfs — Continuous wavelet transform
matrix | 3-D array

Continuous wavelet transform, returned as a matrix or 3-D array of complex values. If x is real-
valued, cfs is a 2-D matrix, where each row corresponds to one scale. The column size of cfs is
equal to the length of x. If x is complex-valued, cfs is a 3-D array, where the first page is the CWT for
the positive scales (analytic part or counterclockwise component), and the second page is the CWT
for the negative scales (anti-analytic part or clockwise component).
Data Types: double | single

f — Frequencies
vector

Frequencies, returned as a vector, corresponding to the scales (rows) of cfs if the
'SamplingPeriod' is not specified in fb. If you specify a sampling frequency, f is in hertz. If you do
not specify a frequency, f is in cycles/sample.
Data Types: double

p — Periods
array

Periods, returned as an array of durations, corresponding to the scales (rows) of cfs if fb has a
specified sampling period. p has the same units and format as the duration scalar sampling period.
Data Types: duration
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coi — Cone of influence
array of real numbers | array of durations

Cone of influence for the CWT, returned as either an array of real numbers or an array of durations.
The cone of influence indicates where edge effects occur in the CWT. If you specify a sampling
frequency, coi is an array of real numbers in the same units as f. If you specify a sampling period,
coi is an array of durations with the same format property as the sampling period. Due to the edge
effects, give less credence to areas that are outside or overlap the cone of influence.

For additional information, see “Boundary Effects and the Cone of Influence”.
Data Types: double | duration

scalcfs — Scaling coefficients
real- or complex-valued vector

Scaling coefficients for the wavelet transform, returned as a vector with the same length as x. If x is
real-valued, scalcfs is real valued. If x is complex-valued, scalcfs is complex-valued.
Data Types: double

Tips
• The first time you use a filter bank to take the CWT of a signal, the wavelet filters are constructed

to have the same datatype as the signal. A warning message is generated when you apply the
same filter bank to a signal with a different datatype. Changing datatypes comes with the cost of
redesigning or changing the precision of the filter bank. For optimal performance, use a consistent
datatype.

• When performing multiple CWTs, for example inside a for-loop, the recommended workflow is to
first create a cwtfilterbank object and then use the wt object function. This workflow
minimizes overhead and maximizes performance. See “Using CWT Filter Bank on Multiple Time
Series” on page 1-1867.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Apps
Wavelet Time-Frequency Analyzer
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Functions
cwt | cwtfilterbank | icwt

Topics
“Using Wavelet Time-Frequency Analyzer App”
“Boundary Effects and the Cone of Influence”
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wtbo
WTBO constructor

Syntax
OBJ = wtbo
OBJ = wtbo(USERDATA)

Description
OBJ = wtbo returns a WTBO object. Any object in the Wavelet Toolbox software is parented by a
WTBO object.

With OBJ = wtbo(USERDATA) you can set a userdata field.

Class WTBO (Parent class: none)

Fields
wtboInfo Object information (not used in the current version of the toolbox)
ud Userdata field

Version History
Introduced before R2006a
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wtbxmngr
Wavelet Toolbox manager

Syntax
wtbxmngr(OPTION)
V = wtbxmngr('version')

Description
wtbxmngr or wtbxmngr('version') displays the current version of Wavelet Toolbox software.

wtbxmngr(OPTION) sets a toolbox option. Available options are

Option Description
'LargeFonts' Sets the size of future-created figures to use large fonts.
'DefaultSize' Restores the default figure size for future- created figures.
'FigRatio' Returns the current figure ratio value.
'FigRatio',ratio Changes the size of future-created figures by multiplying the

default size by the specified ratio, where ratio must be between
0.75 and 1.25.

V = wtbxmngr('version') saves the current version of the toolbox to variable V.

Examples
wtbxmngr('version')

*************************************
**  Wavelet Toolbox Version: V3.1  **
*************************************

wtbxmngr('FigRatio')      % Display the current figure ratio
wtbxmngr('FigRatio',1.25) % Set the figure ratio to 1.25
wtbxmngr('FigRatio')      % Display the current figure ratio
wtbxmngr('DefaultSize')   % Return to the default figure ratio
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Version History
Introduced before R2006a

 wtbxmngr

1-1873



wthcoef
1-D wavelet coefficient thresholding

Syntax
nc = wthcoef("a",c,l)
nc = wthcoef("d",c,l,n)
nc = wthcoef("d",c,l,n,p)
nc = wthcoef("t",c,l,n,t,sorh)

Description
wthcoef thresholds wavelet coefficients for the denoising or compression of a 1-D signal.

nc = wthcoef("a",c,l) returns coefficients obtained from the multilevel wavelet decomposition
structure [c,l] by setting the approximation coefficients to zero . For information about the
decomposition structure, see wavedec.

nc = wthcoef("d",c,l,n) returns coefficients obtained from [c,l] by setting all the coefficients
at detail levels specified in n to zero.

nc = wthcoef("d",c,l,n,p) returns coefficients obtained from [c,l] by rate compression defined
in vectors n and p. n specifies the detail levels to be compressed and p the corresponding
percentages of lower coefficients to set to zero. n and p must be of the same length.

nc = wthcoef("t",c,l,n,t,sorh) returns coefficients obtained from [c,l] by thresholding
specified in thr. n specifies the detail levels to be thresholded and t the corresponding thresholds. n
and t must be of the same length.

Examples

Modify Approximation Coefficients

Load and plot a 1-D signal.

load wecg
plot(wecg)
title("Signal")
axis tight
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Obtain a level 3 wavelet decomposition of the signal using the Daubechies db4 wavelet.

wv = "db4";
[c,l] = wavedec(wecg,3,wv);

Use wthcoef to modify the wavelet decomposition c. Set the approximation coefficients to zero and
plot the difference between the original and modified wavelet decompositions.

nc = wthcoef("a",c,l);
plot(c-nc)
title("Difference")
axis tight
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Reconstruct a signal using the modified wavelet decomposition.

xrec = waverec(nc,l,wv);
plot(xrec)
title("Reconstruction")
axis tight
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Threshold Wavelet Coefficients

Save the current extension mode. Change the extension mode to periodized extension.

origmode = dwtmode("status","nodisplay");
dwtmode("per","nodisplay")

Load and plot a 1-D signal. The signal has 2048 samples.

load wecg
plot(wecg)
title("Signal")
axis tight
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Obtain a level 2 wavelet decomposition of the signal using the Haar wavelet. Display the bookkeeping
vector. Confirm there are 1024 detail coefficients at level 1, and 512 detail coefficients at level 2.

wv = "haar";
[c,l] = wavedec(wecg,2,wv);
l

l = 4×1

         512
         512
        1024
        2048

Use wthcoef to threshold the level 1 and level 2 detail coefficients in the wavelet decomposition c.
Set 75% of the level 1 detail coefficients to zero, and set 50% of the level 2 detail coefficients to zero.

nc = wthcoef("d",c,l,[1 2],[75 50]);

Confirm there are 256 nonzero wavelet coefficients at levels 1 and 2 in the modified wavelet
decomposition nc.

[level1,level2] = detcoef(nc,l,[1 2]);
[nnz(level1) 1024*0.25]

ans = 1×2
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   256   256

[nnz(level2) 512*0.5]

ans = 1×2

   256   256

Reconstruct a signal using the modified wavelet decomposition.

xrec = waverec(nc,l,wv);
plot(xrec)
title("Reconstruction")
axis tight

Restore the original extension mode.

dwtmode(origmode,"nodisplay")

Input Arguments
c — Wavelet decomposition
vector
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Wavelet decomposition, specified as a vector. The vector contains the wavelet coefficients. The
bookkeeping vector l contains the number of coefficients by level. c is the output of wavedec.
Data Types: single | double

l — Bookkeeping vector
vector

Bookkeeping vector, specified as a vector of positive integers. The bookkeeping vector is used to
parse the coefficients in the wavelet decomposition c by level. l is the output of wavedec.
Data Types: single | double

n — Detail levels
vector

Detail levels, specified as a vector of positive integers less than or equal to N, where N is the level of
the wavelet decomposition used to obtain [c,l]. Specifically, N = length(l)-2.
Data Types: double

p — Percentages
vector

Percentages of coefficients to set to zero, specified as a vector of positive integers less than or equal
to 100. p and n must be the same length.
Data Types: double

t — Thresholds
vector

Thresholds to apply to detail coefficients, specified as a real-valued vector. t and n must be the same
length.
Data Types: double

sorh — Type of thresholding
"s" | "h"

Type of thresholding to perform:

• "s" — Soft thresholding
• "h" — Hard thresholding

Output Arguments
nc — Modified wavelet decomposition
vector

Modified wavelet decomposition, returned as a vector. nc and c have equal length.

Version History
Introduced before R2006a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wavedec | wdenoise | wthresh
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wthcoef2
2-D wavelet coefficient thresholding

Syntax
NC = wthcoef2('type',C,S,N,T,SORH)
NC = wthcoef2('type',C,S,N)
NC = wthcoef2('a',C,S)
NC = wthcoef2('t',C,S,N,T,SORH)

Description
NC = wthcoef2('type',C,S,N,T,SORH) returns the horizontal, vertical, or diagonal coefficients
obtained from the wavelet decomposition structure [C,S] by soft or hard thresholding defined in
vectors N and T.

wthcoef2 is a two-dimensional denoising and compression oriented function.

NC = wthcoef2('type',C,S,N) returns the horizontal, vertical, or diagonal coefficients obtained
from [C,S] by setting all the coefficients of detail levels defined in N to zero.

NC = wthcoef2('a',C,S) returns the coefficients obtained by setting approximation coefficients
to zero.

NC = wthcoef2('t',C,S,N,T,SORH) returns the detail coefficients obtained from the wavelet
decomposition structure [C,S] by soft or hard thresholding defined in vectors N and T.

[NC,S] is the modified wavelet decomposition structure.

Examples

Calculate Coefficients Obtained From Wavelet Decomposition Structure

Load the image data.

load mask

Perform a level 2 wavelet decomposition of the image using the haar wavelet.

[C,S]=wavedec2(X,2,'haar');

Calculate the vertical coefficients obtained from the wavelet decomposition structure by soft
thresholding defined in thresholding vectors [1 2] and [2 4].

NC = wthcoef2('v',C,S,[1 2],[2 4],'s')

NC = 1×65536
103 ×

    0.9280    0.9265    0.9295    0.9258    0.9305    0.9245    0.9340    0.9235    0.9268    0.9233    0.9213    0.9260    0.9220    0.9208    0.9203    0.9223    0.9278    0.9220    0.9265    0.9160    0.9290    0.9210    0.9280    0.9190    0.9280    0.9220    0.9303    0.9190    0.7363    0.7210    0.9218    0.9280    0.9330    0.9248    0.9308    0.9263    0.9285    0.9245    0.9330    0.9320    0.9340    0.9283    0.9283    0.9280    0.9328    0.9295    0.9228    0.9218    0.9340    0.9300
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Input Arguments
'type' — Type of coefficients
'h' | 'v' | 'd'

Type of coefficients obtained from the wavelet decomposition structure, specified as one of the
following:

• 'h'— Horizontal coefficients
• 'v'— Vertical coefficients
• 'd'— Diagonal coefficients

For more information, see wthresh.

C — Wavelet decomposition vector
real-valued vector

Wavelet decomposition vector. The vector C contains the approximation and detail coefficients
organized by level. The function uses the bookkeeping matrix S to parse C.

The vector C is organized as A(N), H(N), V(N), D(N), H(N-1), V(N-1), D(N-1), …, H(1), V(1), D(1), where
A, H, V, and D are each a row vector. Each vector is the column-wise storage of a matrix.

• A contains the approximation coefficients.
• H contains the horizontal detail coefficients.
• V contains the vertical detail coefficients.
• D contains the diagonal detail coefficients.

For more information, see wavedec2.

S — Bookkeeping matrix
integer-valued matrix

Bookkeeping matrix. The matrix S contains the dimensions of the wavelet coefficients by level and the
function uses it to parse the wavelet decomposition vector C.

• S(1,:) = size of approximation coefficients(N).
• S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and S(N+2,:) = size(X).

The following diagram shows the relationship between C and S in the wavelet decomposition of a 512-
by-512 matrix.
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When X represents an indexed image, the output arrays cA, cH, cV, and cD are m-by-n matrices.
When X represents a truecolor image, it is an m-by-n-by-3 array, where each m-by-n matrix represents
a red, green, or blue color plane concatenated along the third dimension. The size of vector C and the
size of matrix S depend on the type of the analyzed image.

For a truecolor image, the decomposition vector C and the corresponding bookkeeping matrix S can
be represented as shown.

For more information, see wavedec2.

N — Threshold vector
1 ≤ N(i) ≤ size(S,1)-2

Threshold vector, specified by a size 1 ≤ N(i) ≤ size(S,1)-2. N contains the detail levels to be
thresholded and T the corresponding thresholds.

T — Threshold vector
nonnegative vectors

Threshold vector, specified as a nonnegative vector. N and T must be of the same length. N contains
the detail levels to be thresholded and T the corresponding thresholds.

SORH — Soft or hard threshold
's' | 'h'

Soft or hard threshold, specified as 's' or 'h'.
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For more information, see wthresh.

Output Arguments
NC — Wavelet coefficient threshold
real-valued vector

Wavelet coefficient threshold, returned as a real-valued vector.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
wthcoef | wavedec2 | wthresh
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wthresh
Soft or hard thresholding

Syntax
Y = wthresh(X,sorh,T)

Description
Y = wthresh(X,sorh,T) returns the soft or hard thresholding, indicated by sorh, of the vector or
matrix X. T is the threshold value.

Examples

Hard and Soft Thresholding

Generate a signal and set a threshold.

y = linspace(-1,1,100);
thr = 0.4;

Perform hard and soft thresholding.

ythard = wthresh(y,'h',thr);
ytsoft = wthresh(y,'s',thr);

Plot the results and compare with the original signal.

subplot(1,3,1)
plot(y,y)
ylim([-1 1])
title('Original Signal')
subplot(1,3,2)
plot(y,ythard)
ylim([-1 1])
title('Hard Threshold')
subplot(1,3,3)
plot(y,ytsoft)
ylim([-1 1])
title('Soft Threshold')
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Input Arguments
X — Input data
real-valued vector or matrix

Input data to threshold, specified as a real-valued vector or matrix.
Data Types: double

sorh — Type of thresholding
's' | 'h'

Type of thresholding to perform:

• 's' — Soft thresholding
• 'h' — Hard thresholding

T — Threshold value
positive real number

Threshold value, specified as a positive real number.
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Output Arguments
Y — Thresholded data
real-valued vector or matrix

Thresholded data, returned as a real-valued vector or matrix. Y has the same dimensions as X.

Algorithms
If sorh is 's', Y is the soft thresholding of X: Y = sign(X) · ( X − T)+ where

(x)+ =
x if x ≥ 0
0 otherwise

Soft thresholding is wavelet shrinkage.

If sorh is 'h', Y is the hard thresholding of X: Y = X · 1( X > T ) where

1( X > T ) =
1 if X > T
0 otherwise

Hard thresholding is cruder than soft thresholding.

Version History
Introduced before R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
wdenoise | wden | wdencmp | wpdencmp

Apps
Wavelet Signal Denoiser
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wthrmngr
Threshold settings manager

Syntax
thr = wthrmngr(opt,method,C,L)
thr = wthrmngr(opt,method,C,L,alpha)
thr = wthrmngr(opt,method,C,L,scale)

thr = wthrmngr(opt,method,swtdec,alpha)
thr = wthrmngr(opt,method,swtdec,scale)

thr = wthrmngr(opt,method,wpt)
thr = wthrmngr(opt,'rem_n0',X)

Description
wthrmngr returns a global threshold or level-dependent thresholds for wavelet-based denoising and
compression. The function derives thresholds from the wavelet coefficients in a wavelet
decomposition.

thr = wthrmngr(opt,method,C,L) returns the threshold for the [C,L] wavelet decomposition of
the signal or image to compress or denoise. For signals, [C,L] is the output of wavedec. For images,
[C,L] is the output of wavedec2.

thr = wthrmngr(opt,method,C,L,alpha) returns the [C,L] wavelet decomposition threshold
using the sparsity parameter alpha. For signals, [C,L] is the output of wavedec. For images, [C,L]
is the output of wavedec2.

To learn more about alpha, see wdcbm or wdcbm2 for compression, and wbmpen for denoising.

thr = wthrmngr(opt,method,C,L,scale) returns the [C,L] wavelet decomposition threshold
using the type of multiplicative threshold rescaling specified in scale. For signals, [C,L] is the
output of wavedec. For images, [C,L] is the output of wavedec2.

The 'rigrsure', 'heursure', and 'minimaxi' denoising methods are only applicable to signals.

To learn more about multiplicative threshold rescaling, see wden.

thr = wthrmngr(opt,method,swtdec,alpha) returns the level-dependent threshold for the
stationary wavelet decomposition, swtdec, of the signal or image to denoise. alpha specifies the
sparsity parameter (see wbmpen). For signals, swtdec is the output of swt. For images, swtdec is
the output of swt2.

Thresholds are derived from a subset of the coefficients in the stationary wavelet decomposition. For
more information, see “Coefficient Selection” on page 1-1909.

thr = wthrmngr(opt,method,swtdec,scale) returns the level-dependent threshold for the
stationary wavelet decomposition using the type of multiplicative threshold rescaling specified in
scale. For signals, swtdec is the output of swt. For images, swtdec is the output of swt2.
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Thresholds are derived from a subset of the coefficients in the stationary wavelet decomposition. For
more information, see “Coefficient Selection” on page 1-1909.

The 'rigrsure', 'heursure', and 'minimaxi' denoising methods apply only to signals.

To learn more about multiplicative threshold rescaling, see wden.

thr = wthrmngr(opt,method,wpt) returns the global threshold for the wavelet packet
decomposition, wpt, of the signal or image to compress or denoise.

thr = wthrmngr(opt,'rem_n0',X) returns the global threshold to compress the signal or image,
X, using the specified wavelet option and method 'rem_n0'.

If opt is 'dw1dcompGBL' or 'dw2dcompGBL', thresholds are based on the finest-scale wavelet
coefficients obtained using the Haar wavelet. If opt is 'wp1dcompGBL' or 'wp2dcompGBL',
thresholds are based on the finest-scale wavelet packet coefficients obtained using the Haar wavelet.

Examples

Global Threshold — Discrete Wavelet Decomposition

Load and plot a noisy signal.

load noisdopp
plot(noisdopp)
grid on
title('Noisy Signal')
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Generate a level 5 wavelet decomposition of the noisy signal using the order 4 Daubechies wavelet.
Plot the coefficients.

[c,l] = wavedec(noisdopp,5,'db4');
plot(c)
grid on
title('Wavelet Coefficients')
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Determine a global threshold for compressing the signal.

thr = wthrmngr('dw1dcompGBL','bal_sn',c,l);

The index of the first wavelet detail coefficient in c is l(1)+1. Apply the threshold to all the detail
coefficients. Plot the thresholded coefficients. Observe that most of the coefficients have been set to
0.

c(l(1)+1:end) = c(l(1)+1:end).*(c(l(1)+1:end)>thr);
plot(c)
grid on
title('Thresholded Coefficients')
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Reconstruct the signal from the thresholded coefficients. Plot the reconstruction.

xrec = waverec(c,l,'db4');
plot(xrec)
grid on
title('Compressed Signal')
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Image Compression — Birgé-Massart Thresholds

Compress an image using the Birgé-Massart strategy.

Load an image and add white Gaussian noise. For purposes of reproducibility, set the random seed to
the default value.

rng default
load sinsin
x = X+18*randn(size(X));

Obtain the 2-D discrete wavelet transform down to level 3 using the Daubechies least-asymmetric
wavelet with 4 vanishing moments. Obtain the compression thresholds using the Birgé-Massart
strategy with sparsity parameter, alpha, equal to 2.

[C,L] = wavedec2(x,3,'sym4');
alpha = 2;
THR = wthrmngr('dw2dcompLVL','scarcehi',C,L,alpha);

Compress the image and display the result.

xd = wdencmp('lvd',x,'sym4',3,THR,'s');
image(X)
title('Original Image')
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figure
image(x)
title('Noisy Image')
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figure
image(xd)
title('Compressed Image')
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Level-Dependent Threshold — Stationary Wavelet Transform

This example uses a level-dependent threshold derived from the wavelet coefficients at each scale to
implement hard thresholding with the stationary wavelet transform.

Load the noisy blocks signal. Obtain the stationary wavelet transform down to level 5 by using the
Haar wavelet.

load noisbloc
L = 5;
swc = swt(noisbloc,L,'haar');

Make a copy of the wavelet transform coefficients. Determine the Donoho-Johnstone universal
threshold based on the detail coefficients for each scale. Using the 'mln' option, wthrmngr returns
a 1-by-L vector, with every element equal to the universal threshold for the corresponding scale.

swcnew = swc;
ThreshML = wthrmngr('sw1ddenoLVL','sqtwolog',swc,'mln');

Use the universal thresholds to implement hard thresholding. The thresholds are applied in a scale-
dependent manner.

for jj = 1:L
    swcnew(jj,:) = wthresh(swc(jj,:),'h',ThreshML(jj));
end
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Invert the stationary wavelet transform on the thresholded coefficients, swcnew. Plot the original
signal and the denoised signal for comparison.

noisbloc_denoised = iswt(swcnew,'haar');
plot(noisbloc)
hold on
plot(noisbloc_denoised,'r','linewidth',2)
legend('Original','Denoised')

Global Threshold — Wavelet Packet Decomposition

Denoise a noisy signal by applying a global threshold to a wavelet packet decomposition structure.

Load and plot a noisy signal.

load noisdopp
plot(noisdopp)
grid on
title('Noisy Signal')
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Generate a level 3 wavelet packet decomposition of the noisy signal using the order 4 Daubechies
wavelet.

T = wpdec(noisdopp,3,'db4');

Determine a global threshold for denoising the signal.

thr = wthrmngr('wp1ddenoGBL','sqtwologuwn',T);

Obtain the leaves from the wavelet packet decomposition tree T and apply the threshold to the
leaves. Use hard thresholding.

T1 = T;
sorh = 'h';
cfs = read(T,'data');
cfs = wthresh(cfs,sorh,thr);
T1 = write(T1,'data',cfs);

Reconstruct the denoised signal from the thresholded coefficients. Plot the reconstruction.

xrec = wprec(T1);
plot(xrec)
grid on
title('Denoised Signal')
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Level-Independent Threshold — Stationary Wavelet Transform

This example uses a level-independent threshold based on the finest-scale wavelet coefficients to
implement hard thresholding with the stationary wavelet transform.

Load the noisy blocks signal. Obtain the stationary wavelet transform down to level 5 by using the
Haar wavelet.

load noisbloc
L = 5;
swc = swt(noisbloc,L,'haar');

Make a copy of the wavelet transform coefficients. Determine the Donoho-Johnstone universal
threshold based on the first-level detail coefficients. Using the 'sln' option, wthrmngr returns a 1-
by-L vector, with every element equal to the same value. Take the mean of the vector to obtain a
scalar threshold.

swcnew = swc;
ThreshSL = mean(wthrmngr('sw1ddenoLVL','sqtwolog',swc,'sln'));

Use the universal threshold to implement hard thresholding. The same threshold is applied to the
wavelet coefficients at every level.
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for jj = 1:L
    swcnew(jj,:) = wthresh(swc(jj,:),'h',ThreshSL);
end

Invert the stationary wavelet transform on the thresholded coefficients, swcnew. Plot the original
signal and the denoised signal for comparison.

noisbloc_denoised = iswt(swcnew,'haar');
plot(noisbloc)
hold on
plot(noisbloc_denoised,'r','linewidth',2)
legend('Original','Denoised')

Input Arguments
opt — Type and dimension of compression or denoising
'dw1dcompGBL' | 'dw1dcompLVL' | 'dw1ddenoLVL' | 'sw1ddenoLVL' | 'dw2dcompGBL' |
'dw2dcompLVL' | ...

Type and dimension of compression or denoising, specified as one of the values listed in the tables
that follow. wthrmngr returns thresholds appropriate for the option you specify.

With a discrete wavelet or wavelet packet decomposition of the data, you can compress or denoise
that data. With a stationary wavelet decomposition of the data, you can only denoise the data.
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For an explanation of which coefficients are used to determine the thresholds, see “Coefficient
Selection” on page 1-1909.

1-D Discrete Wavelet Decomposition Options

In these options, X is the signal, the wavelet coefficients are in the vector C, and the lengths of the
coefficient vectors are in L. The argument alpha is the sparsity parameter, and scale defines the
multiplicative threshold rescaling.

For additional information regarding the wavelet decomposition, see wavedec. To learn more about
alpha and scale, see wdcbm and wden respectively.

opt Description Valid Syntaxes
'dw1dcompGB
L'

1-D compression using a
global threshold

• thr = wthrmngr('dw1dcompGBL','rem_n0',X)
• thr =

wthrmngr('dw1dcompGBL','bal_sn',C,L)
'dw1dcompLV
L'

1-D compression using
level-dependent
thresholds

• thr =
wthrmngr('dw1dcompLVL','scarcehi',C,L,alp
ha), where 2.5 < alpha < 10

• thr =
wthrmngr('dw1dcompLVL','scarceme',C,L,alp
ha), where 1.5 < alpha < 2.5

• thr =
wthrmngr('dw1dcompLVL','scarcelo',C,L,alp
ha), where 1 < alpha < 2

'dw1ddenoLV
L'

1-D denoising using level-
dependent thresholds

• thr =
wthrmngr('dw1ddenoLVL','sqtwolog',C,L,sca
le)

• thr =
wthrmngr('dw1ddenoLVL','rigrsure',C,L,sca
le)

• thr =
wthrmngr('dw1ddenoLVL','heursure',C,L,sca
le)

• thr =
wthrmngr('dw1ddenoLVL','minimaxi',C,L,sca
le)

• thr =
wthrmngr('dw1ddenoLVL','penalhi',C,L,alph
a), where 2.5 < alpha < 10

• thr =
wthrmngr('dw1ddenoLVL','penalme',C,L,alph
a), where 1.5 < alpha < 2.5

• thr =
wthrmngr('dw1ddenoLVL','penallo',C,L,alph
a), where 1 < alpha < 2
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2-D Discrete Wavelet Decomposition Options

In these options, X is the data, the wavelet coefficients are in the vector C, and the size of the
coefficient matrices are in L. The argument alpha is the sparsity parameter, and scale defines the
multiplicative threshold rescaling.

For additional information regarding the wavelet decomposition, see wavedec2. To learn more about
alpha and scale, see wdcbm2 and wden respectively.

opt Description Valid Syntaxes
'dw2dcompGB
L'

2-D compression using a
global threshold

• thr = wthrmngr('dw2dcompGBL','rem_n0',X)
• thr =

wthrmngr('dw2dcompGBL','bal_sn',C,L)
• thr =

wthrmngr('dw2dcompGBL','sqrtbal_sn',C,L)
'dw2dcompLV
L'

2-D compression using
level-dependent
thresholds

• thr =
wthrmngr('dw2dcompLVL','scarcehi',C,L,alp
ha), where 2.5 < alpha < 10

• thr =
wthrmngr('dw2dcompLVL','scarceme',C,L,alp
ha), where 1.5 < alpha < 2.5

• thr =
wthrmngr('dw2dcompLVL','scarcelo',C,L,alp
ha), where 1 < alpha < 2

'dw2ddenoLV
L'

2-D denoising using level-
dependent thresholds

• thr =
wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,L)

• thr =
wthrmngr('dw2ddenoLVL','penalhi',C,L,alph
a), where 2.5 < alpha < 10

• thr =
wthrmngr('dw2ddenoLVL','penalme,C,L,alpha
), where 1.5 < alpha < 2.5

• thr =
wthrmngr('dw2ddenoLVL','penallo,C,L,alpha
), where 1 < alpha < 2

• thr =
wthrmngr('dw2ddenoLVL','sqtwolog',C,L,sca
le)

1-D Wavelet Packet Decomposition Options

In these options, X is the signal and wpt is the wavelet packet decomposition structure of the signal.

For additional information regarding the wavelet packet decomposition, see wpdec.
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opt Description Valid Syntaxes
'wp1dcompGB
L'

1-D compression using a
global threshold

• thr = wthrmngr('wp1dcompGBL','rem_n0',X)
• thr =

wthrmngr('wp1dcompGBL','bal_sn',wpt)
'wp1ddenoGB
L'

1-D denoising using a
global threshold

• thr =
wthrmngr('wp1ddenoGBL','sqtwologuwn',wpt)

• thr =
wthrmngr('wp1ddenoGBL','sqtwologswn',wpt)

• thr =
wthrmngr('wp1ddenoGBL','bal_sn',wpt)

• thr =
wthrmngr('wp1ddenoGBL','penalhi',wpt)

The wpbmpen function is used with the tuning
parameter ALPHA = 6.25.

• thr =
wthrmngr('wp1ddenoGBL','penalme',wpt)

The wpbmpen function is used with the tuning
parameter ALPHA = 2.

• thr =
wthrmngr('wp1ddenoGBL','penallo',wpt)

The wpbmpen function is used with the tuning
parameter ALPHA = 1.5.

2-D Wavelet Packet Decomposition Options

In these options, X is the data and wpt is the wavelet packet decomposition structure of the data.

For additional information regarding the wavelet packet decomposition, see wpdec2.

opt Description Valid Syntaxes
'wp2dcompGB
L'

2-D compression using a
global threshold

• thr = wthrmngr('wp2dcompGBL','rem_n0',X)
• thr =

wthrmngr('wp2dcompGBL','bal_sn',wpt)
• thr =

wthrmngr('wp2dcompGBL','sqrtbal_sn',wpt)
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opt Description Valid Syntaxes
'wp2ddenoGB
L'

2-D denoising using a
global threshold

• thr =
wthrmngr('wp2ddenoGBL','sqtwologuwn',wpt)

• thr =
wthrmngr('wp2ddenoGBL','sqtwologswn',wpt)

• thr =
wthrmngr('wp2ddenoGBL','sqrtbal_sn',wpt)

• thr =
wthrmngr('wp2ddenoGBL','penalhi',wpt)

The wpbmpen function is used with the tuning
parameter ALPHA = 6.25.

• thr =
wthrmngr('wp2ddenoGBL','penalme',wpt)

The wpbmpen function is used with the tuning
parameter ALPHA = 2.

• thr =
wthrmngr('wp2ddenoGBL','penallo',wpt)

The wpbmpen function is used with the tuning
parameter ALPHA = 1.5.

1-D Stationary Wavelet Decomposition Options

Denoising using level-dependent thresholds is the only option available for a 1-D stationary wavelet
decomposition, swtdec. In this option, alpha is a sparsity parameter and scale defines the
multiplicative threshold rescaling.

For more information regarding the stationary wavelet decomposition, see swt. To learn more about
alpha and scale, see wbmpen and wden respectively.
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opt Valid Syntaxes
'sw1ddenoLVL' • thr =

wthrmngr('sw1ddenoLVL','sqtwolog',swtdec,scale)
• thr =

wthrmngr('sw1ddenoLVL','rigrsure',swtdec,scale)
• thr =

wthrmngr('sw1ddenoLVL','heursure',swtdec,scale)
• thr =

wthrmngr('sw1ddenoLVL','minimaxi',swtdec,scale)
• thr =

wthrmngr('sw1ddenoLVL','penalhi',swtdec,alpha),
where 2.5 < alpha < 10

• thr =
wthrmngr('sw1ddenoLVL','penalme',swtdec,alpha),
where 1.5 < alpha < 2.6

• thr =
wthrmngr('sw1ddenoLVL','penallo',swtdec,alpha),
where 1 < alpha < 2

Thresholds are based on a subset of the coefficients in the stationary wavelet decomposition. See
“Coefficient Selection” on page 1-1909 for additional information.

2-D Stationary Wavelet Decomposition Options

Denoising using level-dependent thresholds is the only option available for a 2-D stationary wavelet
decomposition, swtdec. In this option, alpha is a sparsity parameter and scale defines the
multiplicative threshold rescaling.

For more information regarding the stationary wavelet decomposition, see swt2. To learn more about
alpha and scale, see wbmpen and wden respectively.

opt Valid Syntaxes
'sw2ddenoLVL' • thr =

wthrmngr('sw2ddenoLVL','sqrtbal_sn',swtdec)
• thr =

wthrmngr('sw2ddenoLVL','penalhi',swtdec,alpha)
where 2.5 < alpha < 10

• thr =
wthrmngr('sw2ddenoLVL','penalme',swtdec,alpha)
where 1.5 < alpha < 2.5

• thr =
wthrmngr('sw2ddenoLVL','penallo',swtdec,alpha)
where 1 < alpha < 2

• thr =
wthrmngr('sw2ddenoLVL','sqtwolog',swtdec,scale)

Thresholds are based on a subset of the coefficients in the stationary wavelet decomposition. See
“Coefficient Selection” on page 1-1909 for additional information.
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method — Thresholding method
'scarcehi' | 'scarceme' | 'scarcelo' | 'sqtwolog' | 'sqtwologuwn' | 'sqtwologswn' | ...

Thresholding method, specified as one of the values listed here.

method Description
'scarcehi' Uses Birgé-Massart strategy on page 1-1909 for determining

thresholds.
'scarceme' Uses Birgé-Massart strategy for determining thresholds.
'scarcelo' Uses Birgé-Massart strategy for determining thresholds.
'sqtwolog' Uses fixed-form universal threshold. See 'sqtwolog' option in

wden.
'sqtwologuwn' Uses fixed-form universal threshold. See 'sqtwolog' option in

wden when used with 'sln' option.
'sqtwologswn' Uses fixed-form universal threshold. See 'sqtwolog' option in

wden when used with 'mln' option.
'rigsure' Uses soft threshold estimator rule based on Stein's Unbiased

Estimate of Risk. See 'SURE' option in wdenoise.
'heursure' Uses mixture of 'rigsure' and 'sqtwolog'. See 'heursure'

option in wden.
'minimaxi' Uses a fixed threshold chosen which yields minimax performance.

See 'Minimax' option in wdenoise.
'penalhi' Used to define Birgé-Massart strategy on page 1-1909 for

determining thresholds.
'penalme' Used to define Birgé-Massart strategy for determining thresholds.
'penallo' Used to define Birgé-Massart strategy for determining thresholds.
'rem_n0' Returns a threshold close to 0. A typical THR value is

median(abs(coefficients)).
'bal_sn' Returns a threshold such that the percentages of retained energy

and number of zeros are the same.
'sqrtbal_sn' Returns a threshold equal to the square root of the value such that

the percentages of retained energy and number of zeros are the
same.

Data Types: char

X — Input data
real-valued vector | real-valued matrix

Input data, specified as a real-valued vector or real-valued matrix.
Data Types: double

C — Wavelet expansion coefficients
real-valued vector

Wavelet expansion coefficients of the data to be compressed or denoised, specified as a real-valued
vector. If the data is one-dimensional, C is the output of wavedec. If the data is two-dimensional, C is
the output of wavedec2.
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Example: [C,L] = wavedec(randn(1,1024),3,'db4')
Data Types: double

L — Size of wavelet expansion coefficients
vector of positive integers | matrix of positive integers

Size of wavelet expansion coefficients of the signal or image to be compressed or denoised, specified
as a vector or matrix of positive integers.

For signals, L is the output of wavedec. For images, L is the output of wavedec2.
Example: [C,L] = wavedec(randn(1,1024),3,'db4')
Data Types: double

alpha — Sparsity parameter
positive scalar

Sparsity parameter used for compressing or denoising data, specified as a positive scalar greater
than 1 and less than 10. See wdcbm, wdcbm2, and wbmpen for additional information.
Data Types: double

scale — Multiplicative threshold rescaling
'one' | 'sln' | 'mln'

Multiplicative threshold rescaling, specified as one of the following:

• 'one' — No rescaling
• 'sln' — Rescaling using a single estimation of level noise based on first-level coefficients
• 'mln' — Rescaling using a level-dependent estimation of level noise

For more information, see wden.

swtdec — Stationary wavelet decomposition structure
real-valued matrix

Stationary wavelet decomposition structure of data to be compressed or denoised, specified as a real-
valued matrix. If the data is one-dimensional, swtdec is the output of swt. If the data is two-
dimensional, swtdec is the output of swt2.
Example: swtdec = swt2(randn(256),3,'db1')
Data Types: double

wpt — Wavelet packet decomposition structure
wavelet packet object structure

Wavelet packet decomposition structure of the data to be compressed or denoised. If the data is one-
dimensional, wpt is the output of wpdec. If the data is two-dimensional, wpt is the output of wpdec2.
Example: wpt = wpdec(randn(1,1024),5,'db1')
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Output Arguments
thr — Threshold
real-valued scalar | real-valued vector | real-valued matrix

Threshold, returned as a real-valued scalar for global thresholds, or a real-valued vector or matrix for
level-dependent thresholds.
Data Types: double

Tips
• To denoise 1-D signals, consider using the Wavelet Signal Denoiser. The app visualizes and

denoises real-valued 1-D signals using default parameters. You can also compare results. In
addition, you can also recreate the denoised signal in your workspace by generating a MATLAB
script, which uses the wdenoise function.

Algorithms
Coefficient Selection

A critically sampled wavelet or wavelet packet decomposition involves decimating coefficients by a
factor of 2 at each stage of the decomposition. Decimation does not occur in the nondecimated
stationary wavelet decomposition.

wthrmngr derives denoising and compression thresholds from the wavelet coefficients. For a
critically sampled wavelet or wavelet packet decomposition, the option and method determine
whether all wavelet coefficients or only the finest scale coefficients are used.

For the stationary wavelet decomposition, wthrmngr always uses a subset of the wavelet coefficients.
When computing the denoising thresholds of an N-level stationary wavelet decomposition, the
algorithm first subsamples the wavelet coefficients at level k by a factor of 2k, for k = 1,…,N. The
algorithm uses this subset of coefficients to determine the thresholds. Most of the coefficients in the
stationary wavelet decomposition are not considered.

Birgé-Massart Strategy

The Birgé-Massart strategy for determining thresholds depends on several different parameters. You
specify the wavelet decomposition and a thresholding method. You can also specify a sparsity
parameter, alpha, or a specific multiplicative threshold rescaling, scale. Based on your inputs,
wthrmngr derives the necessary Birgé-Massart parameters. The parameters depend on the
dimension of the signal, and the total number, N, of coefficients at the coarsest scale of wavelet
decomposition.

If the thresholding method is 'scarcehi', 'scarceme', or 'scarcelo', the wthrmngr executes
either wdcbm or wdcbm2. If the thresholding method is 'penalhi', 'penalme', or 'penallo', then
wthrmngr executes either wbmpen or wpbmpen.

Thresholding
Method

Description

'scarcehi' • If the signal is 1-D, then wdcbm is used with input argument M = N.
• If the signal is 2-D, then wdcbm2 is used with M = 4*N.
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Thresholding
Method

Description

'scarceme' • If the signal is 1-D, then wdcbm is used with input argument M = 3*N/2.
• If the signal is 2-D, then wdcbm2 is used with input argument with M =

16*N/3.
'scarcelo' • If the signal is 1-D, then wdcbm is used with input argument M = 2 N.

• If the signal is 2-D, then wdcbm2 is used with input argument M = 32*N/3.
'penalhi' • If the input is a wavelet decomposition, then wbmpen is used with ALPHA =

5*(3*alpha+1)/8.
• If the input is a wavelet packet decomposition, then wpbmpen is used ALPHA

= 6.25.
'penalme' • If the input is a wavelet decomposition, then wbmpen is used with ALPHA =

(alpha+5)/8.
• If the input is a wavelet packet decomposition, then wpbmpen is used ALPHA

= 2.
'penallo' • If the input is a wavelet decomposition, then wbmpen is used with ALPHA =

(alpha+3)/4.
• If the input is a wavelet packet decomposition, then wpbmpen is used ALPHA

= 1.5.

Version History
Introduced before R2006a

References
[1] Birgé, L., and P. Massart. “From Model Selection to Adaptive Estimation.” Festschrift for Lucien

Le Cam: Research Papers in Probability and Statistics (E. Torgersen, D. Pollard, and G. Yang,
eds.). New York: Springer-Verlag, 1997, pp. 55–88.

See Also
Apps
Wavelet Signal Denoiser

Functions
wdenoise | wbmpen | wdcbm2 | wdcbm | wpbmpen
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wtmm
Wavelet transform modulus maxima

Syntax
hexp = wtmm(x)
[hexp,tauq] = wtmm(x)
[ ___ ] = wtmm(x,'MinRegressionScale',scale)
[hexp,tauq,structfunc] = wtmm( ___ )

[localhexp,wt,wavscales] = wtmm(x,'ScalingExponent','local')

wtmm( ___ ,'ScalingExponent','local')

[ ___ ] = wtmm( ___ ,Name,Value)

Description
hexp = wtmm(x) returns an estimate of the global Holder exponent, hexp, for the real-valued, 1-D
input signal, x. The global and local Holder exponents are estimated for the linearly-spaced moments
of the structure functions from –2 to +2 in 0.1 increments.

[hexp,tauq] = wtmm(x) also returns an estimate of the partition function scaling exponents,
tauq.

[ ___ ] = wtmm(x,'MinRegressionScale',scale) uses only scales greater than or equal to
scale to estimate the global Holder exponent. This syntax can include any of the output arguments
used in previous syntaxes.

[hexp,tauq,structfunc] = wtmm( ___ ) also returns the multiresolution structure functions,
structfunc, for the global Holder exponent estimate. This syntax can include any of the input
arguments used in previous syntaxes.

[localhexp,wt,wavscales] = wtmm(x,'ScalingExponent','local') returns the local
Holder exponent estimates, the continuous wavelet transform wt, and the scales, wavscales, which
are used to calculate the CWT used in the wtmm algorithm. The wavelet used in the CWT is the second
derivative of a Gaussian.

wtmm( ___ ,'ScalingExponent','local') with no output arguments plots the wavelet maxima
lines in the current figure. Estimates of the local Holder exponents are displayed in a table to the
right of the plot.

[ ___ ] = wtmm( ___ ,Name,Value) returns the Holder exponent and other specified outputs with
additional options specified by one or more Name,Value pair arguments.

Examples
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Global Holder Exponent for Brownian Motion

Estimate the global Holder exponent for Brownian motion. This monofractal signal has a Holder
exponent of approximately 0.5.

rng(100);
x = cumsum(randn(2^15,1));
hexp = wtmm(x)

hexp = 0.5010

Linearity of Scaling Exponents for Monofractal Signal

Confirm that for a monofractal signal, the scaling exponents are a linear function of the moments. For
multifractal signals, the exponents are a nonlinear function of the moments.

Load a signal that contains two time series, each with 8000 samples. Ts1 is a multifractal signal and
Ts2 is a monofractal fractional Brownian signal. Obtain the exponents using wtmm.

load RWdata; 
[hexp1,tauq1] = wtmm(Ts1);
[hexp2,tauq2] = wtmm(Ts2);

Plot the scaling exponents.

expplot = plot(-2:0.1:2,tauq2,'b-o',-2:0.1:2,tauq1,'r-^');
grid on;
expplot(1).MarkerFaceColor = 'b';
expplot(2).MarkerFaceColor = 'r';
legend('Ts2-Monofractal','Ts1-Multifractal','Location','SouthEast');
title('Monofractal vs. Multifractal Scaling Exponents');
xlabel('Qth Moment');
ylabel('Scaling Exponents');

1 Functions

1-1912



Ts2, which is the monofractal signal, is a linear function. Ts1, the multifractal signal, is not linear.

Structure Function of Wavelet Transform Modulus Maxima

Use the structure function output of wtmm to analyze a Brownian motion signal.

Create fractional Brownian motion with a Holder exponent of 0.6.

Brn = wfbm(0.6,2^15);
[hexp,tauq,structfunc] = wtmm(Brn);

Compare the calculated Holder exponent with the theoretical value of 0.6.

hexp

hexp = 0.6072

Use the data in the structfunc output and the lscov function to perform the regression on the
data.

x = ones(length(structfunc.logscales),2);
x(:,2) = structfunc.logscales;
betahat = lscov(x,structfunc.Tq,structfunc.weights);
betahat = betahat(2,:);

Plot and compare the scaling exponents from the tauq output and from the regressed structure
function output.

subplot(1,2,1)
plot(-2:.1:2,tauq)
grid on
title('From tauq Output')
xlabel('Qth Moment')
ylabel('Scaling Exponents')

subplot(1,2,2)
plot(-2:.1:2,betahat(1:41))
grid on
title('From structfunc Output')
xlabel('Qth Moment')
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The plots are the same and show a linear relationship between the moments and the exponents.
Therefore, the signal is monofractal. The Holder exponent returned in hexp is the slope of this line.

Local Holder Exponents for Cusp Signal and Delta Functions

Using a cusp signal and a signal containing delta functions, generate their local Holder exponents.

Cusp Signal

Load and plot a cusp signal. Note the difference between the two cusps.

load cusp;
plot(cusp)
grid on
xlabel('Sample')
ylabel('Amplitude')
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The equation for this cusp signal specifies a Holder exponent of 0.5 at sample 241 and a Holder
exponent of 0.3 at sample 803.

-0.2*abs(x-241)^0.5 - 0.5*abs(x-803)^0.3 + 0.00346*x + 1.34

Obtain the local Holder exponents and plot the modulus maxima.

wtmm(cusp,'ScalingExponent','local');
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The Holder exponents at samples 241 and 803 are very close to the values specified in the cusp signal
equation. The higher Holder value at sample 241 indicates that the signal at that point is closer to
being differentiable than the signal at sample 803, which has a smaller Holder value.

Delta Functions

Create and plot two delta functions.

x = zeros(1e3,1);
x([200 500]) = 1;  
plot(x)
grid on
xlabel('Sample')
ylabel('Amplitude')

1 Functions

1-1916



Obtain the local Holder exponents using the default number of octaves, which in this case is 7. Plot
the modulus maxima. A delta function has a Holder exponent of -1.

wtmm(x,'ScalingExponent','local');
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Obtain the local Holder exponents using 5 octaves and compare the modulus maxima plot to the plot
using the default number of octaves.

wtmm(x,'ScalingExponent','local','NumOctaves',5);
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Reducing the number of scales provides more separation in frequency and less overlap between the
modulus maxima lines of the delta functions.

Input Arguments
x — Input signal
real-valued vector

Input signal, specified as a real-valued vector with a minimum of 128 samples. The wavelet transform
modulus maxima technique works best for data with 8000 or more samples.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VoicesPerOctave',18 estimates the global Holder estimate using 18 voices per octave.
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MinRegressionScale — Minimum scale for regression
4 (default) | scalar greater than or equal to 4

Minimum scale for regression, specified as the comma-separated pair consisting of
'MinRegressionScale' and a scalar greater than or equal to 4. This scale is the smallest scale
used by the regression. There must be at least two scales with more than 6 CWT maxima.
'MinRegressionScale' applies only to global Holder exponents.

VoicesPerOctave — Number of voices per octave
10 (default) | even integer from 8 to 32

Number of voices per octave, specified as the comma-separated pair consisting of
'VoicesPerOctave' and an even integer from 8 to 32. The number of voices per octave and the
number of octaves determine the number of scales used in the CWT.

NumOctaves — Number of octaves
minimum of 7 and floor(log2(numel(x)/(3*sqrt(1.1666)))) (default) | integer greater than
or equal to 4

Number of octaves, specified as the comma-separated pair consisting of 'NumOctaves' and an
integer. The number of octaves and the number of voices per octave determine the number of scales
used in the CWT. The maximum number of octaves is less than or equal to floor(log2(numel(x)/
(3*sqrt(1.1666)))). The sqrt(1.1666) factor is the standard deviation of the second derivative
of a Gaussian wavelet. If you specify the number of octaves as greater than the maximum number of
octaves, wtmm uses the maximum supported number of octaves.

ScalingExponent — Type of scaling exponents
'global' (default) | 'local'

Type of scaling exponents, specified as a comma-separated pair consisting of 'ScalingExponent'
and either 'global' or 'local'. A global Holder exponent is used for monofractal signals, such as
white noise, which are singular everywhere. Global holder exponents give a single estimate of degree
of these singularities over the whole signal. Local Holder exponents are useful for signals with cusp
singularities.

Output Arguments
hexp — Global Holder exponent
real scalar

Global Holder exponent, returned as a real scalar. Holder exponents are useful for identifying
singularities, which are locations where a signal is not differentiable. A global Holder exponent uses a
single value to estimate the degree of differentiability of all of the singularities of a signal. Signals
with a global Holder exponent are monofractal signals.

tauq — Scaling exponents
column vector

Scaling exponents, returned as a column vector. The exponents are estimated for the linearly-spaced
moments of the structure functions from –2 to +2 in 0.1 increments.

structfunc — Multiresolution structure functions
struct
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Multiresolution structure functions for the global Holder exponent estimates, returned as a struct.
The structure function for data x is defined as

S(q, a) = 1
na
∑

k = 1

na
Tx(a, k) q ≃ aζ(q),

where a is the scale, q is the moment, Tx is the maxima at each scale, na is the number of maxima at
each scale, and ζ(q) is the scaling exponent. structfunc is a structure array containing the
following fields:

• Tq — Measurements of the input, x, at various scales. Tq is a matrix of multiresolution quantities
that depend jointly on time and scale. Scaling phenomena in x imply a power-law relationship
between the moments of Tq and the scale. Tq is an Ns-by-44 matrix, where Ns is the number of
scales. The first 41 columns of Tq contain the scaling exponent estimates for each of the qth from
-2:0.1:2, by scale. The last three columns correspond to the first-order, second-order, and third-
order cumulants, respectively, by scale. For a monofractal signal, cumulants greater than the first
cumulant are zero.

• weights — Weights used in the regression estimates. The weights correspond to the number of
wavelet maxima at each scale. weights is an Ns-by-1 vector.

• logscales — Scales used as predictors in the regression. logscales is an Ns-by-1 vector with
the base-2 logarithm of the scales.

localhexp — Local Holder exponent estimates
array of real values

Local Holder exponent estimates, returned as an M-by-2 array of real values, where M is the number
of maxima. If no maxima lines converge to the finest scale in the wavelet transform, then localhexp
is an empty array. The wavelet transform modulus maxima method (WTMM) identifies cusp-like
singularities in a signal. To analyze multifractal signals, use dwtleader.

wt — Continuous wavelet transform
matrix

Continuous wavelet transform, returned as a matrix of real values. wt is a numel(wavscales)-by-N
matrix where N is the length of the input signal x.

wavscales — Wavelet scales
column vector

Wavelet scales, returned as a column vector of real values. wavscales are the scales used to
calculate the CWT.

Algorithms
The WTMM algorithm finds singularities in a signal by determining maxima. The algorithm first
calculates the continuous wavelet transform using the second derivative of a Gaussian wavelet with
10 voices per octave. The wavelet that meets this criteria is the Mexican hat, or Ricker, wavelet.
Then, the algorithm determines the modulus maxima for each scale. The WTMM is intended to be
used with large data sets so that enough samples are available to determine maxima accurately.

The definition of the modulus maximum at point x0 and scale s0 is

Wf (s0, x) < Wf (s0, x0)
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where x is either in the right or left neighborhood of x0. When x is in the opposite neighborhood of x0,
the definition is

Wf (s0, x) ≤ Wf (s0, x0)

. The algorithm for finding additional maxima repeats for values in that scale. Then, the algorithm
continues up through finer scales, checking whether the maxima align between scales. If a maximum
converges to the finest scale, it is a true maximum and indicates a singularity at that point.

When each singularity is determined, the algorithm then estimates its Holder exponent. Holder
exponents indicate the degree of differentiability for each singularity, which classifies the singularity
strength. A Holder exponent less than or equal to 0 indicates a discontinuity at that location. Holder
exponents greater than or equal to 1 indicate that the signal is differentiable at that location. Holder
values between 0 and 1 indicate continuous, but not differentiable locations. They indicate how close
the signal at that sample is to being differentiable. Holder exponents close to 0 indicate signal
locations that are less differentiable than locations with exponents closer to 1. The signal is smoother
at locations with higher local Holder exponents.

For signals with a few cusp-like singularities and Holder exponents that have large variation, you set
the algorithm to return local Holder exponents, which provide individual values for each singularity.
For signals with numerous Holder exponents that have relatively small variations, you set the
algorithm to return a global Holder exponent. A global Holder exponent applies to the whole signal.
For signals with many singularities, you can reduce the number of maxima found by limiting the
algorithm to start at or regress to a specific minimum or maximum scale, respectively. For detailed
information about the WTMM, see [1] and [3].

Version History
Introduced in R2016b

References
[1] Mallat, S., and W. L. Hwang. “Singularity Detection and Processing with Wavelets.” IEEE

Transactions on Information Theory. Vol. 38, No. 2, March 1992, pp. 617–643.

[2] Wendt, H. and P. Abry. “Multifractality Tests Using Bootstrapped Wavelet Leaders.” IEEE
Transactions on. Signal Processing. Vol. 55, No. 10, 2007, pp. 4811–4820.

[3] Arneodo, A., B. Audit, N. Decoster, J.-F. Muzy, and C. Vaillant. “Wavelet-Based Multifractal
Formalism: Application to DNA Sequences, Satellite Images of the Cloud Structure and Stock
Market Data.” The Science of Disasters: Climate Disruptions, Heart Attacks, and Market
Crashes. Bunde, A., J. Kropp, and H. J. Schellnhuber, Eds. 2002, pp. 26–102.

See Also
dwtleader | wfbm
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wtreemgr
NTREE manager

Syntax

Description
wtreemgr is a tree management utility.

This function returns information on the tree T depending on the value of the OPT parameter.

Allowed values for OPT are listed in the table below.

'allnodes' Tree nodes
'isnode' True for existing node
'istnode' True for terminal nodes
'nodeasc' Node ascendants
'nodedesc' Node descendants
'nodepar' Node parent
'ntnode' Number of terminal nodes
'tnodes' Terminal nodes
'leaves' Terminal nodes
'noleaves' Not terminal nodes
'order' Tree order
'depth' Tree depth

Version History
Introduced before R2006a

See Also
allnodes | istnode | leaves | nodeasc | nodedesc | nodepar | noleaves | ntnode | tnodes |
treedpth | treeord
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wvarchg
Find variance change points

Syntax
[chgpts,kopt,est] = wvarchg(Y)
[ ___ ] = wvarchg(Y,K)
[ ___ ] = wvarchg(Y,K,D)

Description
[chgpts,kopt,est] = wvarchg(Y) computes estimated variation change points for the signal Y
for six change points, where the minimum delay between two change points is 10.

[ ___ ] = wvarchg(Y,K) computes estimated variation change points for j change points, where j
= 0, 1, 2, …, K, and the minimum delay between two change points is 10.

[ ___ ] = wvarchg(Y,K,D) computes estimated variation change points where the minimum delay
between two change points is D.

• wvarchg(Y,6,10) is equivalent to wvarchg(Y).
• wvarchg(Y,K,10) is equivalent to wvarchg(Y,K).

Examples

Detect Variance Change Points

For reproducibility, set the random seed to the default value. Load the blocks wavelet test signal.
Add white noise with two variance change points located at indices 180 and 600. Plot the noise and
the noisy signal.

rng default
x = wnoise(1,10);
cp1 = 180;
cp2 = 600;
bb = 1.5*randn(1,length(x));
seg1 = bb(1:cp1);
seg2 = bb(cp1+1:cp2)/4;
seg3 = bb(cp2+1:end);
wn = [seg1 seg2 seg3];
x = x+wn;
subplot(2,1,1)
plot(wn)
title('Noise')
subplot(2,1,2)
plot(x)
title('Noisy Signal')
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Use the db3 wavelet and do a level-1 wavelet decomposition of the signal. Reconstruct the detail
coefficients. Replace the top 2% of values with the mean value of the wavelet coefficients to remove
most of the signal. Plot the values.

wname = 'db3';
lev = 1;
[c,l] = wavedec(x,lev,wname);
det = wrcoef('d',c,l,wname,1);
y = sort(abs(det));
v2p100 = y(fix(length(y)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);
figure
plot(det)
title('Reconstructed Details')
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Estimate the variance change points using the wavelet coefficients.

[pts_Opt,kopt,t_est] = wvarchg(det,5);
fprintf('The estimated change points are %d and %d.',pts_Opt)

The estimated change points are 181 and 601.

Input Arguments
Y — Input signal
real-valued vector

Input signal, specified as a real-valued vector. The input signal Y should have zero mean.
Data Types: double

K — Number of change points
6 (default) | positive integer

Number of change points, specified as an integer. K satisfies the inequalities 1 < K ≪ length(Y).
Data Types: double

D — Minimum delay
10 (default) | positive integer

Number of change points, specified as an integer. D satisfies the inequalities 1 ≤ D ≪ length(Y).
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Data Types: double

Output Arguments
chgpts — Estimated variance change points
vector

Estimated variance change points, returned as a vector. chgpts is the empty vector [] when no
change points are found.

kopt — Proposed number of change points
nonnegative integer

Proposed number of change points, returned as a nonnegative integer in the interval [0, k].

est — Instants of the variation change points
real-valued matrix

Instants of the variation change points, returned as a real-valued matrix. For 1 ≤ k ≤ K, est(k
+1,1:k) contains the k instants of the variance change points. If kopt > 0, then chgpts =
est(kopt+1,1:kopt), else chgpts = [].

Version History
Introduced before R2006a

References
[1] Lavielle, M. "Detection of multiple changes in a sequence of dependent variables." Stochastic

Processes and their Applications. Vol. 83, Number 1, 1999, pp. 79–102.

See Also
cmddenoise

Topics
“Scale-Localized Volatility and Correlation”
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wvd
Wigner-Ville distribution and smoothed pseudo Wigner-Ville distribution

Syntax
d = wvd(x)
d = wvd(x,fs)
d = wvd(x,ts)

d = wvd( ___ ,"smoothedPseudo")
d = wvd( ___ ,"smoothedPseudo",twin,fwin)
d = wvd( ___ ,"smoothedPseudo",Name=Value)

d = wvd( ___ ,MinThreshold=thresh)

[d,f,t] = wvd( ___ )

wvd( ___ )

Description
d = wvd(x) returns the Wigner-Ville distribution of x.

d = wvd(x,fs) returns the Wigner-Ville distribution when x is sampled at a rate fs.

d = wvd(x,ts) returns the Wigner-Ville distribution when x is sampled with a time interval ts
between samples.

d = wvd( ___ ,"smoothedPseudo") returns the smoothed pseudo Wigner-Ville distribution of x.
The function uses the length of the input signal to choose the lengths of the windows used for time
and frequency smoothing. This syntax can include any combination of input arguments from previous
syntaxes.

d = wvd( ___ ,"smoothedPseudo",twin,fwin) specifies the time window, twin, and the
frequency window, fwin, used for smoothing. To use the default window for either time or frequency
smoothing, specify the corresponding argument as empty, [].

d = wvd( ___ ,"smoothedPseudo",Name=Value) specifies additional options for the smoothed
pseudo Wigner-Ville distribution using name-value arguments. You can specify twin and fwin in this
syntax, or you can omit them.

d = wvd( ___ ,MinThreshold=thresh) sets to zero those elements of d whose amplitude is less
than thresh. This syntax applies to both the Wigner-Ville distribution and the smoothed pseudo
Wigner-Ville distribution.

[d,f,t] = wvd( ___ ) also returns a vector of frequencies f and a vector of times t at which d is
computed.

wvd( ___ ) with no output arguments plots the Wigner-Ville or smoothed pseudo Wigner-Ville
distribution in the current figure.
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Examples

Wigner-Ville Distribution of Impulse and Tone

Generate a 1000-sample impulse and a 1000-sample tone with normalized frequency π/2. Compute
the Wigner-Ville distribution of the sum of the two signals.

x = zeros(1001,1);
x(500) = 10;

y = sin(pi*(0:1000)/2)';

[d,f,t] = wvd(x+y);

Plot the Wigner-Ville distribution.

imagesc(t,f,d)
axis xy
colorbar

Reproduce the result by calling wvd with no output arguments.

wvd(x+y)
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Wigner-Ville Distribution of Sinusoids

Generate a signal consisting of a 200 Hz sinusoid sampled at 1 kHz for 1.5 seconds.

fs = 1000;
t = (0:1/fs:1.5)';
x = cos(2*pi*t*200);

Compute the Wigner-Ville distribution of the signal.

wvd(x,fs)
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Add to the signal a chirp whose frequency varies sinusoidally between 250 Hz and 450 Hz. Convert
the signal to a MATLAB® timetable. Compute the Wigner-Ville distribution.

x = x + vco(cos(2*pi*t),[250 450],fs);
xt = timetable(seconds(t),x);

wvd(xt)
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Set to zero the distribution elements with amplitude less than 0.

wvd(xt,MinThreshold=0)
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Wigner-Ville Distribution of Chirps

Generate a signal sampled at 1 kHz for 1 second. One component of the signal is a chirp that
increases in frequency quadratically from 100 Hz to 400 Hz during the measurement. The other
component of the signal is a chirp that decreases in frequency linearly from 350 Hz to 50 Hz in the
same lapse.

Store the signal in a timetable.

fs = 1000;
t = 0:1/fs:1;

x = chirp(t,100,1,400,"quadratic") + chirp(t,350,1,50);

Compute the Wigner-Ville distribution of the signal.

wvd(x,fs)
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Compute the smoothed pseudo Wigner-Ville distribution of the signal. Specify 501 frequency points
and 502 time points.

wvd(x,fs,"smoothedPseudo",NumFrequencyPoints=501,NumTimePoints=502)
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Increase the number of time points so the quadratic chirp becomes visible.

wvd(x,fs,"smoothedPseudo",NumFrequencyPoints=501,NumTimePoints=522)
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Increase the frequency points and time points to get a sharper image.

wvd(x,fs,"smoothedPseudo",NumFrequencyPoints=1000,NumTimePoints=1502)
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Smoothed Pseudo Wigner-Ville Distribution of Complex Signal

Generate a two-component signal sampled at 3 kHz for 1 second. The first component is a quadratic
chirp whose frequency increases from 300 Hz to 1300 Hz during the measurement. The second
component is a chirp with sinusoidally varying frequency content. The signal is embedded in white
Gaussian noise. Express the time between consecutive samples as a duration scalar.

fs = 3000;
t = 0:1/fs:1-1/fs;
dt = seconds(t(2)-t(1));

x1 = chirp(t,300,t(end),1300,"quadratic");
x2 = exp(2j*pi*100*cos(2*pi*2*t));

x = x1 + x2 + randn(size(t))/10;

Compute and plot the smoothed pseudo Wigner Ville of the signal. Window the distribution in time
using a 601-sample Hamming window and in frequency using a 305-sample rectangular window. Use
600 frequency points for the display. Set to zero those components of the distribution with amplitude
less than −50.

wvd(x,dt,"smoothedPseudo",hamming(601),rectwin(305), ...
    NumFrequencyPoints=600,MinThreshold=-50)
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Interference Terms

Generate a signal composed of four Gaussian atoms. Each atom consists of a sinusoid modulated by a
Gaussian. The sinusoids have frequencies of 100 Hz and 400 Hz. The Gaussians are centered at 150
milliseconds and 350 milliseconds and have a variance of 0 . 012. All atoms have unit amplitude. The
signal is sampled at 1 kHz for half a second.

fs = 1000;
t = (0:1/fs:0.5)';

f1 = 100;
f2 = 400;

mu1 = 0.15;
mu2 = 0.35;

gaussFun = @(A,x,mu,f) exp(-(x-mu).^2/(2*0.01^2)).*sin(2*pi*f.*x)*A';

s = gaussFun([1 1 1 1],t,[mu1 mu1 mu2 mu2],[f1 f2 f1 f2]);

Compute and display the Wigner-Ville distribution of the signal. Interference terms, which can have
negative values, appear halfway between each pair of auto-terms.

wvd(s,fs)
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Compute and display the smoothed pseudo Wigner-Ville distribution of the signal. Smoothing in time
and frequency attenuates the interference terms.

wvd(s,fs,"smoothedPseudo")
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Input Arguments
x — Input signal
vector | timetable

Input signal, specified as a vector or a MATLAB timetable containing a single vector variable.

• If x is a timetable, then it must contain increasing finite row times.
• If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable

with Missing, Duplicate, or Nonuniform Times”.

If the input signal has odd length, the function appends a zero to make the length even.
Example: cos(pi/8*(0:159))'+randn(160,1)/10 specifies a sinusoid embedded in white noise.
Example: timetable(seconds(0:5)',rand(6,1)) specifies a random variable sampled at 1 Hz
for 5 seconds.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
2*pi (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.
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ts — Sample time
duration scalar

Sample time, specified as a duration scalar.

twin, fwin — Time and frequency windows
vectors of odd length

Time and frequency windows used for smoothing, specified as vectors of odd length. By default, wvd
uses Kaiser windows with shape factor β = 20.

• The default length of twin is the smallest odd integer greater than or equal to
round(length(x)/10).

• The default length of fwin is the smallest odd integer greater than or equal to nf/4, where nf is
specified using NumFrequencyPoints.

Each window must have a length smaller than or equal to 2*ceil(length(x)/2).
Example: kaiser(65,0.5) specifies a 65-sample Kaiser window with a shape factor of 0.5.

thresh — Minimum nonzero value
-Inf (default) | real scalar

Minimum nonzero value, specified as a real scalar. The function sets to zero those elements of d
whose amplitudes are less than thresh.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'NumFrequencyPoints',201,'NumTimePoints',300 computes the Wigner-Ville
distribution at 201 frequency points and 300 time points.

NumFrequencyPoints — Number of frequency points
2*ceil(length(x)/2) (default) | integer

Number of frequency points, specified as an integer. This argument controls the degree of
oversampling in frequency. The number of frequency points must be at least (length(fwin)+1)/2
and cannot be greater than the default.

NumTimePoints — Number of time points
4*ceil(length(x)/2) (default) | even integer

Number of time points, specified as an even integer. This argument controls the degree of
oversampling in time [3] (Signal Processing Toolbox). The number of time points must be at least
2*length(twin) and cannot be greater than the default.

Tip If the input signal is large, reduce the number of time points to lower the memory requirements
and speed up the computation.
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Output Arguments
d — Wigner-Ville distribution
matrix

Wigner-Ville distribution, returned as a matrix. Time increases across the columns of d, and
frequency increases down the rows. The matrix is of size Nf × Nt, where Nf is the length of f and Nt is
the length of t.

f — Frequencies
vector

Frequencies, returned as a vector.

• If the input has time information, then f contains frequencies expressed in Hz.
• If the input does not have time information, then f contains normalized frequencies expressed in

rad/sample.

t — Time instants
vector

Time instants, returned as a vector.

• If the input has time information, then t contains time values expressed in seconds.
• If the input does not have time information, then t contains sample numbers.

More About
Wigner-Ville Distribution

The Wigner-Ville distribution provides a high-resolution time-frequency representation of a signal.
The distribution has applications in signal visualization, detection, and estimation.

For a continuous signal x(t), the Wigner-Ville distribution is defined as

WVDx(t, f ) =∫−∞
∞

x t + τ
2 x* t − τ

2 e− j2πfτ dτ .

For a discrete signal with N samples, the distribution becomes

WVDx(n, k) = ∑
m = − N

N
x(n + m/2) x*(n−m/2) e− j2πkm/N .

For odd values of m, the definition requires evaluation of the signal at half-integer sample values. It
therefore requires interpolation, which makes it necessary to zero-pad the discrete Fourier transform
to avoid aliasing.

The Wigner-Ville distribution contains interference terms that often complicate its interpretation. To
sharpen the distribution, one can filter the definition with lowpass windows. The smoothed pseudo
Wigner-Ville distribution uses independent windows to smooth in time and frequency:

SPWVDx
g, H(t, f ) =∫−∞

∞
g(t) H(f ) x t + τ

2 x* t − τ
2 e− j2πfτ dτ .
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Version History
Introduced in R2018b

R2023a: Timetable support for code generation

The wvd function supports timetable inputs for code generation.

References
[1] Cohen, Leon. Time-Frequency Analysis: Theory and Applications. Englewood Cliffs, NJ: Prentice-

Hall, 1995.

[2] Mallat, Stéphane. A Wavelet Tour of Signal Processing. Second Edition. San Diego, CA: Academic
Press, 1999.

[3] O'Toole, John M., and Boualem Boashash. "Fast and Memory-Efficient algorithms for Computing
Quadratic Time-Frequency Distributions." Applied and Computational Harmonic Analysis. Vol.
35, Number 2, 2013, pp. 350–358.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
Functions
xwvd

Topics
“Time-Frequency Gallery”
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xwvd
Cross Wigner-Ville distribution and cross smoothed pseudo Wigner-Ville distribution

Syntax
d = xwvd(x,y)
d = xwvd(x,y,fs)
d = xwvd(x,y,ts)

d = xwvd( ___ ,"smoothedPseudo")
d = xwvd( ___ ,"smoothedPseudo",twin,fwin)
d = xwvd( ___ ,"smoothedPseudo",NumFrequencyPoints=nf)

d = xwvd( ___ ,MinThreshold=thresh)

[d,f,t] = xwvd( ___ )

xwvd( ___ )

Description
d = xwvd(x,y) returns the cross Wigner-Ville distribution of x and y.

d = xwvd(x,y,fs) returns the cross Wigner-Ville distribution when x and y are sampled at a rate
fs.

d = xwvd(x,y,ts) returns the cross Wigner-Ville distribution when x and y are sampled with a
time interval ts between samples.

d = xwvd( ___ ,"smoothedPseudo") returns the cross smoothed pseudo Wigner-Ville distribution
of x and y. The function uses the length of the input signals to choose the lengths of the windows
used for time and frequency smoothing. This syntax can include any combination of input arguments
from previous syntaxes.

d = xwvd( ___ ,"smoothedPseudo",twin,fwin) specifies the time window twin and the
frequency window fwin used for smoothing. To use the default window for either time or frequency
smoothing, specify the corresponding argument as empty, [].

d = xwvd( ___ ,"smoothedPseudo",NumFrequencyPoints=nf) computes the cross smoothed
pseudo Wigner-Ville distribution using nf frequency points. You can specify twin and fwin in this
syntax, or you can omit them.

d = xwvd( ___ ,MinThreshold=thresh) sets to zero those elements of d whose amplitude is less
than thresh. This syntax applies to both the cross Wigner-Ville distribution and the cross smoothed
pseudo Wigner-Ville distribution.

[d,f,t] = xwvd( ___ ) also returns a vector of frequencies f and a vector of times t at which d is
computed.

xwvd( ___ ) with no output arguments plots the real part of the cross Wigner-Ville or cross smoothed
pseudo Wigner-Ville distribution in the current figure.
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Examples

Cross Wigner-Ville Distribution of Signals

Generate two signals sampled at 1 kHz for 1 second and embedded in white noise. One signal is a
sinusoid of frequency 150 Hz. The other signal is a chirp whose frequency varies sinusoidally
between 200 Hz and 400 Hz. The noise has a variance of 0 . 12.

fs = 1000;
t = (0:1/fs:1)';

x = cos(2*pi*t*150) + 0.1*randn(size(t));
y = vco(cos(3*pi*t),[200 400],fs) + 0.1*randn(size(t));

Compute the Wigner-Ville distribution of the sum of the signals.

wvd(x+y,fs)

Compute and plot the cross Wigner-Ville distribution of the signals. The cross-distribution
corresponds to the cross-terms of the Wigner-Ville distribution.

xwvd(x,y,fs)
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Cross Wigner-Ville Distribution of Chirps

Generate a two-channel signal that consists of two chirps. The signal is sampled at 3 kHz for one
second. The first chirp has an initial frequency of 400 Hz and reaches 800 Hz at the end of the
sampling. The second chirp starts at 500 Hz and reaches 1000 Hz at the end. The second chirp has
twice the amplitude of the first chirp.

fs = 3000;
t = (0:1/fs:1-1/fs)';

x1 = chirp(t,1400,t(end),800);
x2 = 2*chirp(t,200,t(end),1000);

Store the signal as a timetable. Compute and plot the cross Wigner-Ville distribution of the two
channels.

xt = timetable(seconds(t),x1,x2);

xwvd(xt(:,1),xt(:,2))
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Use Cross Wigner-Ville Distribution to Estimate Instantaneous Frequency

Compute the instantaneous frequency of a signal by using a known reference signal and the cross
Wigner-Ville distribution.

Create a reference signal consisting of a Gaussian atom sampled at 1 kHz for 1 second. A Gaussian
atom is a sinusoid modulated by a Gaussian. Specify a sinusoid frequency of 50 Hz. The Gaussian is
centered at 64 milliseconds and has a variance of 0 . 012.

fs = 1e3;
t = (0:1/fs:1-1/fs)';

mu = 0.064;
sigma = 0.01;
fsin = 50;

xr = exp(-(t-mu).^2/(2*sigma^2)).*sin(2*pi*fsin*t);

Create the "unknown" signal to analyze, consisting of a chirp. The signal starts suddenly at 0.4
second and ends suddenly half a second later. In that lapse, the frequency of the chirp decreases
linearly from 400 Hz to 100 Hz.

f0 = 400;
f1 = 100;
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xa = zeros(size(t));
xa(t>0.4 & t<=0.9) = chirp((0:1/fs:0.5-1/fs)',f0,0.5,f1);

Create a two-component signal consisting of the sum of the unknown and reference signals. The
smoothed pseudo Wigner-Ville distribution of the result provides an "ideal" time-frequency
representation.

Compute and display the smoothed pseudo Wigner-Ville distribution.

w = wvd(xa+xr,fs,"smoothedPseudo");

wvd(xa+xr,fs,"smoothedPseudo")

Compute the cross Wigner-Ville distribution of the unknown and reference signals. Take the absolute
value of the distribution and set to zero the elements with amplitude less than 10. The cross Wigner-
Ville distribution is equal to the cross-terms of the two-component signal.

Plot the real part of the cross Wigner-Ville distribution.

[c,fc,tc] = xwvd(xa,xr,fs);
c = abs(c);
c(c<10) = 0;

xwvd(xa,xr,fs)
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Enhance the Wigner-Ville cross-terms by adding the ideal time-frequency representation to the cross
Wigner-Ville distribution. The cross-terms of the Wigner-Ville distribution occur halfway between the
reference signal and the unknown signal.

d = w + c;

d = abs(real(d));

imagesc(tc,fc,d)
axis xy
colorbar
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Identify and plot the high-energy ridge corresponding to the cross-terms. To isolate the ridge, find the
time values where the cross-distribution has nonzero energy.

ff = tfridge(c,fc);

tv = sum(c)>0;

ff = ff(tv);
tc = tc(tv);

hold on
plot(tc,ff,"r--",linewidth=2)
hold off
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Reconstruct the instantaneous frequency of the unknown signal by using the ridge and the reference
function. Plot the instantaneous frequency as a function of time.

tEst = 2*tc - mu;
fEst = 2*ff - fsin;

plot(tEst,fEst)
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Input Arguments
x, y — Input signals
vectors | timetables

Input signals, specified as vectors or MATLAB timetables each containing a single vector variable. x
and y must both be vectors or both be timetables and must have the same length.

• If x and y are timetables, then they must contain increasing finite row times.
• If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable

with Missing, Duplicate, or Nonuniform Times”.

If the input signals have odd length, the function appends a zero to make the length even.
Example: cos(pi/8*(0:159))'+randn(160,1)/10 specifies a sinusoid embedded in white noise.
Example: timetable(seconds(0:5)',rand(6,1)) specifies a random variable sampled at 1 Hz
for 4 seconds.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate
2*pi (default) | positive numeric scalar

Sample rate, specified as a positive numeric scalar.
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ts — Sample time
duration scalar

Sample time, specified as a duration scalar.

twin, fwin — Time and frequency windows
vectors of odd length

Time and frequency windows used for smoothing, specified as vectors of odd length. By default, xwvd
uses Kaiser windows with shape factor β = 20.

• The default length of twin is the smallest odd integer greater than or equal to
round(length(x)/10).

• The default length of fwin is the smallest odd integer greater than or equal to nf/4.

Each window must have a length smaller than or equal to 2*ceil(length(x)/2).
Example: kaiser(65,0.5) specifies a 65-sample Kaiser window with a shape factor of 0.5.

nf — Number of frequency points
2*ceil(length(x)/2) (default) | integer

Number of frequency points, specified as an integer. This argument controls the degree of
oversampling in frequency. The number of frequency points must be at least (length(fwin)+1)/2
and cannot be greater than the default.

thresh — Minimum nonzero value
-Inf (default) | real scalar

Minimum nonzero value, specified as a real scalar. The function sets to zero those elements of d
whose amplitudes are less than thresh.

Output Arguments
d — Cross Wigner-Ville distribution
matrix

Cross Wigner-Ville distribution, returned as a matrix. Time increases across the columns of d, and
frequency increases down the rows. The matrix is of size Nf × Nt, where Nf is the length of f and Nt is
the length of t.

f — Frequencies
vector

Frequencies, returned as a vector.

• If the input has time information, then f contains frequencies expressed in Hz.
• If the input does not have time information, then f contains normalized frequencies expressed in

rad/sample.

t — Time instants
vector

Time instants, returned as a vector.

 xwvd

1-1953



• If the input has time information, then t contains time values expressed in seconds.
• If the input does not have time information, then t contains sample numbers.

The number of time points is fixed as 4*ceil(length(x)/2).

More About
Cross Wigner-Ville Distribution

For continuous signals x(t) and y(t), the cross Wigner-Ville distribution is defined as

XWVDx, y(t, f ) =∫−∞
∞

x t + τ
2 y* t − τ

2 e− j2πfτ dτ .

For a discrete signal with N samples, the distribution becomes

XWVDx, y(n, k) = ∑
m = − N

N
x(n + m/2) y*(n−m/2) e− j2πkm/N .

For odd values of m, the definition requires evaluation of the signal at half-integer sample values. It
therefore requires interpolation, which makes it necessary to zero-pad the discrete Fourier transform
to avoid aliasing.

The cross Wigner-Ville distribution contains interference terms that often complicate its
interpretation. To sharpen the distribution, one can filter the definition with lowpass windows. The
cross smoothed pseudo Wigner-Ville distribution uses independent windows to smooth in time and
frequency:

XSPWVDx, y
g, H(t, f ) =∫−∞

∞
g(t) H(f ) x t + τ

2 y* t − τ
2 e− j2πfτ dτ .

Version History
Introduced in R2018b

R2023a: Timetable support for code generation

The xwvd function supports timetable inputs for code generation.

References
[1] Cohen, Leon. Time-Frequency Analysis: Theory and Applications. Englewood Cliffs, NJ: Prentice-

Hall, 1995.

[2] Mallat, Stéphane. A Wavelet Tour of Signal Processing. Second Edition. San Diego, CA: Academic
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components instantaneous frequency estimation using the cross Wigner-Ville distribution." In
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1 Functions

1-1954



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
xspectrogram | wvd

Topics
“Time-Frequency Gallery”
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